
Performance Modeling and Evaluation

of Web Server Systems with Proxy Caching

Yasuyuki Fujita

Department of Informatics and Mathematical Science

Graduate School of Engineering Science

Osaka University

Osaka, Japan

January 2000



PREFACE

Performance Modeling and Evaluation

of Web Server Systems with Proxy Caching

by

Yasuyuki Fujita

Dissertation Director: Prof. Hideo Miyahara

Recently, the Internet has been expanding intensively; the number of WWW

(World Wide Web) users has been growing, and the network capacity provided by

network carriers and Internet service providers has been increasing for enabling

high quality services. The Internet users would pay the reasonable cost for a reason-

ably better service. For ISP (Internet Service Provider) to provide better QoS (Qual-

ity of Services) to users, it is important to design the entire network appropriately;

that is, the bottleneck of the network should be identified adequately, and a well-

balanced allocation of network resources to users should be performed. However,

this is not an easy task: how the amount of network resources that satisfies user’s

QoS expectation can be determined? For typical WWW users, a response time (i.e.,

time elapsed until a requested document (i.e., a WWW page) has been successfully

transferred) is one of most important performance measures. However, a response

time of a requested document is difficult to expect since it is affected by both the net-

work capacity and the processing power of the requested Web server. For predicting

a response time of a Web server system, a relation between incoming traffic at the

Internet access link and the processing delay of the Web server should be revealed.

To design a Web server system, first, it is necessary to build the model of a Web

i



server, furthermore, a simple mathematical model is preferred since conventional

computer simulation takes a lot of time for such a complicated network system.

The first objective of this thesis is to model a single Web server without network.

We perform various benchmark tests for an existing Web server, and investigate

its characteristics in a quantitative manner. In our benchmarking experiments, a

high–speed ATM switch is used to eliminate a possibility for the network to be the

bottleneck. Benchmarking results show that the performance of the Web server can

be improved by preparing the helper process for the http daemon. We quantita-

tively show a work demand, which is defined as the processing time for a given

document size on a Web server. We then propose the performance model of a Web

server, which consists of a FIFO (First-In First-Out) queue as a dispatcher and a PS

(Processor Sharing) queue as a single processor used by all helper processes. Ac-

cordingly, the performance model of a Web server is modeled as an M/G/1/PS

queue with a limited number of jobs allowed in the server.

Using our model of the Web server, we then propose and examine the perfor-

mance engineering problem of the Web server. Several numerical examples of our

model show that the mean response time of small size documents becomes very

large when the offered traffic load is high. It is also shown that the performance im-

provement by increasing the number of helper processes is minor for the a typical

document size distribution. In a future Web server system handling various mul-

timedia contents, it is expected that the average size of documents is quite large.

Therefore, the number of helper processes is an important factor in the future Inter-

net.

One of key technologies in a recent Web server system is a Proxy server and its

caching mechanism, which is called as Proxy caching. By using the Proxy caching,

the response time of a requested document becomes very small, if the requested

document has already cached at the Proxy server. This mechanism dramatically

improves the response time for documents located at a distant Web server. However,

ii



the Proxy caching requires an additional overhead to retrieve and save the requested

document if it has not been cached. In this thesis, the performance characteristics

of a Proxy server are investigated by performing two benchmark experiments for

modeling and evaluating the Proxy server with caching. We quantitatively show a

work demand in two cases: when a requested document has been cached, and when

it has not. We then show that a PS queue is adequate to model the Proxy server.

The second objective of this thesis is to apply our analytic model to design a real

Web server system. We focus on two Web server systems: (1) a public Web server in

the Internet, and (2) a Proxy server provided by ISP. We demonstrate applicabilities

of our Web server system modeling approach to evaluate performance of these two

Web server systems. In the first case, the Web server is open and publicly accessible

from the Internet users. In this case, the response time of a document retrieval con-

sists of two factors: a delay experienced at the Web server, a transmission delay over

the access line and the Internet backbone. Our simulation results derived from this

model are mainly affected by the performance of the Web server and the bandwidth

of the access line connected to the Internet. We show that the increased capacity of

the access line improves the transmission delay particularly when the request ar-

rival rate is small. And we also show the improvement of the performance of the

Web server is important to improve the response time, but dramatic improvements

cannot be achieved if the processing power of the Web server becomes large since

the delay within the Internet backbone becomes dominant in our model. Hence,

an improvement of the Internet backbone is of necessity for realizing very high–

performance Web server system once both the access link and the Web server are

adequately prepared.

Using the second case, we demonstrate the applicability of our approach to in-

vestigate the effect of the Proxy caching. When the cache hit ratio exceeds about

50%, the transmission delay within the access line is not so improved. We therefore

point out that a more complicated and slightly improved caching algorithm does

iii



not help improving the transmission delays within the access line. In most cases,

the transmission delay within the Internet is much larger than the processing delay

at the Web server and the transmission delay in the access line. One would expect

that the faster Internet backbone improves the total response time, but it does not

always lead to the dramatic improvement. Using our analytic model, we can show

the reason that the performance bottleneck moves from the Internet backbone to

other location – the access line.

Finally, we investigate the applicability of our analytical method to solve a queue-

ing network model by comparing with our simulation experiments. We use a MVA

(Mean Value Analysis) method and model a Web server as an IS (Infinite Server)

queue where a work demand at the IS queue is obtained from our previous analy-

sis of the Web server. Numerical examples show a good agreement of the analytic

method with simulation when either the Internet backbone or the access line is the

bottleneck. Furthermore, when the Web server becomes the bottleneck, an analytic

result and a simulation result show a reasonable agreement.

Through all of our research, we have discussed with the engineering problems

of the resource allocation on the Web server system. Our modeling approach makes

it possible to construct a high-performance Web server system by evaluating the

performance characteristics quantitatively. It is also possible to design the system

with considering not only a well-balanced allocation of the resources within the Web

server system but also production costs. That is, our approach can identify the per-

formance bottleneck of the Web server system and can be used for its performance

planning.

iv



Acknowledgements

I would like to express my sincere appreciation to continued support of my ad-

visers, Professor Hideo Miyahara, through the trials and tribulations of this Ph.D.

thesis. I would like to also thank his encouragement and invaluable comments in

preparing this thesis. And I am deeply grateful to Professor Nobuki Tokura and

Professor Katsuro Inoue for serving on my thesis committee and also for their kind

advice and invaluable comments that helped me in improving this thesis.

I am most grateful to Professor Masayuki Murata for his enthusiasm in teaching

and pursuing performance modeling of Web Server Systems with me. He has been

actual adviser and been opening my eyes toward the Web System. His active interest

and encouragement have been of great help in furthering my efforts in this area, and

his standards of excellence will stay with me throughout my career.

My thanks go to members of Advanced Network Architecture group of Multi-

media Information System Laboratory in the Department of Informatics and Mathe-

matical Science for their valuable advice, continuing encouragement and friendship.

I would like to express my appreciation to The Kansai Electric Power Co., Inc. for

giving me an opportunity to study in Osaka University. I am heartily thankful for

the fellowship and underpinning — special thanks to Mr. Tadao Tanabe, Director of

Kansai Electric, and Mr. Yoshitaka Kusano, General Manager of Information System

Center, for their expertise as well as warm-hearted suggestions.

I am deeply grateful to my parents. They always give me endless love and assist

me. Finally, I dedicate this thesis to my lovely wife Yukiko for her endless support,

encouragement and understanding.

v



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Benchmark tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Analysis and Modeling of Web Server Performance . . . . . . 6

1.3.2 Analysis and Modeling of Proxy Server Performance . . . . . 7

1.3.3 Performance Modeling and Examples of Web Server Systems 8

2 Analysis and Modeling of Web Server Performance 10

2.1 Experimental Configuration of the Web Server . . . . . . . . . . . . . 10

2.2 Experimental Results of the Web Server . . . . . . . . . . . . . . . . . 12

2.2.1 Experiment 1: The way to prepare the HTTP daemon . . . . . 12

2.2.2 Experiment 2: The effect of the number of helper processes . . 16

2.2.3 Experiment 3: The relation between document sizes and re-

sponse times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Experiment 4: The effect of the document size distribution . . 23

2.2.5 Experiment 5: The effect of network capacity . . . . . . . . . . 27

2.3 Performance Modeling and Analysis of the Web Server . . . . . . . . 29

2.3.1 M/G/1/PS queue with a limited number of jobs in the server 29

2.3.2 Numerical examples and discussions . . . . . . . . . . . . . . 31

vi



3 Analysis and Modeling of Proxy Server Performace 40

3.1 Experimental Configuration of the Proxy Server . . . . . . . . . . . . 40

3.2 Experimental Results of the Proxy Server . . . . . . . . . . . . . . . . 42

3.2.1 Experiment 1: The effect of the number of clients to access the

Proxy sever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Experiment 2: The effect of the cache hit ratio . . . . . . . . . . 46

4 Performance Modeling and Examples of Web Server Systems 51

4.1 Evaluation of the Web Server System . . . . . . . . . . . . . . . . . . . 51

4.2 Evaluation of the Model Including the Proxy Server System . . . . . 56

4.3 Accuracies of an Approximate Analytical Method . . . . . . . . . . . 62

5 Conclusion 66

References 70

Biography 75

vii



List of Figures

1.1 WebStone structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Experimental system configuration of the Web server. . . . . . . . . . 11

2.2 Effects of the way to prepare the HTTP daemon on the average re-

sponse time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Effects of the way to prepare the HTTP daemon on the server connec-

tion rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Effects of the number of helper processes on the average response time. 17

2.5 Effects of the number of helper processes on the server connection rate. 17

2.6 Effects of the document size on the average response time. . . . . . . 19

2.7 Effects of the document size on the server connection rate. . . . . . . 19

2.8 Effects of the document size on the server throughput. . . . . . . . . 20

2.9 Effects of the document size on the average response time. . . . . . . 21

2.10 Work demand against the document size. . . . . . . . . . . . . . . . . 21

2.11 Response times of 50 Kbyte and 500 Kbyte documents dependent on

the file mix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 Response times of 50 Kbyte and 500 Kbyte documents. . . . . . . . . 24

2.13 Effects of document size distributions on the average response time. 26

2.14 Effects of document size distributions on the server throughput. . . . 26

2.15 Effects of the network bandwidth. . . . . . . . . . . . . . . . . . . . . 27

2.16 Queueing model for the Web server. . . . . . . . . . . . . . . . . . . . 29

viii



2.17 Approximation of work demand. . . . . . . . . . . . . . . . . . . . . . 33

2.18 Conditional mean response time for different traffic load. . . . . . . . 35

2.19 Conditional mean response time dependent on the number of helper

processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.20 The case of ten times larger document size distribution. . . . . . . . . 37

2.21 Comparisons of conditional mean response times for different docu-

ment size distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Experimental system configuration of the Proxy server. . . . . . . . . 41

3.2 Effects of the number of clients [100% hit ratio]. . . . . . . . . . . . . . 44

3.3 Effects of the number of clients [100% hit ratio] (log scale). . . . . . . 44

3.4 Work demand in the case of 100% cache hit. . . . . . . . . . . . . . . . 45

3.5 Work demand in the case of cache miss. . . . . . . . . . . . . . . . . . 45

3.6 Effects of the cache hit ratio on the average response times. . . . . . . 47

3.7 Effects of the cache hit ratio on the average response times (log scale). 47

3.8 Response times for only cached documents. . . . . . . . . . . . . . . . 48

3.9 Coefficients of work demands against response times with 100% hit

ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Approximated function for work demand. . . . . . . . . . . . . . . . 50

