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Abstract—Weinvestigatetheperformanceof TCP under threerepresen-
tativesof packet scheduling algorithmsat the router. Our main focusis to
investigate how fair service can be provided for elastic applications shar-
ingthelink. Packet scheduling algorithmsthat we consider areFIFO (First
In First Out), RED (Random Early Detection), and DRR (Deficit Round
Robin). Through simulation and analysis results, we discuss the degr ee of
achieved fairnessin thosescheduling algorithms. Furthermore we propose
anew algorithm which combinesRED and DRR algorithmsin order to pre-
vent the unfairnessproperty of theoriginal DRR algorithm, which appears
in some circumstanceswhere we want to resolve the scalability problem of
theDRR algorithm. In additionto TCP Reno version, weconsider TCP Ve
gasto investigateits capability of providing the fairness. The results show
that theprincipleof TCP Vegas conformstoDRR, but it cannot helpimprov-
ing thefair nessamong connectionsin FIFO and RED cases, which seemsto
be a substantial obstaclefor thedeployment of TCP Vegas.

Keywords—Fairness, FIFO (First In First Out), RED (Random Early De-
tection), DRR (Deficit Round Robin), TCP (Transmission Control Protocol)

I. INTRODUCTION

The conventional Internet has only been providing the best ef-
fort service, and it could not offer throughput and/or delay guar-
antees. It is also lack of fairness guarantees; TCP connections
sometimes receiveunfair performancein terms of, e.g., through-
put. See, eg., [1]. However, we now need to provide com-
mercial network services by the Internet. That is, anew service
should be available within the network to support the differen-
tiated services among the users [2]. Along with the context of
diff-serv models, several service principles have recently been
proposed; for example, a constant throughput may be preferred
to some connections, or QoS support is necessary for real—-time
applications. For example, in [3], the authors have proposed an
Explicit Capacity framework for allocating the network capacity
to usersin acontrolled way even during congestion periods.

Another important service that the next—generation Internet
should support isfair allocation of the bandwidth, which is our
main subject of this paper. It is one of most desired features
for elastic applications, but not supported by the current Inter-
net, and we believe that it may be more important even than net-
work efficiency. A one existing servicefound in theliteratureis
the USD (User Share Differentiation) scheme described in [4],
where users are provided different service qualities from 1SPs
(Internet Service Providers) based on the contracts. However,
theauthorsin[4] do not provideaquantitativeevaluationof USD
to show how the users are differentiated. One promising way
to realize the service differentiation for the elastic applications
seemsto be DRR (Deficit Round Robin) presented in [5] where

the round robin scheduling is performed among active connec-
tions. In [5], an extensive evaluation of the DRR agorithm is
provided, but they assume Poisson arrivals of packets from each
connection. That is, the authors do not consider the behavior of
the upper—ayer protocol, i.e., TCP (Transmission Control Pro-
tocal).

In this paper, we focus on the degree of fairness provided to
TCP connections by comparing three packet scheduling algo-
rithms at the router. Thefirst one is FIFO (First In First Out, or
Drop-Tail), which iswidely used in the current Internet routers
because of itssimplicity. Thesecondis RED (Random Early De-
tection) [6], which drops incoming packets at acertain probabil-
ity. Whiletheoriginal ideaof the RED algorithmisto avoid con-
secutive dropping of packets belongingto the same connection,
it also has acapability of achievingafair service among connec-
tions by spreading packet losses. The last oneis DRR, whichis
amore aggressiveonein the sensethat it actively maintains per—
flow queueing for establishing fair service. For TCP, we consider
the Reno version, which has widely been used in the current In-
ternet. The Vegas version [7], adopting a different congestion
control mechanism from TCP Reno for larger performancegain,
isalso considered.

In this paper, for reference purposes, we will first show simu-
lation results that FIFO cannot provide fairness among connec-
tions at all because of abursty nature of packet losses (see Sub-
section I11-A). 1t is next shown that RED offers better fairness
than FIFO to TCP Reno connections, but it cannot keep a good
fairness when the capacity of shared link becomes small com-
pared with the total input link capacity (Subsection I11-B). In
TCP Vegas, on the other hand, RED offers less fairness than
FIFO because of the essential incompatibility of TCP Vegas to
the RED algorithm (Section 1V).

