Fluid-Based Analysis of a Network with DCCP Connections and RED Routers

Hiroyuki Hisamatsu

Graduate School of Information Science and Technology
Osaka University, Japan
Background

- Real-time applications
 - Have been widely deployed
 - Use either UDP or TCP
- Internet: best effort network
 - Network applications should have a congestion control mechanism
UDP (User Datagram Protocol)

- Simple protocol for datagram transfer
- Doesn't have a congestion control mechanism
- We should implement some congestion control mechanism on application layer
TCP (Transmission Control Protocol)

- Has a congestion control mechanism
 - Adjust its packet transmission rate
- Designed for data transfer applications
 - Can tolerate a certain amount of delays
- AIMD window flow control
- Packet transmission rate fluctuates
 - Serious problem for a real-time applications
DCCP (Datagram Congestion Control Protocol)

- Transport-layer protocols for real-time applications
- Can choose congestion control mechanism
 - TCP-like congestion control profile
 - AIMD window control
 - TFRC congestion control profile
 - TCP-friendly rate control
RED (Random Early Detection)

- Representative AQM mechanism
 - Probabilistically discards an arriving packet
- High throughput can be achieved
- Average queue length can be kept small
 - Decrease the end-to-end transmission delay
- AQM mechanisms is effective for real-time applications
Objective

- Analyze steady state performance of DCCP/RED
 - Derive packet transmission rate, packet loss probability
- Analyze transient state performance of DCCP/RED
 - Investigate parameter region where DCCP/RED operate stably
 - Evaluate transient state performance of DCCP/RED
 - ramp-up time, overshoot, settling time
Analytic Model
Modeling DCCP with TCP-like Congestion Control Profile

- $x(k)$: input (arrival rate of ACK packets)
- $y(k)$: output (transmission rate of data packets)
- R: round-trip time
- Δ: time slot

$$y(k+1) \simeq f(x(k), y(k), R)$$

$$= y(k) + \Delta \frac{x(k)}{y(k)R^2} - \frac{2}{3} \Delta y(k)z(k) \{1 - p_{TO}(k)\} - \left\{ \frac{4}{3} y(k) - \frac{1}{R} \right\} \Delta z(k)p_{TO}(k)$$

- additive increase
- multiplicative decrease
- TCP timeout
Modeling DCCP with TFRC Congestion Control Profile

- \(x(k) \): input (arrival rate of ACK packets)
- \(y(k) \): output (transmission rate of data packets)
- \(R \): round-trip time
- \(\Delta \): time slot

\[
\begin{align*}
y(k) &= g(x(k), y(k), R) \\
 &= X(pe(k), R) \\
X(pe(k), R) &= \frac{1}{R \sqrt{\frac{2pe(k)}{3}} + t_{RTO} \left(3 \sqrt{\frac{3pe(k)}{8}} pe(k) (1 + 32pe(k)^2)\right)}
\end{align*}
\]
Modeling RED Router

- $x(k)$: input (packet arrival rate)
- $y(k)$: output (packet departure rate)
- minth, maxth, maxp, w_q: RED control parameters
- Δ: time slot

$$y(k) = g(x(k), R) = \min(x(k), \mu)$$

$$q(k + 1) = \min[\max\{q(k) + N x(k) \Delta, 0\}, L]$$

$$\bar{q}(k + 1) \simeq \bar{q}(k) + N x(k) \Delta w_q(q(k) - \bar{q}(k))$$

$$p_b(k) = \begin{cases}
0 & \text{if } q(k) < \text{minth} \\
\frac{\text{maxp}}{\text{maxth} - \text{minth}}(\bar{q}(k) - \text{minth}) & \text{if } \text{minth} \leq \bar{q}(k) < \text{maxth} \\
1 & \text{if } \bar{q}(k) \geq \text{maxth}
\end{cases}$$

average queue length

current queue length

packet loss probability
Steady State Analysis

- y^*_D, y^*_R: Output of DCCP and RED in steady state
- $y_D(k), y_R(k)$: Output of DCCP and RED at time slot k
- $x_D(k), x_R(k)$: Input of DCCP and RED at time slot k
- N: number of DCCP connections
- Obtain y^*_D, y^*_R by solving equations:

\[
\begin{align*}
 y_D(k + 1) &= y_D(k) = y^*_D, \quad x_D(k) = \frac{y^*_R}{N} \\
 y_R(k + 1) &= y_R(k) = y^*_D, \quad x_R(k) = N \cdot y^*_D
\end{align*}
\]
Transient State Analysis: DCCP with TFRC Congestion Control Profile (1/2)

- Assume TFRC notifies its source host of feedback information every M slots
- Linearize models around equilibrium points
- Obtain the transition matrix from slot k to slot $k+m$: $x(k + M) = A B^{M-1} x(k)$
 - A: state transition matrix when DCCP source host receives feedback information
 - B: state transition matrix when DCCP source host doesn’t receive feedback information
Eigen values of AB^{M-1} determine transient state behavior
- s: the maximum absolute eigen values of AB^{M-1}, maximum modulus
- smaller s: better transient behavior
- $s < 1$: stable
- $s > 1$: unstable
Numerical Examples: DCCP Packet Transmission Rate

- TFRC congestion control profile

![Graph showing the relationship between DCCP packet transmission rate and bottleneck link bandwidth. The graph includes lines for different values of delay (τ) and indicates good agreement between analysis and simulation results.]
Numerical Examples: Stability Region of DCCP/RED

- TFRC congestion control profile

Bandwidth \rightarrow large,
Maximum modulus \rightarrow large

$w_q \rightarrow$ small,
Maximum modulus \rightarrow large
Transient State Performance Indexes

- Average Queue length
- Overshoot
- Rising time
- Settling time

- 95%
- 100%
- ±5%
Numerical Examples: DCCP/RED Transient State Performance

- TFRC congestion control profile

\[w_q \rightarrow \text{large, ramp-up time and settling time} \rightarrow \text{small} \]
Calculation Method of RED Average Queue Length

- Update average queue length for every packet receipt
 - Average: Exponential Weighted Moving Average
 \[\bar{q} \leftarrow (1 - w_q) \bar{q} + w_q q \]
 \(\bar{q} \) - average queue length
 \(w_q \) - EWMA weight
 \(q \) - current queue length

- Determine packet loss probability by linear function of Queue Occupancy
 \[p_b = \max_p \left(\frac{\bar{q} - \text{min}_\text{th}}{\text{max}_\text{th} - \text{min}_\text{th}} \right) \]
 \(p_b \) - packet loss probability
 \(\text{max}_p, \text{min}_\text{th}, \text{max}_\text{th} \): control parameter of RED
RED-IQI: RED with Immediate Queue Information

- Change calculation method of average queue length
 \[w_q = 1 \]
 - Feedback delay of DCCP/RED-IQI becomes small

- Change function that determines packet loss probability

\[
p_b = \max_p F \left(\frac{\bar{q} - \min_{th}}{\max_{th} - \min_{th}} \right)
\]

where

\[
F(x) = \left(1 - \sqrt{1 - x^2}\right)^\phi
\]

with \(\phi \geq \frac{1}{2} \)
Numerical Examples: Stability Region of DCCP/RED

- TFRC congestion control profile

\[w_q = 0.002 \]

Stability region becomes large
Conclusion

- Investigate parameter region where DCCP/RED operate stably
- Evaluate transient state performance of DCCP/RED
 - Stability and transient state performance degrade, when weight of EWMA is small
- Propose RED-IQI and Evaluate it
 - RED-IQI improves stability and transient state performance of DCCP/RED-IQI