4.1 Web server system model. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Mean delays on access line. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Required access line capacity for given delay constraint. . . . . . . . . 54

4.4 Delays dependent on the Web server performance. . . . . . . . . . . . 55

4.5 ISP model including the Proxy server. . . . . . . . . . . . . . . . . . . 56

4.6 Mean delays on the access line dependent on the cache hit ratio. . . . 57

4.7 Speed–up effect of Internet backbone. . . . . . . . . . . . . . . . . . . 59

4.8 Ratios of document processing and transfer delays. . . . . . . . . . . 59

4.9 Speed–up effect of Internet backbone [The case of 6Mbps access line]. 61

ix



4.10 Ratios of document processing and transfer delays [The case of 6Mbps

access line]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Comparisons of analytical and simulation results. . . . . . . . . . . . 63

4.12 The case of 6Mbps access line. . . . . . . . . . . . . . . . . . . . . . . . 65

4.13 Comparisons of throughput. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 The entire Web server system model. . . . . . . . . . . . . . . . . . . . 69

x



List of Tables

2.1 Experimental system of the Web server. . . . . . . . . . . . . . . . . . 11

3.1 Experimental system of the Proxy server. . . . . . . . . . . . . . . . . 42

xi



Chapter 1

Introduction

1.1 Background

In recent years, the Internet has experienced phenomenal growth. The number of

hosts connected to the Internet was 29,670,000 in the world in January 1998, and it

is increased up to 43,230,000 in January 1999, and 56,218,000 in July 1999 [1]. It is

especially true when we expect the Internet with high quality since various kinds

of media including text, image, audio, and motion video are being offered through

the WWW (World Wide Web) ; the realized technology on the Internet. To generate

the best possible performance for WWW services to the Internet users, an under-

standing of the relation among system resources such as the Internet backbone, the

Internet access line and the Web server are of necessity.

Accordingly, studies on traffic characteristics of the Internet become important

to deeply understand the traffic behavior of the Internet and to build the efficient

Internet. The traffic characteristics of the Internet have already been investigated by

several researchers; see, e.g., [2] and references therein. In [2], it was observed that

document sizes and request interarrival times follow log-normal distributions, and

the request interarrival times during the busiest two hours follow an exponential

distribution. Based on the authors proposed, an M/G/1/PS model was applied for

1



dimensioning the Internet access line. Furthermore, the effects of the traffic charac-

teristics, affected by the document caching in the access line, have been studied, for

example in [3]. However, their study does not consider the performance of the Web

server. In actual, of course, the quality of service offered to users is affected by the

request processing delay at the Web server as well as the transfer delay within the

network. If the Web server simultaneously processes many requests, it is likely that

the Web server easily becomes a bottleneck. That is, the quality of service to users

is affected not only by the network bandwidth but also by the Web server process-

ing speed of requests. So, the improving of the Web server performance is a critical

issue for the Web sites which service a high volume of requests.

Studies concerning on the Web server performance are very few. In [4], the au-

thors focused on a method of improving the Web server performance in the situa-

tion that the CPU processing power is a limiting resource. In [5], the purpose of the

authors was to build a new Web server mechanism, and they offered several perfor-

mance results showing that their proposed server is efficient and scalable. In these

studies, the authors have investigated to improve the performance of the Web sever

itself. On the other hand, several papers have examined performance characteris-

tics of the Web server by benchmarking [6, 7] to compare the Web server hardware,

and to analyze the influence on response times by different document sizes. And in

these studies, the authors are also examined a way of starting http daemon. We also

measure the performance of the Web server by utilizing the benchmarking tool, and

a part of obtained results has already been known in the above literature. The study

on the Web server modeling is presented in [8]. In that paper, the authors model the

Web server and the Internet as an open queueing network model. However, vali-

dation of the modeling approach is not shown. Furthermore, numerical parameters

used in performance evaluation are fictitious and not based on the actual systems.

However, the above studies focus on the characteristics of the Web server per-

formance, especially. So, they do not consider the entire Web system. A recent Web

2



system often uses the Proxy caching, which can be used to improve the document

response times. The caching mechanism in the Proxy server returns the requested

document if it has been cached by the Proxy server. On the other hand, when the

requested document has not been cached, the Proxy server forwards the document

request to the original Web server and retrieves the document, and forwards the

document to the user. Concerning the Proxy server, there are a lot of studies on the

caching algorithms and a distributed Proxy server based on the caching technolo-

gies [9-11]. On the contrary, our study is to investigate the performance characteris-

tics of the Proxy server to be included in the performance model of the entire Web

server system.

1.2 Benchmark tool

Recently, some benchmark tools are available such as WebStone [12], SPECweb96 [13]

and WebBench [14]. Those benchmark tools run independently of the server plat-

form or server software running on it, and the clients prepared by those tools gener-

ate requests to the server to examine the server’s behavior and performance (e.g., the

response time, server throughput and so on). The main purpose of benchmarking

compares the performances of different Web server platforms using the same Web

server software or the performances of different Web server softwares on the same

platform. While benchmark results have already been publicly available on the In-

ternet, those results are based on different experimental environments of benchmark

softwares and server platforms, and we can not directly apply them as parameters to

model the Web server. In our experiment, we used WebStone [12] as the benchmark-

ing tool that is used the cases of the Web server and the Proxy server experiments.

In our experiments, we used WebStone since we can specify the distribution of

requested document sizes, the frequency of access to the Web server, and the num-

ber of clients generating loads for the Web server [15]. Figure 1.1 illustrates the Web-

3



Webchildren

Webchildren

Webchildren

HTTP Server
WebMASTER .

.

.

.

.

.

.

.

Log files config files

[ Client ]

[ Server ]

Figure 1.1: WebStone structure.

Stone structure. The “Webchilderen” are controlled by the “WebMASTER”, which

remotely spawns the multiple Webclidrens on one or more client machines. Each

Webchildren issues the request one after another to the Web server. More precisely,

after the Webchildren establishes the HTTP connection with the Web server, it sends

one request at a time. It immediately closes the connection after it receives the docu-

ment. Then, the new connection is established to obtain the next document. Namely,

it employs the HTTP version 1.0 [16]. In our study, it is not a main problem whether

the version of HTTP is 1.0 or 1.1 because we assume the general environment such

that the Web server accepts the document retrieval requests from anonymous users.

The following run rules are prescribed in using WebStone [15].

• File set: When the benchmark results are published, the files mix specifying

ratios of the documents should follow “filelist.standard” included in the Web-

Stone distribution. The content of filelist.standard is shown below.

Each line consists of the name of the document and the percentage that it is

referred. Furthermore, the file name indicates its file size (i.e., Web document

4



size). For example, the first line, “/file500.html”, means that the document

with 500 bytes is accessed with probability of 350/1000. In [15], it is described

that the filel-

ist.standard shows the representative file set for the real Web server and

the frequency of the accesses.

/file500.html 350

/file5k.html 500

/file50k.html 140

/file500k.html 9

/file5m.html 1

• Benchmark Run Configuration: The runtime must be at least 10 minutes. It

provides adequate time for the server and client configuration to reach a steady

state, and it is long enough to cancel out high variations observed in the first

few minutes of the run.

• The Number of Clients: The number of clients should vary from 20 to 100 in

increments of 10 so that performance of the server under a wide variety of

loads can be observed.

• Server Machine Configuration: It is necessary that the user should report the

operating system, memory configuration and any special operating system

modifications, and especially changes to the TCP/IP stack.

1.3 Outline of Dissertation

In this thesis, we investigate basic performance characteristics of the Web server sys-

tem, which enable us to identify the system bottleneck and find the well–balanced

allocation of the resources including the Internet backbone, the access line, the Web

5



server and the Proxy server. In the rest of this Section, we summarize the objectives

of this thesis.

1.3.1 Analysis and Modeling of Web Server Performance

[17-23]

In Chapter 2, we conduct several benchmark experiments to characterize the

Web server performance. We used the ATM switch to interconnect the client and

server to neglect the transmission delay within the network. And we used Web-

Stone as a benchmark tool. In our experiments, we consider (1) the way to prepare

the HTTP daemon, (2) the number of the helper processes, (3) the relation between

document sizes and response times, (4) the document size distribution, and (5) net-

work capacity. In modeling the Web server, we selected the effective and highly

efficient way to prepare the HTTP daemon from our experimental results. We next

investigate the relation between the document size and the required processing time

on the Web server, and show how the Web server performance is affected by the

document size and the document distribution. As a result, the quantitative param-

eters that are essential in modeling the Web server as a numerical parameter, can be

represent. The parameters can be expressed as the work demand for given WWW

document size determined. The work demand is obtained from the response time

divided by the number of clients accessing at the same time. Hence, it is indepen-

dent of the number of clients. Therefore, a processor sharing schedule discipline

may be adequate to model the Web server. It would be applied when our concern is

to obtain the response time averaged over all document sizes. However, we would

like to find the response time for each document size. So, we next have experience

to evaluate the delay at the dispatcher process. And we should consider the delay

at the dispatcher. From our discussions, we propose the a queueing model of the

Web server and confirm the its scheduling discipline.

6



Next, we examine the model of the Web server in detail. Using our approximate

analytical method, we give how the Web server performance can be improved. And

through numerical examples, we discuss the performance engineering problem of

the Web server. We observe that the processing time on the Web server is influenced

by the traffic load. In the future Web service, the WWW documents with large size

documents are likely increased. Those include the motion video and audio data. So,

we can propose how to keep the quality of service in terms of document retrieval

time and give simulation examples with our analytical results.

1.3.2 Analysis and Modeling of Proxy Server Performance

[24-26]

Next, we investigate quantitative performance characteristics of the Proxy server

by the benchmark tests. We show the experimental results for modeling the Proxy

server in Chapter 3. In our experiments, we set the document hit ratio as an input

parameter. We used the ATM switch to connect the client, the Web server, and the

Proxy server. We take the following approach to investigate the performance of the

Proxy server and use the WebStone as the benchmark tool. In our experiment, the

clients of WebStone issue the requests to the Proxy server, and the Proxy server re-

turns the document if it has the document. If the Proxy server has not kept the doc-

ument, it forwards the request to Web server and returns the document to the user.

Thus, the experimental results reported by the WebStone can be used to investigate

the performance characteristics of the Proxy server by controlling the document hit

ratio.

In this Chapter, we present two experiments, (1) the number of clients to access

the Proxy server at the same time, and (2) the hit ratio of the cache. We investigate

the work demands of cached and no–cached documents. The quantitative parame-

ters that are essential in modeling the Web server as a numerical parameter, can be

7



represent. The parameters can be expressed as the work demand for given WWW

document size determined. The work demand is obtained from the response time

divided by the number of clients accessing at the same time. Hence, it is indepen-

dent of the number of clients. On the other hand, we focus the relations between the

document size and the response time on the Proxy server. Its result shows that the

tendencies of the response time of the cached document are changed over a certain

document size. So, we produce the coefficient values for the cache hit ratio and the

WWW document size. As described above, we can propose the queueing model of

the Proxy server with caching and its scheduling discipline.

1.3.3 Performance Modeling and Examples of Web Server Systems

[24, 21, 22, 25, 26]

From discussions above, by modeling the Web server and the Proxy server, we

are able to build the entire Web server system model including the Internet back-

bone, the Internet access line, the Web server, and the Proxy server. Hence, we

propose the performance evaluation model which can examine throughput and re-

sponse time, as a performance index, of the document transmission request from

users.