The packet scheduling algorithms and TCP versions that we
will usein this paper are not new. Our main contributions in
the current paper isthat the properties mentioned above are also
shown through analytical results. While the model used in the
analysisis very simple, the basic features of the above schedul-
ing algorithms can be well explained. From the analysis re-
sults, we further propose the enhanced version of RED algo-
rithm, where we set each connection’s packet dropping proba-
bility dependently on itsinput link capacity, to avoid the unfair-
ness property of the original RED a gorithm. Another enhance-
ment method of RED can be found in [8], where the flow state
are maintained for some degree of fairness enhancements.



The above method can be used to resolve an inherent prob-
lem of the DRR agorithm. DRR can provideamost perfect fair-
ness among connections in both cases of TCP Reno (Subsec-
tion I11-C) and Vegas (Subsection 1V-C), but DRR requires per—
flow queueing. Sincewemainly consider thel SPmodel, wemay
not need to consider the stateless fair queueing mechanism such
astheonefoundin[?]. However, DRR has ascalability problem
inthat asthe number of subscribersgrows, the larger number of
gueues becomes necessary. One possible solution isflow aggre-
gation which treats several connectionsas asingle flow of DRR.
However, it resultsin that the fairness property of DRR becomes
lost when multiple TCP connections are assigned to the same
gueue. Based on our analytical results, we last apply the RED
mechanismto each queue of DRR (called DRR+) for fairnessen-
hancement. We show that our DRR+ can provide a reasonably
good fairness even compared with DRR through the simulation
results (Subsection 111-D).

For the discussions above, we use the network model where
the uplink of the access line of ISP is shared by the subscribers
with different capacities. The effect of the reverse trafficisalso
considered by the model where the downlink is shared by the
subscribers. Although we will not show the results due to space
limitation, we have found that our analysis results in this paper
can be applied to thereversetraffic model without any modifica-
tion. The similar model istreated in [9], but we consider RED
and DRR as the packet scheduling agorithm in addition to the
FIFO algorithm employedin [9]. Further, we devotethefairness
aspects of packet scheduling algorithms which are not consid-
eredin[9].

This paper isorganized as follows. In Section I, we describe
the model treated in Section 11l and IV. The packet schedul-
ing algorithmsis first summarized in Subsection 11-A. We will
also explain the congestion control algorithm of TCP Reno and
TCP Vegas by focusing on those congestion avoidance mech-
anisms in Subsection I1-B. In Subsection 11-C, we explain the
network model we will use in analysis and simulation, and in-
troducethe fairness measure considered in this paper in Subsec-
tion11-D. In Section 111, we evaluate the packet scheduling algo-
rithmsdescribed in Section 11-A in the case of TCP Reno through
the simulation and the analysis, and propose DRR+ for fairness
improvement. We next consider the case of TCP Vegasin Sec-
tion1ll. Finally, we present some concludingremarksand future
worksin Section V.

Il. THEMODEL
A. Packet Scheduling Algorithms

In what follows, we briefly summarize the three packet
scheduling algorithms, FIFO, RED and DRR for the current pa-
per to be self—contained.

A FIFO algorithmiswidely used inthe current Internet routers
because of its simple implementation. The incoming packets
are accepted in order of arrivals. When the buffer at the router
becomesfull, arriving packets are dropped. Therefore, packets
belonging to a particular connection can sometimes suffer from
bursty packet losses. Then, fast retransmit [10] implemented
in TCP does not work effectively. It is also likely to introduce
bursty transmission of packets[6], which often resultsin further
packet |0sses.

The problem mentioned above is solved by RED [6]. The
RED agorithmis designed to cooperatewith congestion control
mechanisms provided in TCP. In RED, the router observes the
avarage queue size (buffer occupancy), and the packets arriving
at the router are dropped with a certain probability.

