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Abstract—We investigate the performance of TCP under three represen-
tatives of packet scheduling algorithms at the router. Our main focus is to
investigate how fair service can be provided for elastic applications shar-
ing the link. Packet scheduling algorithms that we consider are FIFO (First
In First Out), RED (Random Early Detection), and DRR (Deficit Round
Robin). Through simulation and analysis results, we discuss the degree of
achieved fairness in those scheduling algorithms. Furthermore, we propose
a new algorithm which combines RED and DRR algorithms in order to pre-
vent the unfairness property of the original DRR algorithm, which appears
in some circumstances where we want to resolve the scalability problem of
the DRR algorithm. In addition to TCP Reno version, we consider TCP Ve-
gas to investigate its capability of providing the fairness. The results show
that the principleof TCP Vegas conformsto DRR, but it cannot help improv-
ing the fairness among connections in FIFO and RED cases, which seems to
be a substantial obstacle for the deployment of TCP Vegas.

Keywords—Fairness, FIFO (First In First Out), RED (Random Early De-
tection), DRR (Deficit Round Robin), TCP (Transmission Control Protocol)

I. INTRODUCTION

The conventional Internet has only been providing the best ef-
fort service, and it could not offer throughput and/or delay guar-
antees. It is also lack of fairness guarantees; TCP connections
sometimes receive unfair performance in terms of, e.g., through-
put. See, e.g., [1]. However, we now need to provide com-
mercial network services by the Internet. That is, a new service
should be available within the network to support the differen-
tiated services among the users [2]. Along with the context of
diff-serv models, several service principles have recently been
proposed; for example, a constant throughput may be preferred
to some connections, or QoS support is necessary for real–time
applications. For example, in [3], the authors have proposed an
Explicit Capacity framework for allocating the network capacity
to users in a controlled way even during congestion periods.

Another important service that the next–generation Internet
should support is fair allocation of the bandwidth, which is our
main subject of this paper. It is one of most desired features
for elastic applications, but not supported by the current Inter-
net, and we believe that it may be more important even than net-
work efficiency. A one existing service found in the literature is
the USD (User Share Differentiation) scheme described in [4],
where users are provided different service qualities from ISPs
(Internet Service Providers) based on the contracts. However,
the authors in [4] do not providea quantitative evaluation of USD
to show how the users are differentiated. One promising way
to realize the service differentiation for the elastic applications
seems to be DRR (Deficit Round Robin) presented in [5] where

the round robin scheduling is performed among active connec-
tions. In [5], an extensive evaluation of the DRR algorithm is
provided, but they assume Poisson arrivals of packets from each
connection. That is, the authors do not consider the behavior of
the upper–layer protocol, i.e., TCP (Transmission Control Pro-
tocol).

In this paper, we focus on the degree of fairness provided to
TCP connections by comparing three packet scheduling algo-
rithms at the router. The first one is FIFO (First In First Out, or
Drop–Tail), which is widely used in the current Internet routers
because of its simplicity. The second is RED (Random Early De-
tection) [6], which drops incoming packets at a certain probabil-
ity. While the original idea of the RED algorithm is to avoid con-
secutive dropping of packets belonging to the same connection,
it also has a capability of achieving a fair service among connec-
tions by spreading packet losses. The last one is DRR, which is
a more aggressive one in the sense that it actively maintains per–
flow queueing for establishing fair service. For TCP, we consider
the Reno version, which has widely been used in the current In-
ternet. The Vegas version [7], adopting a different congestion
control mechanism from TCP Reno for larger performance gain,
is also considered.

In this paper, for reference purposes, we will first show simu-
lation results that FIFO cannot provide fairness among connec-
tions at all because of a bursty nature of packet losses (see Sub-
section III-A). It is next shown that RED offers better fairness
than FIFO to TCP Reno connections, but it cannot keep a good
fairness when the capacity of shared link becomes small com-
pared with the total input link capacity (Subsection III-B). In
TCP Vegas, on the other hand, RED offers less fairness than
FIFO because of the essential incompatibility of TCP Vegas to
the RED algorithm (Section IV).

The packet scheduling algorithms and TCP versions that we
will use in this paper are not new. Our main contributions in
the current paper is that the properties mentioned above are also
shown through analytical results. While the model used in the
analysis is very simple, the basic features of the above schedul-
ing algorithms can be well explained. From the analysis re-
sults, we further propose the enhanced version of RED algo-
rithm, where we set each connection’s packet dropping proba-
bility dependently on its input link capacity, to avoid the unfair-
ness property of the original RED algorithm. Another enhance-
ment method of RED can be found in [8], where the flow state
are maintained for some degree of fairness enhancements.