In Chapter 4, a modeling approach of the Web server and the Proxy server mod-

els, (1) the Web site is publicly open to the Internet, and (2) users within a certain lo-

cal network access the Internet via Proxy server. In our simulation, we also evaluate

the performance of the Web server system in order to demonstrate the applicability

of our approach. When we expect the faster response time, we cannot find out the

good solution easily. Because it is indistinctness what is the bottleneck in the Web

system. So, we will indicate quantitative results by demonstrating applicabilities of

our Web system modeling approach to evaluate a performance of the Web system.

Therefore, we will show the relations of the resources, in this thesis, the Web server,

8



the Internet access line and the Internet backbone. Furthermore, we consider the

effect of the Proxy caching, in other word, we need to take account of the effect of

decreasing the network traffic load by the document caching on the Proxy server.

Using such the performance evaluation model, we except the extreme bottleneck

and are able to build the well–balanced systematic network. In this thesis, we show

the examples of the performance evaluation based on our proposed model and dis-

cuss its meaning.

Finally, Chapter 5 includes concluding remarks and future research topics.

9



Chapter 2

Analysis and Modeling of Web Server

Performance

2.1 Experimental Configuration of the Web Server

Our experimental system is illustrated in Figure 2.1. We used the ATM switch to

interconnect the client and server to avoid the network being bottleneck. It was

necessary to test the maximum throughput of the Web server. Noting that we used

the ATM switch, we found that the overhead due to the network delay is negligible

when compared with the time elapsed at the server. Therefore we will not discuss

the network delay in this thesis except Subsection 2.2.5 where we will show the

results using Ethernet.

The hardware and software used in our experiments are summarized in Ta-

ble 2.1. We used Apache (version 1.2.4) [27] for the HTTP server. Recently we

have many HTTP servers, which include Internet Information Server by Microsoft

Co. [28], Enterprise Server by Netscape Communications Co. [29], NCSA [30], and

CERN [31]. Among them, we have adopted Apache since it has about 55 percents

market-share of the HTTP server [32]. A server configuration of our experiment

is as follows; the logging option is set as default. Document files are stored in the

10



ATM SWITCH

Server Client

ATM ATM

Figure 2.1: Experimental system configuration of the Web server.

local disks of the Web Server. On both of the server and client machines, we did

not modify the operating system for tuning TCP/IP stack. That is, we set up the

experimental system same to the commonly used Web servers.

Table 2.1: Experimental system of the Web server.
Server Client

Machine Indiogo2(SGI) Indigo2(SGI)
CPU IP26 75 MHZ IP22 250 MHZ
Main Memory 320 Mbytes 192 Mbytes
Web Server Apache 1.2.4 —
Benchmark — WebStone 2.0.1

In our experiments, we used WebStone (Ver. 2.0.1) as the benchmark tool. We did

not follow the run rules of WebStone in some experiments since we aim at collect-

ing the quantitative data for Web server modeling. In such cases, we will explicitly

present the configuration. In each simulation setting, we tested five experiments,

each of which runs ten minutes, to obtain the reliable results. Then, the average of

those five experiments is presented in the below. Last, we note that in our exper-

iments, we only considered the document transfers, and did not include requests

that require the processing at the Web server such as cgi.

11



2.2 Experimental Results of the Web Server

In this section, we present the results of our experiments as follows;

• Experiment 1: The way to prepare the HTTP daemon on the Web server per-

formance (Subsection 2.2.1)

• Experiment 2: The effect of the number of helper processes on the Web server

performance (Subsection 2.2.2)

• Experiment 3: The relation between document sizes and response times (Sub-

section 2.2.3)

• Experiment 4: The effect of the document size distribution on the Web server

performance (Subsection 2.2.4)

• Experiment 5: The effect of network capacity (Subsection 2.2.5)

2.2.1 Experiment 1: The way to prepare the HTTP daemon

In this subsection, we evaluate the effect of the way to prepare the HTTP daemon

on the Web server performance. The following five methods can be considered in

preparing the HTTP daemon [7].

(1) A daemon process listens to the port of httpd. When the connection request

arrives at the server, the daemon forks a new copy of itself, and the child process

handles the request. (In what follows, we will refer it to as the fork case.)

(2) An inetd program waits at the inetd port. When the connection request arrives,

inetd issues fork() and exec() for the HTTP daemon against each request. (inetd

case)

(3) A single daemon starts a separate thread for each request. (multithread case)

12



(4) A dispatcher process receives each request and passes it to one of helper pro-

cesses, which are in the preallocated pool of processes and are created once at

startup time. Then, the selected helper process accepts the request. If the helper

processes are not available, the request is enqueued. (helper case)

(5) A dispatcher process receives each request and passes it to one of the helper

processes. The difference from the above (4) is that, if all of helper processes are

handling requests, the dispatcher creates a new process by executing fork().

(helper+fork case)

In our experiments, we did not use a multithreaded machine for the Web server.

Further, it is difficult and complicated to implement a multithreaded server, and

the multithreaded server only works on the limited system. Therefore we did not

consider the case of multithread.

Hereafter, we compare the results obtained by fork, inetd, helper, helper+fork as the

way of starting the HTTP daemon process. The number of clients is changed from

10 to 110. A standard document set filelist.standard is used for the document

distribution. In the case of helper experiments, the number of helper processes was

fixed at 16. The results dependent on the number of clients are compared in Fig-

ures 2.2 and 2.3 where the average response times and server connection rates are

shown, respectively. Here, the response time means the time from when the request

is created at the client until the corresponding document is received by the client,

and the server connection rate does the number of successfully processed connec-

tions (i.e., documents in the current case) per second.

When the inetd process creates the HTTP daemon, it is necessary at the server

side to read all of configuration files and to set up options of the HTTP daemon.

Those are reasons that its performance is lowest. On the other hand, the case of fork

does not need to read configuration files, and therefore the HTTP daemon is started

much faster than inetd. It results in that the fork case outperforms the inetd case.

13



0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

R
es

po
ns

e 
T

im
e 

(s
ec

)

WebStone Client Load

inetd
fork

helper16+fork
standard
helper16

Figure 2.2: Effects of the way to prepare the HTTP daemon on the average response
time.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

S
er

ve
r 

C
on

ne
ct

io
n 

R
at

e 
(c

on
n/

se
c)

WebStone Client Load

helper16
standard

helper16+fork
fork

inetd

Figure 2.3: Effects of the way to prepare the HTTP daemon on the server connection
rate.

14



When compared with the other helper and helper+fork cases, however, the overhead

to create new process is a still burden as can be seen in the figures.

When the helper processes are utilized, requests are handled in a similar way to

the fork case, but we can expect that the time of passing the connection request from

the dispatcher to the helper process is much faster than the time of creating pro-

cess by fork(). As can be observed in the figures, the effect of helper process is clear.

Of course, in the helper case, it consumes the system resources such as memory to

prepare the helper processes. It may lead to the performance degradation if we pre-

pare many processes. We therefore need to seek the appropriate number of helper

processes, which will be evaluated in the next subsection.

In the case of helper+fork, we observed worse performance than helper case. Its

reason seems to be that the overhead to create the new process by fork() call is not

negligible, and we will present only the case of helper in the experiments below.

However, we should note here that since such an overhead depends on the perfor-

mance of the Web server platform, different results may be obtained if we use other

machines.

In the figures, we also present the result labeled as “standard”, which is obtained

by using the default setting of Apache. It corresponds to “helper5+fork”, that is, the

number of helper processes is initially set to be five and the new process is created

by the fork() call if the helper processes are not available. From the figures, we can

observe that it is not always true that the default setting gives best performance.

From a performance modeling point of view, we can find the following observa-

tions. In all cases, the response time increases almost linearly in proportion to the

number of clients. On the other hand, the server connection rate is not changed re-

gardless of the number of clients. Accordingly, we can confirm that the Web server

system is a work conserving system. Further, we do not need to consider the server

connection rate (server throughput) dependent on the number of clients.

15



2.2.2 Experiment 2: The effect of the number of helper processes

The appropriate number of helper processes must depend on the number of clients

that concurrently access the Web server. If more helper processes are prepared,

the Web server can handle more requests simultaneously. However, the increased

number of helper processes may not help the performance improvement when the

Web server platform only has a single CPU. Further, helper processes waste ma-

chine resources, and it may lead to the performance degradation. We therefore ex-

amine the effect of the number of helper processes. In this experiment, we used

filelist.standard as the document set.

Figures 2.4 and 2.5 show the average response times and the server connection

rates dependent on the number of clients. In the figures, four cases with respect to

the number of helper processes (8, 16, 32, and 48) are presented. From Figure 2.4,

we can observe that the average response times grow almost linearly. The server

connection rates are almost the same in the cases of helper8, helper16 and helper32

(the number of helper processes is 8, 16 and 32). However, the case of helper48

shows the worse performance because of an exhaustive use of system resources.

Between two cases of helper16 and helper32, there are not very significant differ-

ences. Therefore, one may think that the appropriate number of helper processes

is 16 to obtain the best performance and to limit the use of system resources at

the same time. However, in the current experimental setting, we have used the

filelist.standard offered by WebStone. The document size distribution de-

fined in filelist.standard may or may not be adequate for the actual situation.

Furthermore, a more important point from a viewpoint of performance modeling is

that a smaller number of helper processes increases the queueing delay at the dis-

patcher when the number of clients increases. Even if the average response times

are same in two cases; helper16 and helper32. However, the response time consists

of two parts; the queueing delay at the dispatcher and the processing delay by the

16



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

R
es

po
ns

e 
T

im
e 

(s
ec

)

WebStone Client Load

helper48
helper8

helper32
helper16

Figure 2.4: Effects of the number of helper processes on the average response time.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

S
er

ve
r 

C
on

ne
ct

io
n 

R
at

e 
(c

on
n/

se
c)

WebStone Client Load

helper16
helper32

helper8
helper48

Figure 2.5: Effects of the number of helper processes on the server connection rate.

17



helper process. Suppose that the large–sized document requires much larger pro-

cessing time than the small–sized document (this is true as will be shown in the next

subsection). Since the dispatcher handles the requests in a FIFO manner, the large

document arriving first may increase the delay of the small document arriving next.

It is likely to happen when the number of helper processes is small. To examine

these effects, we next investigate the relation between the document size and its re-

sponse time in Subsection 2.2.3. Then, we consider the case of requesting different

sizes of documents in Subsection 2.2.4.

2.2.3 Experiment 3: The relation between document sizes and re-

sponse times

The Web site has many kinds of documents such as texts, images, and motion

videos. Further, document sizes are widely varied dependent on contents. For ex-

ample, the authors in [2] showed that the document size follows the log-normal

distribution. Furthermore, the distribution of the document size stored in the Web

server might change in the future due to a recent advancement of the multimedia

application. Accordingly, we want to know the required processing time of the re-

quest with a given document size. In this subsection, we investigate the relation

between the document size and the required processing time on the Web server,

and show how the Web server performance is affected by the document size.

For the above purposes, we did not use the filelist.standard offered by

WebStone, instead we set the document size to be fixed in each experiment. For

other parameter settings, the number of helper processes is 16 and the number of

clients are changed from 4 to 64.

Figures 2.6 through 2.8 depict the average response times, the server connection

rates. We also display the throughput in Mbps, which is obtained by multiplying

the connection rate [document/sec] by the document size [bit/document]. The hor-

18



0

5

10

15

20

25

30

0.1 1 10 100 1000

R
es

po
ns

e 
T

im
e 

(s
ec

)

Document Size (Kbyte)

client64
client32
client16
client 8
client 4

Figure 2.6: Effects of the document size on the average response time.

0

10

20

30

40

50

60

0.1 1 10 100 1000

S
er

ve
r 

C
on

ne
ct

io
n 

R
at

e 
(c

on
n/

se
c)

Document Size (Kbyte)

client64
client32
client16
client 8
client 4

Figure 2.7: Effects of the document size on the server connection rate.

19



0

2

4

6

8

10

12

14

16

18

0.1 1 10 100 1000

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Document Size (Kbyte)

client64
client32
client16
client 8
client 4

Figure 2.8: Effects of the document size on the server throughput.

izontal axis shows the document size. From the figures, we can see that the response

times are almost constant when the document sizes are small. It is due to the pro-

cessing overhead. Then, as the document size becomes large, the response time and

throughput gradually increase from around the 10 Kbyte document size. Finally,

the response times increase linearly. To present this fact more clearly, we depict the

relation between the response time and the document size in Figure 2.9 by setting

the vertical axis in log–scale.

From Figure 2.9, it is apparently inadequate to assume that the response time is

in proportion to the document size. However, if the number of helper processes is

fixed, the number of clients does not affect the server connection rate (and total sys-

tem throughput). Further, the response time is almost proportional to the number

of clients for a given document size. It can be conjectured from Figure 2.9, but to see

it more clearly, we depict Figure 2.10 where work demands against document sizes

are shown. Here, the work demand is obtained from the response time divided by

20



0.1

1

10

0.1 1 10 100 1000

R
es

po
ns

e 
T

im
e 

(s
ec

)

Document Size (Kbyte)

client64
client32
client16
client 8
client 4

Figure 2.9: Effects of the document size on the average response time.

0

0.5

1

1.5

2

2.5

3

0.1 1 10 100 1000

W
or

k 
D

em
an

d 
(s

ec
)

Document Size (Kbyte)

client 4
client 8
client16
client32
client64

Figure 2.10: Work demand against the document size.

21



the number of clients using the results shown in Figure 2.6. Figure 2.10 shows that

the work demand could be determined independently of the number of clients.

Recall that the number of helper processes does not significantly affect the re-

sponse time as we observed in the previous subsection. Then, one may think that

a processor sharing (PS) scheduling discipline is adequate to model the Web server.

Its work demand for given document size can be determined using Figure 2.10. It

would be applied when our concern is to obtain the response time averaged over all

document sizes. However, it may not be true if we want to determine the response

time for each document size. Its main reason is that a simple processor sharing

scheduling discipline does not reflect the queueing delay at the dispatcher since the

dispatcher schedules the requests in a FIFO manner. It is well known that the means

of response times of FIFO and PS are identical, but the response time distributions

are not. Then the response time distribution would be different from the results ob-

tained by a simple PS scheduling discipline. The effect of the queueing delay at the

dispatcher will be discussed in the next subsection.

22



2.2.4 Experiment 4: The effect of the document size distribution

To observe the effect of the delays at the dispatcher, we considered the following

simple file mix.

/file50K.html x

/file500K.html 1000-x

where x is changed from 1000 to 0. Namely, the workload is built as a mixture of

50 Kbyte and 500 Kbyte documents, and the ratio is changed.

In this experiment, we set the number of helper processes to be 16, and the num-

ber of clients is changed as 4, 16, and 32. Results are shown in Figure 2.11 where the

horizontal axis is the ratio of two document files. For example, “1000:0” means that

the size of all documents is 50 Kbyte, and “500:500” shows that two files are accessed

with an equal probability. The vertical axis shows the response time averaged over

two kinds of files. In the figure, we first find that each line is straight. Then, if we

know the work demand for the given document size, the average response time can

be determined. Work demands for 50 Kbyte document and 500 Kbyte document

are about 0.07 sec and 0.3 sec, which can be determined from Figure 2.10. Then, we

can derive the response times for those two files when we are given the number of

clients. If the number of clients is 32, the response times are 2.1 sec and 10 sec. Those

correspond to the case of “1000:0” and “0:1000” of “client32” in Figure 2.11. Then,

the response time for the case of “500:500” becomes the average of the above two

cases, i.e., about 6 msec. It coincides the result shown in Figure 2.11. However, even

this fact does not support the inappropriateness of PS scheduling discipline.

A more important fact is that the response time for each document size depends

on the ratio when the number of clients is larger than the number of helper pro-

cesses. Figure 2.12 presents the response time for each document as well as the

overall response times. Recalling that we set the number of helper processes to be

16, we plot two cases in the figure; the numbers of clients are 4 and 32. In the case

23



0

2

4

6

8

10

1000:0 750:250 500:500 250:750 0:1000

R
es

po
ns

e 
T

im
e 

(s
ec

)

Ratio [ 50K : 500K ]

client32
client16

client4

Figure 2.11: Response times of 50 Kbyte and 500 Kbyte documents dependent on the
file mix.

0

2

4

6

8

10

1000:0 750:250 500:500 250:750 0:1000

R
es

po
ns

e 
T

im
e 

(s
ec

)

Ratio [ 50K : 500K ]

client32[500]
client32

client32[50]
client4[500]

client4
client4[50]

Figure 2.12: Response times of 50 Kbyte and 500 Kbyte documents.

24



of 32 clients, the response times of 50 Kbyte documents increase as the access fre-

quency to 500 Kbyte documents increases. It is due to the queueing delay at the

dispatcher since simple PS does not change the response time for 50 Kbyte file even

if the file mix is changed. This observation is supported by results of the case of 4

clients. In this case, the response time of 50 Kbyte documents is affected by the in-

creasing 500 Kbyte documents since the number of the helper processes is sufficient

to simultaneously accept the requests from clients.

As another experiment, we used the actual traced data for the input data to Web-

Stone to compare with the results obtained by the default file set, i.e., filelist.st-

andard given by WebStone. Actual traced data was analyzed in [2] where the

authors showed that the log-normal distribution is suitable to the document size.

In Figures 2.13 and 2.14, we compare the average response times and throughput

for the above two cases. In this experiment, both of the numbers of helper pro-

cesses and clients are fixed at 16. In these figures, we can observe very different

results. Of course, the averages of two distributions are different. In the case of

filelist.standard, the average is 19 Kbyte while that of the log-normal dis-

tribution (i.e., actual traced data) is 9.5 Kbyte. For a comparison purpose, we also

conducted the simulation where each size specified in filelist.standard is re-

duced so that its average becomes 9.5 Kbyte. The results are shown with the la-

bel “filelist.standard (average modified).” Average behaviors of two cases (“log-

normal” and “filelist.standard (average modified)”) are very similar.

Our observation is that the filelist.standarddoes not reflect the real world,

and therefore, the benchmark test based on the filelist.standard cannot lead

to the actual performance prediction. However, if we use the filelist.standard

by appropriately setting its average, then we can have similar results to the case of

the log-normal distribution. The problem is that the WebStone file mix does not

allow to specify the document sizes with occurrence probability less than 1/1000.

However, the log-normal distribution has a long tail, and its effect cannot be pre-

25



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100 120

R
es

po
ns

e 
T

im
e 

(s
ec

)

WebStone Client Load

filelist.standard
log-normal

filelist.standard(average modified)

Figure 2.13: Effects of document size distributions on the average response time.

0

1

2

3

4

5

6

0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

WebStone Client Load

filelist.standard
log-normal

filelis.standard(average modified)

Figure 2.14: Effects of document size distributions on the server throughput.

26



cisely estimated when using WebStone. We thus develop the analytic method to

predict the Web server performance, which will be presented in the next section.

2.2.5 Experiment 5: The effect of network capacity

So far, we have shown the results using the ATM switch such that the network does

not become a bottleneck. It is because our primary concern in the current paper

is to characterize the Web server performance. In the last experiment, we confirm

that the network is also an important factor for the system performance. For this

purpose, we replace the network with 10 Mbps Ethernet (10base-T). If we use the

low–speed network like Ethernet, the network easily becomes a bottleneck, which is

shown in Figure 2.15. In obtaining this figure, we set the number of helper processes

to be 16 and the number of clients 24. As the document size becomes large, the

obtained throughput is saturated around 7.5 Mbps in the case of Ethernet as shown

in Figure 2.15. This value is reasonable for 10 Mbps Ethernet.

0

5

10

15

20

0.1 1 10 100 1000

T
hr

ou
gh

pu
t (

M
bi

t/s
ec

)

Document Size (Kbyte)

Simple File Read
ATM

Ethernet

Figure 2.15: Effects of the network bandwidth.

27



Note that we can also observe the bounded throughput even in the ATM case. It

is about 15 Mbps. To investigate its reason, we conducted the experiment in which

simple file read operations from the client machine to the server machine were ex-

ecuted. The result is also shown in Figure 2.15 with label “Simple File Read”. As

shown in the figure, its value is about 19 Mbps and we can confirm that the bottle-

neck resides in the server machine not in the network in the case of ATM.

28



2.3 Performance Modeling and Analysis of the Web Server

From discussions above, we have confirmed that the Web server can be modeled

by the combination of FIFO queueing discipline at the dispatcher and PS schedul-

ing discipline once the request is assigned to one of helper processes. Figure 2.16

illustrates a queueing model for the Web server. The quantitative parameters to

represent the work demand for given document size can be determined from our

experimental results. See Figure 2.10. In this section, we propose and examine the

model of the Web server in detail.

Server  Model

# of helper  processes = r

Figure 2.16: Queueing model for the Web server.

2.3.1 M/G/1/PS queue with a limited number of jobs in the server

In our modeling, we assume that jobs (document requests) arrive at the Web server

following a Poisson process with rate λ. If the number of jobs in the server is less

than or equal to r, the job can enter the server to receive the service. If the number

of r jobs has already been in the server, the newly arriving job waits in the FIFO

queue. The jobs in the server receive equal service; i.e., the server gives service to

29



jobs in the server following the PS discipline. It is apparent that if r = ∞, the model

becomes a simple PS server model. The PS scheduling had been a lot of attentions

in the literature. See, e.g., [33]. However, in the case of r < ∞, only a few studies are

known. In [34], the response time distribution is derived by assuming that the work

demand follows an exponential distribution. The mean response time conditioned

on the work demand is obtained in [35], but the authors [35] also assume an ex-

ponential work demand, and only an overall mean response time is approximately

derived for general work demand distribution.

We thus need to newly analyze the model where the work demand follows the

general distribution so that the result can be applied to our Web server model. Our

main interest is to derive the conditional mean delay of this system for given work

demand (i.e., document size). We first introduce S to represent the random variable

for the work demand of each job, which follows a general distribution. The random

variable representing the delay experienced in both of the FIFO queue and PS server

is represented by R. Then we express the average response time in the system for

given work demand x, E[R|S = x], as

E[R|S = x] = W + T (x).

Namely, it consists of the job’s waiting time in the queue, W , which is independent

of the work demand, and the time duration spent in the server, T (x). It is approxi-

mately represented as

E[R|S = x] =
ρr

1 − ρ

E[S2]

2E[S]
+ ∆ +

1 − ρr

1 − ρ
x, (2.1)

where E[S], E[S2] are the first and second moments of the work demand distribu-

tion, and ρ represents the traffic load given by ρ = λE[S]. ∆ is the processing time

for dispatching. By letting the work demand distribution be S(x), we have from

Eq.(2.1)

E[R] =
∫ ∞

0
E[R|S = x] dS(x)

30



=
ρr

1 − ρ

E[S2]

2E[S]
+

1 − ρr

1 − ρ
E[S], (2.2)

which coincides an approximation result proposed in [35]. If r = 1, Eq.(2.1) becomes

E[R|S = x]FIFO =
ρ

1 − ρ

E[S2]

2E[S]
+ x, (2.3)

which is a result of M/G/1(/FIFO) queueing system (see, e.g., [36]). Further, if

r = ∞, Eq.(2.1) is reduced to

E[R|S = x]PS =
x

1 − ρ
. (2.4)

It is a well known conditional mean response time of M/G/1/PS queueing system.