The above method can be used to resolve an inherent prob-
lem of the DRR algorithm. DRR can provide almost perfect fair-
ness among connections in both cases of TCP Reno (Subsec-
tion III-C) and Vegas (Subsection IV-C), but DRR requires per–
flow queueing. Since we mainly consider the ISP model, we may
not need to consider the stateless fair queueing mechanism such
as the one found in [?]. However, DRR has a scalability problem
in that as the number of subscribers grows, the larger number of
queues becomes necessary. One possible solution is flow aggre-
gation which treats several connections as a single flow of DRR.
However, it results in that the fairness property of DRR becomes
lost when multiple TCP connections are assigned to the same
queue. Based on our analytical results, we last apply the RED
mechanism to each queue of DRR (called DRR+) for fairness en-
hancement. We show that our DRR+ can provide a reasonably
good fairness even compared with DRR through the simulation
results (Subsection III-D).

For the discussions above, we use the network model where
the uplink of the access line of ISP is shared by the subscribers
with different capacities. The effect of the reverse traffic is also
considered by the model where the downlink is shared by the
subscribers. Although we will not show the results due to space
limitation, we have found that our analysis results in this paper
can be applied to the reverse traffic model without any modifica-
tion. The similar model is treated in [9], but we consider RED
and DRR as the packet scheduling algorithm in addition to the
FIFO algorithm employed in [9]. Further, we devote the fairness
aspects of packet scheduling algorithms which are not consid-
ered in [9].

This paper is organized as follows. In Section II, we describe
the model treated in Section III and IV. The packet schedul-
ing algorithms is first summarized in Subsection II-A. We will
also explain the congestion control algorithm of TCP Reno and
TCP Vegas by focusing on those congestion avoidance mech-
anisms in Subsection II-B. In Subsection II-C, we explain the
network model we will use in analysis and simulation, and in-
troduce the fairness measure considered in this paper in Subsec-
tion II-D. In Section III, we evaluate the packet scheduling algo-
rithms described in Section II-A in the case of TCP Reno through
the simulation and the analysis, and propose DRR+ for fairness
improvement. We next consider the case of TCP Vegas in Sec-
tion III. Finally, we present some concluding remarks and future
works in Section V.

II. THE MODEL

A. Packet Scheduling Algorithms

In what follows, we briefly summarize the three packet
scheduling algorithms, FIFO, RED and DRR for the current pa-
per to be self–contained.

A FIFO algorithm is widely used in the current Internet routers
because of its simple implementation. The incoming packets
are accepted in order of arrivals. When the buffer at the router
becomes full, arriving packets are dropped. Therefore, packets
belonging to a particular connection can sometimes suffer from
bursty packet losses. Then, fast retransmit [10] implemented
in TCP does not work effectively. It is also likely to introduce
bursty transmission of packets [6], which often results in further
packet losses.

The problem mentioned above is solved by RED [6]. The
RED algorithm is designed to cooperate with congestion control
mechanisms provided in TCP. In RED, the router observes the
avarage queue size (buffer occupancy), and the packets arriving
at the router are dropped with a certain probability.

The DRR algorithm [5] is an extension of the round robin al-
gorithm to be suitable to treat the variable–sized packets. The
buffer at the router is logically divided into multiple queues. The
arriving packets of each connectionare stored in the pre-assigned
queue by using a hash function, and those are served in a round–
robin fashion. A difference from the pure round robin algorithm
is that the packets with variable length can be allowed to keep the
fairness among connections. In DRR, the bandwidth not used in
the round is preserved to be used in the next round if the packet
is too large to be served in the current round.

B. Congestion Control Mechanisms of TCP

In this paper, we consider two versions of TCP; Reno and Ve-
gas. TCP Reno is widely used in the current Internet. TCP Vegas
is a recently proposed one in [7].

In TCP Reno, the window size cwnd (congestionwindow size)
is cyclically changed. cwnd continues to be increased until seg-
ment loss occurs. TCP Reno has two phases in increasing cwnd;
Slow Start Phase and Congestion Avoidance Phase. When an
ACK segment is received by TCP at the server side at time t +
tA [sec], cwnd(t+tA) is updated from cwnd(t) as follows (see,
e.g., [10]);

cwnd(t + tA) =


cwnd(t)+ 1, if cwnd(t) < ssth;

cwnd(t)+
1

cwnd(t)
, if cwnd(t) ≥ ssth; (1)

where ssth [segments] is the threshold value at which TCP
changes its phase from Slow Start Phase to Congestion Avoid-
ance Phase. When segment loss is detected by timeout or fast
retransmission algorithm [10], cwnd(t) and ssth are updated as

ssth = cwnd(t)/2; cwnd(t) = ssth

In TCP Reno (and the older version Tahoe), the window size,
cwnd, continues to be increased until segment loss occurs due to
congestion. Then, the window size is throttled, which leads to
the throughput degradation of the connection. However, it can-
not be avoided because of an essential nature of the congestion
control mechanism adopted in TCP Reno. That is, it can detect
network congestion only by segment loss. However, throttling
the window size is not adequate when the TCP connection itself
causes the congestion because of its too large window size. If
cwnd is appropriately controlled such that the segment loss does
not occur in the network, the throughput degradation due to the
throttled window can be avoided. This is the reason that TCP
Vegas was introduced.