In the case of 1 < r < ∞, we need to assess the accuracy of Eq.(2.1), which will

be shown in the next subsection.

2.3.2 Numerical examples and discussions

In the Web server, r corresponds to the number of helper processes, and the newly

arriving document requests waits at the dispatch queue if the number of docu-

ment requests in the server exceeds r. As has been shown in the previous section,

the work demand depends on the document size, but it does not linearly increase

against the document size. Keeping these facts in mind, we now give some discus-

sions on how the Web server performance can be improved.

The simple PS system provides conditional mean response time as a linearly

increasing function of the work demand as shown in Eq.(2.4). On the other hand,

the processing delay is largely dependent on the distribution of work demands in

the FIFO system as in Eq.(2.3). Then, our system provides the following features.

• As the larger number of helper processes, r, are prepared, the system ap-

proaches the PS system. It means that the small-sized document is less influ-

enced by the large-sized documents. It is important in the Web system since

31



the Web server had better quickly respond to retrieval requests of text docu-

ments and inline images. However, we should note here that it is not always

true since the processing time of even short documents is not small in our case.

We will demonstrate this aspect in the below.

• In the light traffic load, the fixed delay W , which is independent of the work

demand, becomes negligible. Then, the response time is almost proportional

to the work demand of the request. However, as the traffic load becomes

heavy, the fixed part W relatively gets large, and the response time for even

small-sized documents grows.

• The fixed part W is in proportion to E[S2]. Namely, if the work demand fol-

lows the long tailed distribution such as the log-normal distribution, response

times for requests of small-sized documents become large.

In what follows, we quantitatively evaluate the above observations. Our model

assumes the Poisson process of job arrivals, which is based on [2] where the authors

analyzed the access log gathered at the Web server and showed that the interarrival

time of the document requests follows the log-normal distribution, but the Poisson

arrival becomes adequate during busiest hours. To quantitatively evaluate the Web

server, we take the following procedure.

(1) We approximately determine the work demand dependent on the document

size. For this purpose, we can use the data obtained in 2.2.3. Using the results

shown in Figure 2.10, we derive the work demand function g(x) dependent on

the document size x [Byte]. By assuming that the dispatcher overhead time is

negligible, we obtain the following fitting function.

g(x) = ax + b, (2.5)

where a = 0.0004851 and b = 21.55. See Fig.2.17 where we plot g(x) and the

values obtained in Figure 2.10.

32



0.01

0.1

1

0.1 1 10 100 1000 10000

W
or

k 
D

em
an

d 
(s

ec
)

Document Size (Kbyte)

g(x)
client64
client32
client16
client 8
client 4

Figure 2.17: Approximation of work demand.

(2) We determine the actual work demand distribution by taking into account the

document size distribution. By letting a probability density of the document size

distribution be f(x), we can determine p the probability distribution of work

demands as

S(x) =
∫ x

0
f(h(y))h′(y)dy, (2.6)

where h(y) is an inverse function of g(x), i.e.,

h(y) =
y − b

a
.

(3) The probability distribution S(x) of the work demand can be now applied to the

analytic result obtained in the previous subsection.

In what follows, we consider the case where the document size distribution f(x)

follows the log-normal distribution [2]. The random variable X follows the log-

normal distribution if another random variable Y (= log X) follows the normal dis-

33



tribution N(µ, σ2). We then have the probability density of the log-normal distribu-

tion as

f(x) =
1√

2πσx
e−

(log x−µ)2

2σ2 .

The mean and the second movement of the log-normal distribution are given as

E[Y ] = eµ+σ2/2

E[Y 2] = e2(µ+σ2).

Consequently, the probability density function s(y) of the work demand is deter-

mined from Eq.(2.6) as

s(y) =
1√

2πσ(y − b)
e−

(log(y−b)−log a−µ)2

2σ2 .

The authors in [2] have shown that the actual Web document size follows the

log-normal distribution with parameters µ = 7.811 and σ = 1.573. Since we have

a = 0.0004851 and b = 21.55 the mean and the second moment of the actual work

demand become

E[S] = 25.68

E[S2] = 844.7

Using Eq.(2.5), the conditional mean response time d(x) for the document with size

x is given as follows;

d(x) = W + T (a ∗ x + b).

In the rest of this subsection, we present numerical examples using the above

result. The accuracy of our approximate result obtained in Eq.(2.1) is also demon-

strated. Since in our current modeling, the document requests are assumed to arrive

according to the Poisson distribution. Since, our previous experimental results are

based on the closed queueing network model, the direct comparisons of two results are

34



impossible. We therefore conducted simulation experiments to assess the accuracy

of our result. Each simulation was run until the 95% confidence interval of the re-

sponse time is converged to 5% of its mean. In the following figures, simulation

results will be marked with symbol ‘✷’ while analytic results are shown with solid

lines. We should note here that once the accuracy of our result is validated, we

can apply it to the closed queueing network model by approximately modeling the

Web server as an IS (Infinite Servers) queue since the IS queue can allow the general

service time distribution [36].

We first plot the mean conditional response time dependent on the document

size in Figure 2.18 where the number of helper processes, r, is fixed at 4, and five

cases of the traffic load are shown; ρ = 0.2, 0.4, 0.6, 0.8 and 0.9. From this figure, we

can observe that the conditional mean response times of the small sized documents

are dramatically increased as the traffic load becomes high.

10

100

1000

0.1 1 10 100 1000

C
on

di
tio

na
l M

ea
n 

D
el

ay
 [m

s]

Work Demand (Document Size [Kbyte])

ρ = 0.2

ρ = 0.4
ρ = 0.6

ρ = 0.8

ρ = 0.9

Figure 2.18: Conditional mean response time for different traffic load.

We next change the number of helper processes, r. In Figure 2.19, the conditional

35



mean response times for various r are plotted. Here, we set the traffic load ρ to 0.8.

From the figure, we can observe that as the number of helper processes r becomes

large, the response time performance is degraded. Namely, the figure indicates that

the smaller number of helper processes is preferred. It is a rather curious result if

we consider the FIFO and PS systems. In the PS system (r = ∞), the conditional

mean response time is in proportion to the document size (see Eq.(2.4)), while in the

FIFO system (r = 1), the fixed value of the waiting time at the queue (the first term

of right hand side of Eq.(2.3)) gives a dominant part, and the response time becomes

independent of the work demand. Then, our system seems to fall between two sys-

tems. That is, the conditional mean response time for the small-sized document is

decreased as r becomes large while those for the large-sized document are increased

for larger r. However, it is not true as shown in the figure. A reason is that the work

demand of small–sized documents (less than 10 Kbyte) are almost the same in our

system, and in the log-normal distribution of the document size, many documents

are small. Then such an effect cannot be observed in the figure.

To confirm this observation, we fictitiously enlarged the document size distribu-

tion. The mean of document size distribution is set to be ten times larger than the

one observed at the actual system. The document size distribution remains to be

the log-normal distribution and two parameters of the log-normal distribution were

determined such that the coefficient of variation is not changed. The result is shown

in Figure 2.20. In this case, the fixed part of the work demand (b in Eq.(2.5)) becomes

negligible and then results show the one we expected.

From the above two results of Figures 2.19 and 2.20 , we may conclude that for

the current document size distribution, the larger number of helper processes does

not help to improve the Web server performance. However, in the future Web ser-

vice, documents with large size are likely to be increased. Those include the motion

video and audio data. In that case, the number of helper processes becomes an

important factor to determine the quality of service of the Web server in terms of

36



100

1000

0.1 1 10 100 1000

C
on

di
tio

na
l M

ea
n 

D
el

ay
 [m

s]

Work Demand (Document Size [Kbyte])

r = 2

r = 4

r = 8r = 16

r = ∞

Figure 2.19: Conditional mean response time dependent on the number of helper
processes.

100

1000

10000

1 10 100 1000 10000

C
on

di
tio

na
l M

ea
n 

D
el

ay
 [m

s]

Work Demand (Document Size [Kbyte])

r = ∞
r = 16

r = 8

r = 4
r = 2

Figure 2.20: The case of ten times larger document size distribution.

37



document retrieval times. Namely, if one may want to keep the small response time

of the short document such as text files, the number of helper processes should be

increased at the expense of the degraded response times of the large documents.

We finally investigate the influence of the document size distribution on the Web

server performance. For this purpose, we use the exponential distribution for the

document size as well as the log-normal distribution. In the case of the exponential

distribution, the mean of document sizes is set to identical, i.e., mean work demand

is

E[S] = 25.68

The second moment becomes smaller than that of the log-normal distribution;

E[S2] = 676.5

The comparative results are presented in Figure 2.21. From the figure, it is clear that

the response time of the log-normal distribution becomes larger. However, when

the number of helper processes becomes large, the difference of two distributions

is quite low. It can be verified from the fact that in the PS system, the conditional

mean response time for given work demand is independent of the work demand

distribution.

38



100

1000

0.1 1 10 100 1000

C
on

di
tio

na
l M

ea
n 

D
el

ay
 [m

s]

Work Demand (Document Size [Kbyte])

Exp.; r = 2
LogNorm.; r = 2

Exp.; r = 8
LogNorm.; r = 8

Figure 2.21: Comparisons of conditional mean response times for different docu-
ment size distributions.

39



Chapter 3

Analysis and Modeling of Proxy

Server Performace

3.1 Experimental Configuration of the Proxy Server

Our experimental system is illustrated in Figure 3.1. We used the ATM switch to

interconnect the client, the Web server and the Proxy server to avoid the network

being bottleneck. The document request from the client is sent to the Proxy server

first. If the document does not exist in the Proxy server, the Proxy server forwards

the request to the Web server. As the Proxy server retrieves the document, the Proxy

server transfers its document to the client. Noting that we used the ATM switch,

we found that the overhead due to the network delay is negligible when compared

with the time elapsed at the servers. Thus, our experimental results can be used to

discuss the performance of the servers.

In our experiments, we control the document hit ratio explicitly to investigate the

performance capability of the Proxy server. When we set the hit ratio to be 100%, the

client always requests the document located in the Proxy server. On the other hand,

when the hit ratio is set to 0%, the client does not request the document on the Proxy

server, but on the Web server. We set the Proxy server option that the Proxy server

40



ATM SWITCH
Web Server Client

ATM ATM

ATM

Proxy Server

Figure 3.1: Experimental system configuration of the Proxy server.

does not cache the document in the latter case, by which the document requested

from the client is always forwarded to the Web server. Then, the performance of the

Proxy server can be found for given hit ratio. While the hit ratio must depend on

the caching algorithm implemented within the Proxy server, the differences are not

large as shown in [2].

The hardware and software configurations in our experiments are summarized

in Table 1. We used Apache (version 1.2.5) [27] Squid (version 1.2.20) [37] for the

HTTP server and for the Proxy server, respectively. Both of two servers are config-

ured as follows; the logging option is set as default. Document files are stored in

the local disks of the Proxy server and the Web server. On all the experimental ma-

chines, we did not modify the operating system for tuning TCP/IP stack. That is,

we set up the experimental system similar to the commonly used Web servers and

Proxy servers.

41



Table 3.1: Experimental system of the Proxy server.
Web Server Proxy Server Client

Machine Indigo2(SGI) Indigo2(SGI) Origin200(SGI)
CPU IP26 75 MHZ IP22 250 MHZ IP27 180MHz *2
Main Memory 320 Mbytes 192 Mbytes 256 Mbytes
Web Server Apache 1.2.4 — —
Proxy Server — Squid 1.1.20 —
Benchmark — — WebStone 2.0.1

We used WebStone (version 2.0.1) [12] by which we specify the distribution of

requested document sizes, the frequency of access to the Proxy server, and the num-

ber of clients generating loads for the Proxy server. We did not follow the WebStone

run rules [15] in some experiments since we aim at collecting the quantitative data

for Proxy server modeling. In such cases, we will explicitly present the configura-

tion. In each simulation setting, we tested five experiments, each of which runs ten

minutes, to obtain the reliable results. Then, the average of those two experiments

is presented in the below. Last, we note that in our experiments, we only considered

the document transfers, and did not include requests that require the processing at

the Web server such as cgi.

3.2 Experimental Results of the Proxy Server

In this section, we present the results of our experiments as follows;

• The effect of the number of clients to access the Proxy sever at the same time

• The effect of the hit ratio of the cache

In our experiments, we used the way that the helper processes are prepared on

the Web server for http daemons. The number of helper processes is fixed 16. Dis-

cussions on the way to prepare helper process and its effectiveness can be found

42



in Capter 2. In our approach, the size of all requested documents is fixed in each

experiment.

3.2.1 Experiment 1: The effect of the number of clients to access

the Proxy sever

First, we investigate the effect of the number of clients to access the Proxy server at

the same time. We change the number of clients to be 8, 16, 32 and 64. The hit ratio

of all documents is set to be 100%, by which we can identify the basic performance

of the Proxy server because it can exclude the processing time at the Web server. We

show the result in Figure 3.2. From the figure, we can observe that in the case of the

small sized documents, the response time is not in proportion to the document size

but is almost fixed. On the other hand, as the document size becomes over about

100Kbyte, the response times increase almost linearly with the document size. To

see this more clearly, we present Figure 3.3 where the vertical axis is illustrated in

the log-scale.

We next show Figure 3.4 where the response times shown in Figure 3.2 are di-

vided by the number of the clients. Namely, Figure 3.4 represents the “work de-

mand” for each request on the Proxy server against the document size. From the

figure, we can confirm that the work demand cannot be modeled directly from the

document size. However, the effect of the number of clients is negligible except very

heavy traffic load conditions where the context switch for the processes at the server

becomes overhead.

Next, we investigate the work demand in the case of cache miss. First, we request

the document to the Proxy server setting the hit rate as 0% and measure the response

time retrieving the document from the Web server via the Proxy server. Secondly,

we request the same document to the Web server directly and measure the response

time similarly as above. Finally, we use the difference time between these response

43



0

5

10

15

20

25

30

35

40

45

50

0.1 1 10 100 1000

D
oc

um
en

t P
ro

ce
ss

in
g 

D
el

ay
 (

se
c)

Document Size (Kbyte)

64 Clients

32 Clients

16 Clients

8 Clients

Figure 3.2: Effects of the number of clients [100% hit ratio].

0.1

1

10

100

0.1 1 10 100 1000

D
oc

um
en

t P
ro

ce
ss

in
g 

D
el

ay
 (

se
c)

Document Size (Kbyte)

64 Clients

32 Clients

16 Clients

8 Clients

Figure 3.3: Effects of the number of clients [100% hit ratio] (log scale).

44



0

0.5

1

1.5

2

0.1 1 10 100 1000

W
or

k 
D

em
an

d 
(s

ec
)

Document Size (Kbyte)

8 Clients

16 Clients

32 Clients

64 Clients

Figure 3.4: Work demand in the case of 100% cache hit.

0

10

20

30

40

0.1 1 10 100 1000

P
ro

ce
ss

in
g 

D
el

ay
 / 

W
or

k 
D

em
an

d 
(s

ec
)

Document Size (Kbyte)

client-web server
hit 0%

miss workdemand

Figure 3.5: Work demand in the case of cache miss.

45



times as a parameter in the case of the cache miss. (see Figure 3.5)

3.2.2 Experiment 2: The effect of the cache hit ratio

In this subsection, we want to investigate the response time characteristics of cached

and no–cached documents for given cache hit ratio. In this experiment, the hit ra-

tio is controlled as follows. The client requests two kinds of documents; the cached

document and no–cached documents on the Proxy server. The requested document

cached on the Proxy server is directly returned from it. On the other hand, the doc-

ument not on the Proxy server is transferred from the Web server, but the document

is not cached on the Proxy server by setting the document name in the configuration

file squid.conf on the Proxy server. By changing the access rate of the cached and

no–cached documents in filelist.standard of WebStone, we can vary the hit

ratio on the Proxy server. Example of setting 40% cache hit ratio is below.

/hitdoc.html 400

/misseddoc.html 600

When misseddoc.html is requested, the Proxy server, Squid, forwards the

document request to the Web server, Apache, to retrieve the document, and for-

wards the document. In this experiment, the Proxy server does not keep the docu-

ment, misseddoc.html, to its disk. As the client issues the requests according to

the probability, as a result, the cache hit ratio becomes 40%.

Figure 3.6 shows the response times averaged over cached and no–cached doc-

uments for sixteen clients. The figure presents the fact that as the hit ratio becomes

larger, the response time becomes smaller as expected. Figure 3.7 is the correspond-

ing one where the vertical axis is in the log–scale. From the figure, we can observe

the same tendency as in the previous case (100% hit ratio case, which is also shown

in the current figure).

Of course, response times of only cached–documents exhibit different appear-

46



0

5

10

15

20

25

30

35

40

45

50

0.1 1 10 100 1000

R
es

po
ns

e 
T

im
e 

(s
ec

)

Document Size (Kbyte)

0% hit ratio
25% hit ratio
50% hit ratio
75% hit ratio

100% hit ratio

Figure 3.6: Effects of the cache hit ratio on the average response times.

0.1

1

10

0.1 1 10 100 1000

D
oc

um
en

t P
ro

ce
ss

in
g 

D
el

ay
 (

se
c)

Document Size (Kbyte)

0% hit ratio

25% hit ratio

50% hit ratio

75% hit ratio

100% hit ratio

Figure 3.7: Effects of the cache hit ratio on the average response times (log scale).

47



ance as shown in Figure 3.8. When the document size is small, the response times

become large as the hit ratio gets high. It is due to high processing load the Proxy

server. However, when the document size becomes large, the lower hit ratio leads to

the larger response times. In this case, the processing overhead is balanced between

the Proxy and Web servers. Thus, we need to consider the effect of the document

size as well as the hit ratio to determine the work demand on the Proxy server.

0.1

1

10

0.1 1 10 100 1000

D
oc

um
en

t P
ro

ce
ss

in
g 

D
el

ay
 (

se
c)

Document Size (Kbyte)

100% hit ratio
75% hit ratio

50% hit ratio
25% hit ratio

Figure 3.8: Response times for only cached documents.

For the above purpose, we take a following simple approach. As shown in the

previous figure, the tendencies of the response times are changed when the docu-

ment size is 20Kbyte. Thus, we consider two regions according to the document

size. When the document size is smaller than 20Kbyte, the response times are fic-

titiously decreased as the hit ratios become small. On the other hand, when the

document size is over 20Kbyte, the response times are enlarged according to the hit

ratio. Fortunately, the relation between the response times and hit ratios are simple

as shown in Figure3.9; i.e., a linear relation can be found as shown in the figure.

48



Thus, for given document size, we can use linear functions, h1(y) or h2(y),

h1(y) = 0.125 + 0.00875y (3.1)

h2(y) = 2.25 − 0.0125y (3.2)

for given hit ratio y, to determine the work demand once the work demand for the

case of 100% hit ratio is found.

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

C
oe

ffi
ci

en
t V

al
ue

Hit Ratio (%)

h2(y)
over 20K

under 20K
h1(y)

Figure 3.9: Coefficients of work demands against response times with 100% hit ratio.

The work demand for 100% ratio case has already been shown in Figure 3.4. By

utilizing the curve fitting approach, we have the following relation.

g(x) = ax + b (3.3)

where a = 0.01121, b = 0.0002329. See Figure 3.10, where we plot g(x) on Figure 3.4.

From discussions above, we have confirmed the processing time on the Proxy

server for the given cache hit ratio and document size. Furthermore, we consider

the way to prepare helper process, and from the result of experiment 3.2.1, the Proxy

49



0.01

0.1

1

0.1 1 10 100 1000

W
or

k 
D

em
an

d 
(s

ec
)

Document Size (Kbyte)

g(x)

8 client
16 client
32 client
64 client

Figure 3.10: Approximated function for work demand.

server can be modeled by a processor sharing scheduling discipline. Actually, al-

though the coefficient value is examined for all document size, we use the two

functions, h1(y) and h2(y), which have the different tendencies in the point of the

20Kbyte document. In the next section, with these results, we show the examples of

the performance evaluation of Web system.

50



Chapter 4

Performance Modeling and Examples

of Web Server Systems

In this Chapter, we demonstrate applicabilities of our Web system modeling ap-

proach to evaluate performance of the Web system.

(1) The case where the Web site is publicly open to the Internet.

(2) The case where users within a certain local network (e.g., LAN and Internet

service provider) access the Internet via the Proxy server.

In each model as mentioned above, the performance of the Web server and the

Proxy server, the bandwidth of the Internet access line and the Internet backbone are

the primary factors to affect the performance evaluation model. In the following, we

show the simulation results of these two models.

4.1 Evaluation of the Web Server System

We consider the case where the Web site is publicly open to the Internet as shown

in Figure 4.1. The Web server is modeled as an M/G/1/PS with a limited number

of jobs. The Web server is accessed via the access line from the Internet users. The

51



access line is modeled as a M/G/1/PS queue [2]. The performance results derived

from our model are mainly affected by the Web server performance and the band-

width of the access line connected to the Internet. Of course, the Internet backbone

is also an important factor affecting the performance, but it is beyond our scope

how the Internet backbone should be improved. In the current thesis, the Internet

backbone is expressed by an IS (Infinite Server) queue and the delays follow the Er-

langian distribution [38]. Its mean is set to be 195 msec according to [38]. As a result,

we have an open queueing network model. However, we conducted simulation ex-

periments, since the scheduling discipline taken at the Web server does not satisfy

the product–form network. Note that in the current subsection, we do not have the

Web Server

Access
Network Internet

Document
Requests

Documents

Figure 4.1: Web server system model.

Proxy server in the model. The effect of the Proxy caching will be investigated in

the next subsection.

First, we investigate the delay of the access line connected to the Internet back-

bone. We use the average number of requests per second and the access line band-

52



Access Line
Bandwidth (Kbps)

Arrival Rate
(request/sec)

Delay
(msec)

500
1000

1500
2000

10

20
0

100

200

300

Figure 4.2: Mean delays on access line.

width as parameters. And so, Figure 4.2 shows the average transfer delay in the

access line. Now, we present the case that the transfer delay in the access line is lim-

ited by “300ms”. From the figure, we can see that the transfer delays in the access

line are dramatically increased as the number of requests becomes large, and we are

able to find out the area that the access line becomes the bottleneck.

In Figure 4.3, we show the access line bandwidth necessary to obtain the pre–

determined mean document transfer delays. That is, the figure represents the re-

quired bandwidth to satisfy “100ms”, “200ms”, or “300ms” mean document trans-

fer delays for the Internet users. The horizontal axis shows the arrival rate of the

requests from the Internet users. The figure indicates that, if the mean request ar-

rival rate is 10 [requests per sec.], we need the access line bandwidth more than

about 1.4Mbps to keep the average delay below 100 msec. We can also observe that

the larger access line capacity can improve the delays especially when the request

arrival rate is small. However, its effect is limited as the request arrival rate becomes

53



100

1000

0 5 10 15 20 25 30 35

A
cc

es
s 

N
et

w
or

k 
B

an
dw

id
th

 (
bp

s)

Arrival Rate (request/sec)

100ms delay
200ms delay

300ms delay

Figure 4.3: Required access line capacity for given delay constraint.

large. It is due to the fact that the other resources (in the current case, the Web server)

become bottleneck.