TCP Vegas employs another mechanism, in which it controls
cwnd by observing changes of RTTs (Round Trip Time) of seg-
ments that the connection has sent before. If observed RTTs be-
come large, TCP Vegas recognizes that the network begins to
be congested, and throttles cwnd down. If RTTs become small,
on the other hand, TCP Vegas determines that the network is
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relieved from the congestion, and increases cwnd again. Then,
cwnd in an ideal situation becomes converged to the appropriate
value. In Congestion Avoidance Phase, the window size is up-
dated as;

cwnd(t + tA) =


cwnd(t)+ 1, if diff < α
base rtt

cwnd(t), if α
base rtt ≤ diff ≤ β

base rtt

cwnd(t)− 1, if β
base rtt < diff

(2)

diff = cwnd(t)/base rtt− cwnd(t)/rtt

where rtt [sec] is an observed round trip time, base rtt [sec] is
the smallest value of observed RTTs, and α and β are some con-
stant values. Note that Eq. (2) used in TCP Vegas indicates that
if RTTs of the segments are stable, the window size remains un-
changed.

C. Network Model

Recalling that our main purpose of the current paper is to in-
vestigate the fairness aspect of packet scheduling algorithms, we
will use a simple network model as depicted in Figure 1.

There are the number N of connections between N sources
(SES1, SES2 , . . ., SESN) and one destination (DES). N con-
nections share the bottleneck output link of the router. The ca-
pacity of the input link between the sources and the router are
defined as bw1, bw2, . . ., bwN Kbps, and that of the output link
between the router and destination is BW Kbps. We assume
bw1 ≤ bw2 ≤ . . . ≤ bwN . By the above model, we intend to
consider the uplink of the access line of the ISP, which is shared
by the subscribers with different capacities.

In the following numerical examples throughoutthe paper, the
propagation delay between SESi and DES, τ , is identically set
to be 100 msec. The buffer size of the router is 60 Kbytes. A
TCP packet size is fixed at 2 Kbytes. Every sender is assumed
to be a greedy source, that is, it has infinite packets to transmit.
We also assume that in the case of DRR, the connection can be
identified by the router so that the packets from the connection
can be appropriately queued at the per–flow buffer at the router.

D. Definition of Fairness

We define the fair service by taking account of the input link
capacity. Its simplest form is that the throughput is given in pro-
portion to its input link capacity under the condition that the out-
put link capacity is smaller than total of the input link capacities.
That is, we say that a good fairness is achieved if the throughput
of connection i, ρi, is given as

ρi = BW · bwi∑
j bwj

We note that other definitions of the fairness can be consid-
ered. A more natural definition may be the function of subscrip-
tion fees, which may be determined by (but not be proportional
to) the input link capacity in the ISP model. We will not treat
such a case for simplicity of presentation, but it is not difficult to
incorporate it. For example, the weight factor is allowed to be
arbitrary in the DRR case. The RED case can also be treated in
this context by utilizing our analysis presented later.

III. THE CASE OF TCP RENO

In this section, we consider TCP Reno to investigate the fair-
ness property of three packet scheduling algorithms. In addition
to the simulation results, we develop the analysis result for the
RED scheduling algorithm. The analysis results supports obser-
vations on the fairness property of the RED algorithm obtained
from the simulation results. We then investigate DRR to demon-
strate its effectiveness through simulation experiments.

In what follows, we set four TCP connections which have dif-
ferent capacities of 64, 128, 256 and 512 Kbps. The output link
capacity is varied from 400 Kbps to 960 Kbps to investigate the
effect of the output link capacity on fairness. In the simulation
results, we simulated 5,000 sec in each experiment to obtain the
result, which approximately corresponds to 300,000 packet gen-
eration.

A. FIFO Case

We first show the FIFO case in terms of the average through-
put during the simulation run (Figure 2(a)), the relative through-
put (Figure 2(b)), and packet loss rate (Figure 2(c)) for all con-
nections as a function of the output link capacity. Relative
throughputmeans the ratio of the average throughputagainst the
input link capacity. When all connections have identical rela-
tive throughput, it is said that the router perfectly provides fair
service among connections in our definition. In Figure 2(a), the
solid line labelled “total” shows the total throughputof four con-
nections. From Figures 2(a) and 2(b), it is clear that fairness can-
not be kept at all. In some region where the output link capacity
is small, the throughputof the connection with smaller input link
capacity is larger even than that of the connection with larger in-
put link capacity. It can be explained as follows. In the FIFO al-
gorithm, packet loss occurs independently of the packet arrival
rate as shown in Figure 2(c), and the packet loss becomes bursty.
Since the connection with larger input link capacity experiences
a higher degree of burstiness of packet losses, its performance
degradation becomes larger.