We next see the effect of the Web server performance. Figure 4.4 shows the de-

lays experienced at the Web server and the access line separately. The total delays

are also shown in the figure. In the figure, two cases of the access line capacity are

shown; 768 Kbps and 1.5 Mbps. The document request rate is fixed at 5 request/sec.

The horizontal axis shows the fictitious relative server performance by setting our

Web server to be 1. From the figure, we can observe that the improvement of the

Web server performance is important to improve the total delays in the current pa-

rameters setting. However, dramatic improvements cannot be observed as the Web

server processing power becomes large since the delay within the Internet becomes

dominant in that region. Then, one must wait the advancement of the Internet back-

bone for further performance improvement after the access line and the Web server

are adequately prepared.

54



0

50

100

150

200

250

300

350

400

450

500

0.2 0.4 0.6 0.8 1

D
el

ay
 (

m
se

c)

Web Server Performance

total [768Kbps]

total [1.5Mbps]

access line [768Kbps]

access line [1.5Mbps]

server [768Kbps,1.5Mbps]

Figure 4.4: Delays dependent on the Web server performance.

So far, we have assumed that the delay within the Internet backbone is known. In

numerical examples above, the delay is assumed to follow the Erlangian distribution

with mean 195 msec [38]. It was obtained by ping command between the sites

located in the East and the West of United States. For the Web system planning, we

need the following quantities.

(1) the Web server performance

(2) the characteristics of the document size

(3) the access rate of the document requests

(4) the delay characteristics of the Internet backbone

The Web server performance is characterized in the current paper while it may de-

pend on the server platform. The active researches on the WWW traffic have exhib-

ited the characteristics of the document size (see, e.g., [2]). The access rate cannot be

55



known a priori since it must be heavily dependent on the contents. The system mon-

itoring is thus mandatory for accurately assessing the access rate. The last item, the

delay characteristics of the Internet backbone, should be investigated more actively

in the field for the Web system planning to be actually meaningful.

4.2 Evaluation of the Model Including the Proxy Server

System

In this subsection, we show the method of modeling the Web system to evaluate

the quality of service given to users within a certain network (e.g., the network of

Internet service provider). It is illustrated in Figure 4.5. Recently, most of ISP (Inter-

net Service Provider) provides the Proxy server to improve the document response

times. The model is intended to show the applicability of our approach to investi-

gate the effect of the Proxy caching.

Access
Network Internet

user

user

user

Web
Servermisshit

Proxy 
Server

save

Document
Request

Documents

Figure 4.5: ISP model including the Proxy server.

56



See Figure 4.5 where the hit or miss of the document on the Proxy server is de-

cided independently with given a hit ratio. The validation of this “independent

assumption” is given in [2] where the authors show that a correlation effect of the

caching algorithm is negligible. A rational behind this result is that if the caching ta-

ble is large enough, the document misses are likely to happen only due to the wide

spread of the WWW document popularity. Queueing models for the Web server,

the access line and the Internet backbone are just the same as in the previous sub-

section. Here, we consider the mixed queueing network model where open and

closed chains exist in the model. The users within some ISP are assumed to be fixed,

and they request the document repeatedly after they get the response.

0

200

400

600

800

1000

1200

0 20 40 60 80 100

D
el

ay
 (

m
se

c)

Cache Hit Rate (%)

miss [768Kbps]

average [768Kbps]

miss [1.5Mbps]
average
[1.5Mbps]

hit [768Kbps,1.5Mbps]

Figure 4.6: Mean delays on the access line dependent on the cache hit ratio.

We first show the delays experienced on the access line dependent on the cache

hit ratio of the Proxy server in Figure 4.6. The delays averaged over cache–hit and

cache–miss documents are also shown in the figure. The 768 Kbps and 1.5 Mbps

access lines are considered. In obtaining the figure, the delay within the Internet

57



backbone is assumed to follow an Erlangian distribution with mean 195msec.

In case where the access line is 1.5 Mbps, the mean delay of the documents is not

changed independently of the cache hit ratio. This is because the access line is not

the bottleneck in this case, i.e., there is enough bandwidth to transfer the requested

document even if the miss ratio is 100%. On the other hand, when the access line

bandwidth is decreased to 768 Kbps, the improved cache hit ratio can lead to the

smaller document transfer delays to some extent. However, when the cache hit

ratio exceeds about 50%, the delays are not very much improved due to the fact

that other resources become bottleneck. Since the current caching algorithms offer

50% or 60% hit ratios, 1.5Mbps of the access line bandwidth is a critical value, but

more bandwidth is not necessary for ISP to save the cost. Furthermore, the result

implies that a more complicated and slightly improved caching algorithm does not

help improving the delay within the access network.

Finally, we show the location of the performance bottleneck in our closed queue-

ing network model. Figure 4.7 illustrates the delays at the access line, the Web server,

the Proxy server and Internet backbone. The horizontal axis shows the delay expe-

rienced within the Internet backbone. Other parameters are not changed and the

access line capacity is set to be 1.5Mbps. The hit ratio at the Proxy server is 51%.

This percentage is shown in [3]. The delay at the Web server is only for docu-

ment with cache miss. Figure 4.8 represents the ratio of each delay to the total delay.

Noting that we have used 195 msec mean delay for the Internet backbone in the

previous examples, the figures imply the effect of higher backbone networks. Of

course, the faster Internet backbone improves the total response time as shown Fig-

ure 4.7. However, it does not always lead to the dramatic improvement. As shown

in Figure 4.8, by the faster Internet backbone, the performance bottleneck moves to

other location; it is the access line in this case. Our modeling method can identify

it, which is one of main purposes of this thesis. Next, we show the case of that

the capacity of the access line changes from 1.5Mbps to 6Mbps. In this case, the

58



0

100

200

300

400

500

600

0 50 100 150 200

D
el

ay
 (

m
se

c)

Internet Delay [one way] (msec)

Total

Internet backbone

Access line

Web server
Proxy server

Figure 4.7: Speed–up effect of Internet backbone.

0

20

40

60

80

100

20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e 

(%
)

Internet Delay [one way] (msec)

Internet backbone

Access line

Web ServerProxy Server

Figure 4.8: Ratios of document processing and transfer delays.

59



performance bottleneck moves to the Web server by the faster Internet backbone.

Figure 4.9 shows the effect of the the access line capacity. And Figure 4.10 illustrates

this result precisely. If the delay at the Internet backbone indicates “100msec”, the

total delay becomes “300msec”. That is, the capacity of the access line changes 4

times, but the total delay does not improve so much. It is about three fourth as long

as the total delay in case that the access line is 1.5Mbps. Next, the faster access line

is expected. In this case, it is necessary to evaluate the required capacity and the

effective use of the access line by using our Web server system model shown in this

thesis.

60



0

100

200

300

400

500

600

0 50 100 150 200

D
el

ay
 (

m
se

c)

Internet Delay [one way] (msec)

Total

Internet backbone

Access line

Web server

Proxy server

Figure 4.9: Speed–up effect of Internet backbone [The case of 6Mbps access line].

0

20

40

60

80

100

20 40 60 80 100 120 140 160 180

P
er

ce
nt

ag
e 

(%
)

Internet Delay [one way] (msec)

Internet backbone

Access line

Web Server

Proxy Server

Figure 4.10: Ratios of document processing and transfer delays [The case of 6Mbps
access line].

61



4.3 Accuracies of an Approximate Analytical Method

So far, we have used the simulation technique to evaluate the queueing network

model. It is because the scheduling discipline in the Web server does not satisfy the

condition of a product–form solution (see, e.g., [36]). In this subsection, we investi-

gate the applicability of the analytical method to solve the queueing network model.

For this purpose, we model the Web server as the Infinite Server (IS) queue where

the work demand at the IS queue is obtained from a separate analysis of the Web

server. The response time at the Web server can be obtained by using the method

presented in Chapter 2 where the arrivals of document requests follow the Pois-

son distribution. Then, the queueing network models shown in this paper become

product–form networks, and we can utilize the convolution algorithm and/or the

MVA method for effective numerical computation [36]. However, the arrival rate

at the Web server is not known a priori when it is applied to the closed queueing

network model. Thus, we need an iterative calculation as follows;

(1) An initial value of the throughput of the queueing network model is decided.

It can be achieved by, e.g., setting the delay at the Web server is zero. Set the

obtained throughput to λ.

(2) λ is used as the arrival rate of the document request at the Web server. Then,

the Web server is solely analyzed 2. The obtained response time is used as a

work demand of the Web server modeled as IS queue within the closed queueing

network model.

(3) The closed queueing network model is analyzed by some appropriate queue-

ing network analysis method, through which we can obtain the throughput at

queues. In our numerical example below, we will use the MVA method.

(4) If the throughput obtained in Step (3) is converged to the arrival rate of Step (2),

the iteration is terminated. Otherwise, return to Step (2) for next iteration.

62



0

100

200

300

400

500

600

0 50 100 150 200

D
el

ay
 (

m
se

c)

Internet Delay [one way] (msec)

Total

Internet backbone
Access line

Web server

Proxy server

Figure 4.11: Comparisons of analytical and simulation results.

To assess the accuracy of the above approximate analysis, we compare those

with simulation experiments. The access line is set to be 1.5 Mbps. The delays at the

Internet backbone, the access line, the Web server and the Proxy server are compared

in Figure 4.5. The lines show the analytical results while the symbols are for the

simulation results. In obtaining Figure 4.11, the delay of the Internet backbone is

changed; i.e., the figure corresponds to Figure 4.7. In Figure 4.11, good accuracy of

the analytic method can be observed. In this case, however, either Internet backbone

and the access line is the bottleneck. Since we introduced the approximation in the

Web server queue, we need to investigate the situation that the Web server also

becomes the bottleneck.

For this purpose, we change the access line from 1.5 Mbps to 6 Mbps. The com-

parative results for delays are shown in the Figure 4.12. The Figure shows the cases

that the requested documents exist in the cache of the Proxy server and do not. In

the following figures, simulation results will be marked with points while analytic

63



results are shown with solid lines. The corresponding results for the throughput

in the above two cases are summarized in Figure 4.13. In this case, the accuracies

are lost, but are sill kept in the reasonable level. Hence, it is obvious that we are

able to estimate the performance characteristics simply, by using our approximate

analytical method.

64



0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200

D
el

ay
 (

m
se

c)

Internet Delay [one way] (msec)

Total

Internet backbone
Web server

Access line

Proxy server

Figure 4.12: The case of 6Mbps access line.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200

T
hr

ou
gh

pu
t

Internet Delay [one way] (msec)

6M[hit]

6M[miss]

1.5M[hit]1.5M[miss]

Figure 4.13: Comparisons of throughput.

65



Chapter 5

Conclusion

First, in Chapter 2, we have obtained the various experimental results to investigate

effects of (1) the way to prepare the HTTP daemon, (2) the number of helper pro-

cesses, (3) the document size and response time, (4) the document distribution on

the Web server, and (5) the network capacity. From our experimental results, we

have shown that the performance of the Web server can be improved by preparing

the helper process, which has represented the effective and highly efficient perfor-

mance, for the http daemon on the Web server. The response time is almost propor-

tional to the number of clients for a given document size. So, one may think that a

PS scheduling discipline is adequate to model the Web server. And its work demand

is obtained from the response time divided by the number of clients. It is applied

when our concern is to obtain the response time averaged over all document sizes.

However, in experiment (4), by using the two files as a workload composed of a

mixture of two different size documents, we have shown that the response time for

a given document size is influenced by the other document size. So, we have con-

firmed the effect of the queueing delay at the dispatcher. Hence, we have proposed

that the Web server can be modeled by the combination of FIFO queueing discipline

at the dispatcher and PS scheduling discipline once the request is assigned to one of

helper processes. The quantitative parameters to represent the work demand for a

66



given document size has been determined from above mentioned.

Next, we have proposed the performance model and its analytical method of the

Web server based on those experiments. Then, we have newly analyzed the model

where the work demand follows the general distribution so that the result can be

applied to our proposed Web server model. And we have expressed the equation

to derive the conditional mean delay of this model for a given work demand. The

accuracy of our approximate result has also demonstrated with our simulation ex-

periments. Through numerical examples, we have discussed the performance en-

gineering problem of the Web server. Then, we have observed that the conditional

mean response times of the small sized documents are dramatically increased as the

traffic load becomes high. Furthermore, for the current document size distribution,

the larger number of helper processes does not help to improve the Web server per-

formance. However, in the future Web service, the average of the document size

distribution is likely to be increased. Those include the motion video and audio

data. In that case, the number of helper processes becomes an important factor to

determine the quality of service of the Web server in terms of the response time.

In Chapter 3, we have presented experimental results to investigate the effect of

(1) the number of clients to access the Proxy server at the same time, and (2) the hit

ratio of the cache. Based on the experimental results, we have built the model of the

Proxy server. In experiment (1), the response time is not in proportion to the docu-

ment size. To identify the basic performance of the Proxy server, the cache hit ratio

at the Proxy server is set to be 100%. In this case, we have obtained the work de-

mand for each request on the Proxy server against the document size. And also, the

work demand for no–cached documents has been obtained. In experiment (2), we

have investigated the response time characteristics of cached and no–cached docu-

ments for given cache hit ratio. As the cache hit ratio becomes larger, the response

time becomes smaller as expected. On the other hand, response times of only cached

documents exhibit different appearance. Thus, we need to consider the effect of the

67



document size as well as the cache hit ratio to determine the work demand on the

Proxy server. So, we used two linear functions for given document size. Accord-

ingly, as the way of preparing the http daemon is helper process, the Proxy server

can be modeled by a PS scheduling discipline.

We have modeled the Web server system and the Proxy server system in previ-

ous Chapters. In Chapter 4, we have constructed the performance evaluation model

of the Web server systems. From our results, we have demonstrated applications

of the Web server model to performance evaluation of the Web server system. We

haven’t considered about the delay which the document transmission and the http

protocol cause. Our modeling approach is then demonstrated by using two mod-

els; (1) the model in which the Web site is publicly open to the Internet users, and

(2) the Proxy server is provided for ISP users within the Internet access line. From

our model (1), dramatic improvements of the response time cannot be observed as

the Web server processing power becomes large. So, one must wait the advance-

ment of the Internet backbone for further performance improvement, that is the

response time, after the access line and the Web server are adequately prepared. In

our model (2), the faster Internet backbone improves the total response time, but

it does not always lead to the dramatic improvement. The main reason is that the

performance bottleneck moves to other location. Finally, we have investigated the

applicability of the analytic method to solve the queueing network model. We have

modeled the Web server as the IS queue where the work demand at the IS queue

has obtained from the result of Chapter 2. We have accessed the accuracy of our

approximate analysis by comparing with simulation experiments.

Our approach can identify the performance bottleneck of the Web system and

can be used for its performance planning. We have presented the evaluation result

of the Web server system and the Proxy server system separately. Accordingly, the

entire model would become the one illustrated in Figure 5.1, and it can be easily

evaluated.

68



user

Web Server

Access
Network Internet

user

user

user
Web
Server

useruser

useruserusermiss

hit

Proxy Server

save

Figure 5.1: The entire Web server system model.

We have discussed with the problems of the resource allocation on the Web sys-

tem, and only aimed at the document transfer delay as an index of the performance

in the numerical examples. Actually, when we construct the system with evaluating

quantitatively, it is true to design with considering the cost. In this thesis, we have

presented the evaluation examples of the modeling the transmission delay of the

document, and have only considered the Web document transfer. It is true that Web

traffic dominates the Internet in recent days, but the Web system allows various ap-

plications. It is especially important to take account of cgi and similar tools since

it affects the Web server performance. In the future, we should construct the model

with the effect of these applications. Further investigations are necessary regarding

this problem.

69



Bibliography

[1] Network Wizards, “Internet Domain Survey.” available at http://nw.com/

zone/WWW.

[2] M. Nabe, M. Murata, and H. Miyahara, “Analysis and Modeling of World Wide

Web Traffic for Capacity Dimensioning for Internet Access Lines,” in Proceed-

ings of SPIE Conference on Performance and Control of Network Systems, vol. 3231,

pp. 2–12, November 1997.

[3] M. Nabe, M. Murata, and H. Miyahara, “Analysis and Modeling of WWW

Traffic Characteristics with Document Caching,” The Transactions of the Insti-

tute of Electronics, Information, and Communication Engineers of Japan, vol. J81-B-1,

pp. 325–334, May 1998. (in Japanese).

[4] A. Iyengar, E. MacNair, and T. Nguyen, “An Analysis of Web Server Perfor-

mance,” in Proceedings of GLOBECOM ’97, 1997.

[5] J. C. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the Impact of Event Dis-

patching and Concurrency Models on Web Server Performance Over High-

speed Networks,” in Proceedings of GLOBECOM ’97, 1997.

[6] R. McGrath, “Performance of Several Web Server Platforms.” available at

http://www.ncsa.uiuc.edu/InformationServers/Performance/

Platforms/report.html.

70



[7] N. J. Yeager, and R. E. McGrath, Web Server Technology. San Francisco: Morgan

Kaufmann Publishers Inc., 1996.

[8] L. P. Slothouber, “A Model of Web Server Performance.” available at http:

//www.starnine.com/webstar/overview.html.

[9] R. P. Wooster and M. Abrams, “Proxy Caching that Estimates Page Load De-

lays,” 1997.

[10] C. Maltzahn and K. J. Richardson, “Performance Issues of Enterprise Level Web

Proxies,” in Proceedings of ACM SIGMETRICS ’97, 1997.

[11] L. Zhang, S. Floyd, and V. Jacobson, “Adaptive Web Caching,” 1997.

[12] Mindcraft, Inc., “WebStone : The Benchmark for Web Server.” available at

http://www.mindcraft.com/webstone.

[13] Standard Performance Evaluation, Co., “SPECweb96 Benchmark.” available at

http://www.specbench.org/osg/web96.

[14] Ziff-Davis, Inc., “WebBench 3.0.” available at http://www.zdnet.com/

zdbop/webbench/webbench.html.

[15] Mindcraft, Inc., “WebStone : Standard WebStone 2.0.1 Run Rules.” available at

http://www.mindcraft.com/webstone/ws2.0.1_runprocs.html.

[16] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Proto-

col – HTTP/1.0 (RFC1945).” available at http://www.ds.internic.net/

rfc1945.txt.

[17] Y. Fujita, M. Murata, and H. Miyahara, “Analysis of Web Server Performance

towards Modeling and Performance Evaluation of Web Systems,” Technical Re-

port of IEICE, vol. CQ97-12, pp. 77–84, December 1997. (in Japanese).

71



[18] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evaluation

of Web Systems,” Technical Report of IEICE, vol. SSE97-215, pp. 133–138, March

1998. (in Japanese).

[19] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evalua-

tion of Web Systems,” in Proceedings of 1998 IEEE Communication Quality and

Reliability Workshop, May 1998.

[20] Y. Fujita, M. Murata, and H. Miyahara, “Analysis of Web Server Performance

towards Modeling and Evaluation of Web Systems,” in Proceedings of 1998 IEEE

SICON, pp. 221–224, July 1998.

[21] Y. Fujita, M. Nabe, M. Murata, and H. Miyahara, “Building the Performance

Model of Web Systems based on Experimental Benchmark,” in Proceedings of

ITC-CSCC ’98, vol. 1, pp. 517–520, July 1998.

[22] Y. Fujita, M. Murata, and H. Miyahara, “Building the Performance Model of

Web Server and the Application to Performance Evaluation of Web Systems,” in

Proceedings of the First AEARU Workshop on Web Technology, pp. 91–98, Novem-

ber 1998.

[23] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evaluation

of Web Server Systems,” The Transactions of the Institute of Electronics, Information

and Communication Engineers of Japan, vol. J82–B, pp. 347–357, March 1999. (in

Japanese).

[24] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evalu-

ation of Web Systems with Proxy Server Caching,” Technical Report of IEICE,

vol. CQ98-4, pp. 21–28, May 1998. (in Japanese).

72



[25] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evalua-

tion of Web Systems with Proxy Caching,” in Proceedings of ITC-16th, vol. 3b,

pp. 1179–1188, June 1999.

[26] Y. Fujita, M. Murata, and H. Miyahara, “Performance Modeling and Evaluation

of Web Systems with Proxy Caching,” The Transactions of the Institute of Electron-

ics, Information and Communication Engineers of Japan, vol. J82–B, pp. 1449–1461,

August 1999. (in Japanese).

[27] Apache HTTP Server Project, “The Apache Software Foundation.” available at

http://www.apache.org/.

[28] Microsoft, Co., “Internet Information Server.” available at http://www.

microsoft.com/iis.

[29] Netscape Communications, Co., “Netscape Enterprise Server 3.0.” available at

http://live.netscape.com/comprod/announce/dss_ente.html.

[30] NCSA HTTPd. available at http://hoohoo.ncsa.uiuc.edu/.

[31] CERN httpd. available at http://www.w3.org/Daemon/.

[32] Netcraft, Ltd., “The Netcraft Web Server Survey.” available at http://www.

netcraft.com/Survey/.

[33] S. F. Yashkov, “Processor–Sharing Queues : Some Progress in Analysis,” Queue-

ing Systems, vol. 2, pp. 1–17, 1987.

[34] K. M. Rege and B. Sengupta, “Sojourn Time Distribution in a Multipro-

grammed Computer System,” AT&T Technical Journal, vol. 64, pp. 1077–1090,

May–June 1985.

73



[35] B. Avi-Itzhak and S. Halfin, “Expected Response Times in a Non-Symmetric

Time Sharing Queue with a Limited Number of Service Positions,” in Proceed-

ings of ITC-12, pp. 1485–1493, 1989.

[36] S. S. Lavenverg, Computer Performance Modeling Handbook. New York: Aca-

demic Press, 1983.

[37] Squid Internet Object Cache. available at http://squid.nlanr.net/

Squid.

[38] P. Manzoni and D. Ghosal, “Impact of Mobility on TCP/IP : An Integrated

Performance Study,” IEEE Journal on Selected Areas in Communications, vol. 13,

pp. 858–867, June 1995.

74



Biography

Yasuyuki Fujita was born in Kyoto, Japan on September 16, 1968. He received the

B.E. in Engineering from Doshisha University, Kyoto, Japan, in 1992. In April 1992,

he joined the Kansai Electric Power Co., Inc., Japan, where he was engaged in the

development and implementation of information systems. In June 1997, he entered

the Graduate School of Engineering Science, Osaka University, Osaka, Japan, as a

researcher. Since 1999, he has been studying at Osaka University, Japan, as a Ph.D.

candidate. His research interests include the communication network design and

the Web server system.

75