B. RED Case

B.1 Simulation Results

We next investigate the RED case. Recalling that the buffer
size of the router is set to be 60 Kbyte, we set thmin = 10 Kbytes,
thmax = 30 Kbytes and p = 0.02 in simulation. p shows the
packet dropping probability defined in RED, with which incom-
ing packets are dropped when the avarage queue length is over
the threshold thmin . Figure 3 shows simulation results of the
RED algorithm in that case. By comparing the “total” line in
Figures 3(a) and 2(a), it can be observed that the RED algorithm
can attain higher total throughput than that of the FIFO algo-
rithm because RED can avoid bursty packet losses by dropping
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Fig. 3. RED case with TCP Reno

arriving packets with probability p, which results in that TCP’s
fast retransmit algorithm works effectively. However, if we fo-
cus on the fairness, it is clear that an improvement is very lim-
ited. It is especially true when the output link capacity is small;
the throughputof all connections becomes almost identical (Fig-
ure 3(a)). Also, the packet loss rates of all connections are al-
most equal as shown in Figure 3(c). Of course, this is one of key
features that the RED algorithm intends; the number of the lost
packets of each connection can be kept in proportion to its input
link capacity by its mechanism. The problem is that it leads to
the unfairness treatment of connectionswith different capacities.

The above result is just one example. Also, it is question-
able whether simulation time of 300,000 packets generation is
adequate or not for examining the fairness degree. To examine
its generality, we next show the analysis of the RED algorithm.
Through analysis, it is proven that the unfairness observed in
simulation is inherent in the RED algorithm.

B.2 Analysis Results and Discussions

We assume in the following analysis that there are N connec-
tions in the network (Figure 1) with the input link capacities of
bw1, bw2, ..., bwN [packets/sec], where bw1≤ bw2≤, ..., ≤bwN .
We denote the packet droppingprobability of the RED algorithm
by p, and the propagation delay between sources and the desti-
nation by τ . We also assume that the average queue length is al-
ways larger than thmin, that is, all arriving packets are dropped
with probability p. For analysis, we focus on TCP’s typical cy-
cle of the window size as shown in Figure 4; the cycle begins
at the time when the previous packet loss occurs, and terminates
when the next packet loss occurs. We consider that the cycle be-
gins at time t = 0 [sec]. We do not take account of the slow start
phase [10] since the objective of the RED algorithm is essentially

time

Window Size

Wmax

Wmax/2
1/RTT

0 T

1cycle

i

i

cwnd (t)i

Wa

Fig. 4. TCP’s cyclically change of the window size for connection i

to avoid falling into that phase.

Since all arriving packets are dropped at the router with prob-
ability p by our assumption, the connection can send 1/p pack-
ets in one cycle (between the events of packet losses). We de-
fine the number of packets transmitted during one cycle as Np,
that is, Np = 1/p. During the cycle, the window size of con-
nection i, cwndi(t) [packets], is increased linearly since we only
consider the congestion avoidance phase [10]. The window size
is halved when packet loss detected by fast retransmit, and there-
fore cwndi(t) is given as

cwndi(t) =
Wmax

2
+

1
RTTi

· t, 1 ≤ i ≤ N, (3)

where RTTi [sec] is an average round trip time of packets for
connection i, and Wmax [packets] is the value of the window size
at the time when packet loss occurs. Then, the following equa-
tion for the total number of the packets in one cycle should be
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satisfied for connection i;∫ Ti

0

cwndi(t)dt = Np, 1 ≤ i ≤ N, (4)

where Ti is the time duration of the cycle as shown in Figure 4.
From Eqs.(3) and (4), we can obtain W ′

max [packets], the win-
dow size at the time when the next packet loss occurs, as

W ′
max =

√
Wmax

2 + 2Np (5)

From Eq.(5), we can obtain Wmax [packets], the average value
of Wmax by equating W ′

max and Wmax. That is,

Wmax '
√

8/(3p) (6)

As a result, we derive Wa [packets], the average window size
during the cycle as;

Wa = (3/4)W max (7)

See Figure 4. From the equation above, we can see that the
change of the window size does not depend on each connection’s
input link capacity, but on the packet dropping probability of the
RED algorithm.

For further analysis, we make an assumption that each con-
nection’s window size is fixed at the average value, Wa. We
then derive ρi, the throughput of connection i when Wa pack-
ets of its window are served at the router. To simplify the anal-
ysis, we consider the situation where all connections’ first pack-
ets of the windows arrive at the router simultaneously as shown
in Figure 5. In this figure, each square shows the burst of con-
nection i’s Wa segments, and its length represents the time du-
ration Wa

bwi
[sec]. Since all connections have different capacities

bwi on their links, it takes different time duration Wa/bwi for
all packets of connection i to arrive at the router as illustrated in
Figure 5. That is, the segment burst of connection i is not served
at the same rate, and it depends on the number of the connec-
tions sending simultaneously their packets. We divide all con-
nections’ packet burst into N ‘phases’ according to the number

of connections which send the segments simultaneously. For ex-
ample, since the number of connections transmitting their seg-
ments is i in phase i, the router processes segments of i con-
nections at rate BW [segments/sec]. We denote the number of
packets of connection i belonging to phase j by Wi,j [packets]
(1 ≤ i, j ≤ N ). Since all segments in the phase are dealt at
the rate in proportion to its input link bandwidth, we determine
Wi,N for phase N as follows;

WN,N = Wa

Wi,N = WN,N · bwi

bwN
, 1 ≤ i ≤ N.

In the same manner, we can obtain all of Wi,j by solving the fol-
lowing equations;

Wj,j = Wa −
N∑

k=j+1

Wj,k, 1 ≤ j ≤ N − 1,

Wi,j = Wj,j · bwi

bwj
, 1 ≤ j ≤ N − 1,1 ≤ i ≤ j − 1.

The rate at which the packets are served at the router in phase j,
Sj [packets/sec], must depend on the total capacity of the con-
nections of phase j. Since, in phase j, all packets belonging to
from connection 1 to connection j are served at the router, Sj is
given as;

Sj =




BW, if
j∑

k=1

bwk > BW,

j∑
k=1

bwj, otherwise

(8)

Therefore, the throughput of connection i during phase j, Ri,j ,
can be determined as follows;

Ri,j = Wi,j

/(
Wi,j∑j

k=1 Wk,j

Sj

)
=
∑j

k=1 Wk,j

Sj
(9)

From Eqs.(8) and (9), ρi can be calculated as follows;

ρi =
N∑

k=N+1−i

(
Wi,j

Wa

Ri,j

)
(10)

Although the RED algorithm can eliminate the bursty packet
losses leading to TCP’s retransmission timeout expiration, time-
out expiration cannot be avoided perfectly [11]. Even if time-
out expiration rarely happens, the effect of timeout expiration on
throughput is large. Therefore, we next consider the throughput
degradation caused by retransmission timeout expiration. We
denote the probabilityof occurring timeout expiration in the win-
dow by Pto. We determine Pto according to the following simple
equation;

Pto =
∞∑

i=2

(
Wa

i

)
· pi · (1− p)Wa+1−i (11)

We assume that RTOi [sec], the timeout duration for retrans-
mission, becomes twice RTTi, the Round Trip Time for connec-
tion i. RTTi can be calculated by considering the effect of the
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other connections’ traffic;

RTTi = 2τ +
∑
k 6=i

Wa/BW + Wa/ρi (12)

From these results, we finally have ρ′
i, the throughputof connec-

tion i, by considering the effect of TCP’s retransmission time-
outs;

ρ′
i = (1 − Pto) · ρi + Pto · Wa/ρi

Wa/ρi + RTOi
ρi

=
ρi ·Wa + (1 − Pto) · ρ2

i ·RTOi

Wa + ρiRTOi

(13)

Eq. (13) is obtained as follows. The first term (1−Pto) · ρi rep-
resents the throughput without retransmission timeout, and the
second term Wa/ρi

Wa/ρi+RT Oi
ρi is that with retransmission timeout.

By Eq. (13), we can TCP throughput of each connection under
RED algorithm, which takes account of the throughput degrada-
tion caused by TCP retransmission timeouts.

Figure 6 shows the throughput results from our analysis as a
function of the output link capacity. In the figure, points repre-
sent the simulation results (which correspond to Figure 3(a)), and
the lines show analysis results. We can observe from this fig-
ure that our analysis can give good agreements with simulation
results, and that the unfairness property of the RED algorithm
in the case of small output link capacity can be observed. This
unfairness can be explained from the analysis result as follows.
When the output link bandwidth becomes small, the rate at which
the packets are served at the router of phase j becomes BW in
almost all the phases. It is clearly shown in Eq. (8). That is, pack-
ets arriving at the router are served at rate BW , which results in
that the throughput of all connections become equivalent. Fur-
thermore, the connection whose input link bandwidth is larger
can suffer from throughput degradation caused by TCP retrans-
mission timeouts. This is also the reason why the throughput of
the connection with the 512 [Kbyte/sec] input link bandwidth is
largely degraded, which can be explained by Eq. (13).

B.3 Enhancement to RED

We last consider the enhancement to the RED algorithm
(called enhanced RED) to avoid this unfairness by setting p de-
pendently on each connection’s input link capacity, according
to the analysis results. We set pi, which is the packet dropping
probability of connection i, such that each connection’s through-
put becomes proportional to its input link capacity. The appro-
priate values of pi’s are calculated for all connectionsas follows.
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Fig. 7. The effect of enhanced RED

1. Initialize pi’s.
2. Calculate ρi from the current pi according to the analysis re-
sults. See Eq.(13).
3. If ρi is proportional to the input link capacity, set pi to the
current value.
4. If not, compare ρi with the ideal value, and adjust pi of the
connection having the largest difference between ρi and the ideal
value. That is,
• If ρi is larger than the ideal value, change pi to a pi.
• If ρi is smaller than the ideal value, change pi to b pi.

The values of control parameters a and b that we will use in the
following simulation are 1.1 and 0.9.
In the enhanced RED algorithm, we calculate pi’s for all connec-
tions according to the above algorithm. Figure 7 shows the sim-
ulation results on the relative throughput of the enhanced RED
algorithm. Compared with Figure 3(b), it is clear that our en-
hanced version of the RED algorithm gives much better fairness
than the original RED algorithm. In simulation, however, we set
the control parameter values of a and b intuitively. It is a future
research topic to seek an appropriate method to determine those
parameters.

C. DRR Case

As explained in Subsection II-A, the router buffer is logically
divided into several queues in DRR and each connection is as-
signed its own queue. We first consider the case where the large
buffer is equipped with the router so that every connection is
given a sufficient amount of buffer. In our model depicted Fig-
ure 8, four DRR queues are formed in the router, and DRR pa-
rameters are set such that each DRR queue is served in propor-
tion to the input link capacity of the assigned connection.

Figure 10(a) shows the simulation results of relative through-
put. Different from the FIFO (Figure 2) and RED (Figure 3) al-
gorithms, the DRR algorithm provides very good fairness among
connections even when the output link capacity is small. When
the output link is large, on the other hand, the degree of the
fairness is slightly degraded. It is because TCP’s retransmis-
sion timeouts tends to frequently occur due to bursty packet loss
at the queue since the FIFO discipline is used in each DRR
queue. Then, the retransmission timeout degrades the perfor-
mance more seriously. Thus the degree of performance degrada-
tion depends on the bandwidth–delay product of the connection.
Furthermore, in the DRR algorithm, the capacity not used by a
certain queue due to connection’s retransmission timeout can be
used by other connections. It increases the total throughput, but
it is likely to lead to the unfairness among connections. This is



64 Kbps

128 Kbps

256 Kbps

512 Kbps

queue 1

queue 2

queue 3

queue 4

Round
Robin

DRR Router

Fig. 8. Sufficient buffer case

64 Kbps

128 Kbps

256 Kbps

512 Kbps

queue 1

queue 2

Round
Robin

DRR Router

Fig. 9. Insufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e 
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(a) Sufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e 
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(b) Insufficient buffer case

Fig. 10. DRR case with TCP Reno

why fairness is degraded in the case of the large output link.

While the DRR algorithm assigns the DRR queues to each
connection, several connections should be assigned to one DRR
queue as the number of connections grows. It is because the
number of DRR queues which can be prepared must be limited
by the router buffer size and processing overhead. However, the
performance of the DRR algorithm in such a case has not been
known. For investigating such an insufficient buffer case, we as-
sume that there are two queues and four connections, and each
connection is assigned to the queue as shown in Figure 9. The
64 Kbps and 128 Kbps connections are assigned to one queue
(queue 1 in the figure) and the 256 Kbps and 512 Kbps connec-
tions to another queue (queue 2). Each queue is assumed to be
served in proportion to the total capacity of the assigned connec-
tions.

We show the simulation results in the insufficient buffer case
in Figure 10(b) for the relative throughput. The buffer sizes
of two queues are equivalently set to be 30 Kbytes. The lines
labeled ‘total-1’ and ‘total-2’ indicate total throughput of two
queues, queue 1 and queue 2. Although each queue is served
in proportion to the total capacity of the assigned connections,
the two connections assigned to the same queue show unfair
throughput. This is because we assumed that the arriving pack-
ets are served according to a simple FIFO discipline within the
DRR queue. As described in Subsection III-A, the FIFO algo-
rithm cannot keep fairness among connection at all.

In this subsection, we have observed that the DRR algorithm
gives much better fairness than FIFO and RED algorithms, but
its fairness property is sometimes lost as each connection has
different capacity or when multiple connections are assigned to
one DRR queue. We henceforth consider to improve the fairness
property of the DRR algorithm in the next subsection.

D. DRR+ Case

In the previous subsection, we have shown that the DRR al-
gorithm has some unfairness property. The main reason was that
each DRR queue serves packets by the FIFO discipline. In this
subsection, we show some simulation results of DRR+, where
the RED algorithm is applied to each DRR queue to prevent un-
fairness. In simulation, we consider both sufficient/insufficient
buffer case. Note that, in the insufficient buffer case, we ap-
ply the enhanced RED algorithm to two DRR queues depicted
in Figure 9. That is, in each queue, we set the assigned connec-
tions’ packet dropping probabilities according to the enhanced
RED algorithm in Subsection III-B.

Figure 11 shows the simulation results on the relative through-
put. Our proposed method keeps good fairness in the sufficient
buffer case (Figure 11(a)). Furthermore, when Figure 11(b) is
compared with Figure 10(b), the fairness is significantly im-
proved even in the insufficient buffer case.

IV. TCP VEGAS CASE

In this section, we change the version of TCP to TCP Vegas to
investigate the fairness property of three packet scheduling algo-
rithms. TCP vegas conjectures the available bandwidth for the
connection, and therefore its principle is likely to be well fit to
the DRR algorithm. On the other hand, the RED algorithm does
not help improve the fairness when TCP Vegas is employed since
each connection’s window size is not dominated by the packet
dropping probability of the RED algorithm, but by the essential
algorithm of TCP Vegas. The purpose of this section is to con-
firm the above observations.
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Fig. 11. DRR+ case with TCP Reno
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Fig. 12. FIFO case with TCP Vegas
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Fig. 13. RED case with TCP Vegas

A. FIFO Case

Figure 12 plots simulation results of the FIFO case using TCP
Vegas. Note that we omit the graph showing the number of
packet loss since no segment loss was observed at the FIFO
buffer. Compared with the TCP Reno case (Figure 2), it is
clear that TCP vegas provides less fairness than TCP Reno. Es-
pecially, the connection with has smaller input link bandwidth
achieve almost 100% throughput (Figure 12(b)). This unfair-
ness property is caused by the essential characteristic of TCP Ve-
gas. In TCP Vegas, no segment loss occurs at the router buffer
if the network is stable, because the window size of all connec-
tion converges to certain values (Figure 12(c)). In Figure 12(c),
it is noticeable that the converged window size is independent on
each connection’s input link bandwidth because base rtt of each
connection is almost equal (See Subsection II-B). In the current
simulation setting, the converged window size is enough large
for connections having smaller input link bandwidth to utilize
its bandwidth–delay-product,but it is too small for connections

with larger input link bandwidth. Therefore, while the result de-
pends on the network environment, TCP Vegas sometimes fails
to achieve fairness among connectionsdue to the essential nature
of its congestion control mechanism.

B. The RED Case

We next show the simulation results of the RED case in Fig-
ure 12. As in the case of TCP Reno (Subsection III-B), the fair-
ness is slightly improved when compared with the FIFO case
(Figure 12(b)). However, there still be significant unfairness
among connections. This can be explained by the throughput
analysis presented in the below. In the following analysis, we
use the same notations as those introduced in Subsection III-B.

At the moment, we consider the situation where no segment
loss occurs at the router, and each connection’s windowsize con-
verges to a certain value. The packet dropping of the RED will
be considered later.

Let li [segments] be the number of connection i’s segments
in the router buffer, and L = l1 + · · · + lN . Assume that each



connection’s throughput ρi [segments/sec] is proportional to the
avarage number of its segments in the router buffer. This as-
sumption is reasonable when the FIFO discipline is applied at
the router buffer. Then, the following equation with respect to
ρi is satisfied;

ρi = min (bwi, (li/L)BW ) (14)

According to the algorithm of TCP Vegas (Eq. (2)), we obtain;

α

base rtti
<

Wi

base rtti
− Wi

rtti
<

β

base rtti
(15)

base rtti = 2τ + 1/BW (16)

rtti = 2τ + li/ρi (17)

Wi = 2τρi + li = rtti · ρi (18)

where rtti [sec] and Wi [segments] are the RTT and the win-
dow size of the connection i, respectively. base rtti [sec] corre-
sponds to base rtt of connection i, which is the minimum value
of RTTs of the connection. By substituting Eqs. (16)–(18) into
Eq. (15), we obtain the following equation;

α + ρi/BW < li < β + ρi/BW (19)

From Eq. (19), L (= l1 + · · ·+ lN ) can be calculated as follows;

Nα +

N∑
j=1

ρi

BW
< l1 + · · · + lN < Nβ +

N∑
j=1

ρi

BW

Nα +

N∑
j=1

ρi

BW
< L < Nβ +

N∑
j=1

ρi

BW
(20)

Recalling that bw1 ≤ bw2 ≤ . . . ≤ bwN , Eq. (14) yields

ρi =
{

bwi 1 ≤ i ≤ M
(li/L)BW M + 1 ≤ i ≤ N

(21)

Then, from Eqs. (19)–(21), we obtain ρi for M + 1 ≤ i ≤ N as
follows;

ρi =
li

L−
M∑

j=1

li


BW −

M∑
j=1

ρi


 ,M + 1 ≤ i ≤ N (22)

Therefore, Wi, which is the converged window size of connec-
tion i, can be obtained by substituting Eq. (19) and Eq. (22) to
Eq. (18).

In the above derivation, however, we do not take account of
random segment losses adopted in the RED algorithm. We next
consider the effect of throughput degradation caused by proba-
bilistic segment loss of the RED algorithm. Although each con-
nection’s window size is controlled to be converged to a certain
value in TCP Vegas, it is sometimes decreased by segment loss
by the RED algorithm. We assume that the segment loss can be
detected by the fast retransmit algorithm. Then, if the segment
loss occurs after the window size reaches Wi, the window size
is halved to Wi/2. That is, if Wi/2 < 2τρi, the throughput is
degraded until the window size reaches 2τρi. In Figure 14, we

define ‘one cycle’ to be the time duration between two segment
losses caused by RED. One cycle is divided into three phases;
phase 1, phase 2, and phase 3 as in Figure 14. In phase 1, the win-
dow size is increasing according to the TCP Vegas’s algorithm,
but the window size is less than 2τρi. That is, the throughput
is degraded by the segment loss during phase 1. In phase 2, the
window size continues to increase as in phase 1, but the window
size is larger than 2τρi and there is no throughput degradation.
In phase 3, the window size reaches the converged value, which
is obtained from Eq. (18). It remains unchanged until the packet
loss occurs at the end of this phase.

Let Ti [sec] and Ai [segments] be the time duration of phase i,
and the number of transmitted segments in phase i, respectively.
Furthermore, we introduce ρi,j [segments/sec] as the avarage
throughput of connection i during phase j.

In phase 1 and phase 2, the ratio of window size increasing is
1/rtti [segments/sec] because the window size is increased ac-
cording to TCP Vegas’s congestion avoidance algorithm formu-
lated by Eq. (2). Therefore, ρi,1 is;

ρi,1 =

(
Wi

2
+ 2τρi

2

)/(
2τ +

1
ρi

)
(23)

Because there is no throughput degradation in phase 2 and
phase 3, ρi,2 and ρi,3 are identical to ρi, i.e.,

ρi,2 = ρi,3 = ρi (24)

Since the increased rate of window size is 1/rtti [segments/sec],
T1 and T2 can be calculated as follows;

T1 =
(

2τρi − Wi

2

)
· rtti (25)

T2 = (Wi − 2τρi) · rtti (26)

A1 and A2 can also be calculated as follows;

A1 =
1
2

(
2τρi +

Wi

2

)(
2τρi − Wi

2

)
(27)

A2 =
1
2

(Wi + 2τρi) (Wi − 2τρi) (28)

In phase 3, the window size is converged to Wi, and segment
loss occurs at the router caused by the RED algorithm at the end
of this phase. Since the avarage number of transmitted segments
during 1 cycle is (1/p), A3 and T3 can be obtained as;

A3 = 1/p − A1 − A2 (29)

T3 = (A3/Wi) · rtti (30)

Finally, we can obtain ρ̂i, the throughput of connection i from
Eqs. (23)– (26), (30) as follows;

ρ̂i =
T1ρi,1 + T2ρi,2 + T3ρi,3

T1 + T2 + T3
(31)

Figure 15 shows the result of the analysis as a function of
the output link capacity. Compare with Figure 6. Our analysis
again gives good agreements with simulation results, and it con-
firms the unfairness property of TCP Vegas when applied to the
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Fig. 16. DRR case with TCP Vegas

RED algorithm. In TCP Reno (Subsection III-B), we could im-
prove the fairness by setting p (the packet dropping probability)
dependently on each connection’s input link capacity according
to the analysis results. In TCP Vegas, however, we cannot ap-
ply it because the converged window size is independent on p
as shown in Eqs. (18). That is, we cannot control each connec-
tion’s throughput by p. Therefore, if we want to remove the un-
fairness property in the RED algorithm with TCP Vegas, we may
have to give some modifications to the algorithm of TCP Vegas
itself. Otherwise, we need to use the DRR algorithm as will be
presented in the next subsection.

C. The DRR Case

Figure 16 shows the case of DRR. It can be observed from the
figure that fairness among connections is fairly good (Figure 16),
and better than TCP Reno case (Figure 10(a)). With TCP Reno,
some connections could not utilize all amount of bandwidth as-
signed by the DRR mechanism due to segment loss. With TCP
Vegas, on the other hand, no segment loss occurs at the router
buffer, and then each connection can completely utilize the band-
width assigned by the DRRmechanism. However, as the number
of connections becomes large, the scalability problem is intro-
duced as having been explained in Subsection III-C. In Subsec-
tion III-D, we have succeeded to avoid the unfairness by apply-
ing the RED mechanism to each DRR queue. In the current case,
however, we cannot apply it because of the essential incompati-
bility of TCP Vegas to the RED algorithm as explained in Sub-
section IV-B. We need further investigation on this problem.

V. CONCLUDING REMARKS

In this paper, we have evaluated the performance of the router
packet scheduling algorithms for fair service among connections
through the simulation and analysis. We have obtained the fol-
lowing results on TCP Reno version; the FIFO algorithm can-
not keep fairness among connections at all. The RED algorithm
can improve fairness to some degree, but it fails to keep fairness
in the different capacity case. The DRR algorithm offers bet-
ter fairness than the FIFO algorithm and the RED algorithm, but
its fairness property is lost when each connection has different
capacity and/or when multiple connections are assigned to one
DRR queue. Accordingly, we have proposed the DRR+ algo-
rithm, where the RED algorithm is applied to each DRR queue to
prevent unfairness, and show that it can improve fairness among
connections in the different capacity case. We have also investi-

gated the effect of TCP Vegas, which is expected to get higher
throughput than TCP Reno, and have made clear through the
simulation and analysis results that TCP Vegas cannot help im-
proving the fairness among connections in FIFO and RED cases.

TCP Vegas has a good feature to attain the better performance
than TCP Reno, as discussed in Section IV. However, it fails to
keep the good fairness among connections with different input
(and output) line capacities. For TCP Vegas to be introduced in
the future Internet where the RED algorithm is widely deployed,
the algorithm of TCP Vegas should be modified to improve the
fairness among connections, which is a future research topic.
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