The DRR agorithm [5] is an extension of the round robin al-
gorithm to be suitable to treat the variable—sized packets. The
buffer at therouter islogically divided into multiple queues. The
arriving packets of each connectionare storedin the pre-assigned
gueue by using a hash function, and those are served in around—
robin fashion. A differencefrom the pure round robin algorithm
isthat the packetswith variablelength can be allowed to keep the
fairness among connections. In DRR, the bandwidth not used in
the round is preserved to be used in the next round if the packet
istoo largeto be served in the current round.

B. Congestion Control Mechanisms of TCP

In this paper, we consider two versions of TCP; Reno and Ve-
gas. TCPReno iswidely used inthe current Internet. TCP Vegas
isarecently proposed onein [7].

In TCP Reno, thewindow size cwnd (congestionwindow size)
iscyclically changed. cwnd continuesto be increased until seg-
ment loss occurs. TCP Reno has two phases in increasing cwnd;
Slow Start Phase and Congestion Avoidance Phase. When an
ACK segment is received by TCP at the server side at time ¢ +
ta [sec], cwnd(t 41 4) isupdated from cwnd(t) asfollows (see,
eg. [10]);

cuwnd(t+ta) =
{ cwnd(t) + 1,

cwnd(t) + cwond(D)’

if cwnd(t) < ssth;
if cwnd(t) > ssth; @

where ssth [segments] is the threshold value at which TCP
changes its phase from Slow Start Phase to Congestion Avoid-
ance Phase. When segment loss is detected by timeout or fast
retransmission algorithm [10], cwnd(t) and ssth are updated as

ssth = cwnd(t)/2; cwnd(t) = ssth

In TCP Reno (and the older version Tahoe), the window size,
cwnd, continuesto beincreased until segment loss occursdue to
congestion. Then, the window size is throttled, which leads to
the throughput degradation of the connection. However, it can-
not be avoided because of an essential nature of the congestion
control mechanism adopted in TCP Reno. That is, it can detect
network congestion only by segment loss. However, throttling
thewindow size is not adequate when the TCP connection itself
causes the congestion because of its too large window size. If
cwnd is appropriately controlled such that the segment |oss does
not occur in the network, the throughput degradation due to the
throttled window can be avoided. This is the reason that TCP
Vegas was introduced.

TCP Vegas employs another mechanism, in which it controls
cwnd by observing changes of RTTs (Round Trip Time) of seg-
ments that the connection has sent before. If observed RTTsbe-
come large, TCP Vegas recognizes that the network begins to
be congested, and throttles cwnd down. If RTTs become small,
on the other hand, TCP Vegas determines that the network is
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relieved from the congestion, and increases cwnd again. Then,
cwnd in anidea situation becomes converged to the appropriate
value. In Congestion Avoidance Phase, the window size is up-
dated as;

cund(t+ta) =
cund(t) + 1, if diff < 52—

{ cwnd(t), if g < diff < ﬁ @
cwnd(t) — 1, if bas:ﬁ < diff

diff = cwnd(t)/base rtt — cwnd(t)/rtt

where rtt [sec] is an observed round trip time, base_rtt [sec] is
the smallest value of observed RTTs, and oo and 3 are some con-
stant values. Note that Eq. (2) used in TCP Vegas indicates that
if RTTs of the segments are stable, the window size remains un-
changed.

C. Network Model

Recalling that our main purpose of the current paper isto in-
vestigate the fairness aspect of packet scheduling algorithms, we
will use a simple network model as depicted in Figure 1.

There are the number N of connections between N sources
(SES;, SES, , ..., SESy) and one destination (DES). N con-
nections share the bottleneck output link of the router. The ca-
pacity of the input link between the sources and the router are
defined as bw, bws, . . ., bwy Kbps, and that of the output link
between the router and destination is BW Kbps. We assume
bw, < bwy < ... < bwy. By theabove model, we intend to
consider the uplink of the accessline of the ISP, whichis shared
by the subscribers with different capacities.

Inthefollowing numerical examplesthroughoutthe paper, the
propagation delay between SE'S; and DES, , isidentically set
to be 100 msec. The buffer size of the router is 60 Kbytes. A
TCP packet size is fixed at 2 Kbytes. Every sender is assumed
to be a greedy source, that is, it has infinite packets to transmit.
We a'so assume that in the case of DRR, the connection can be
identified by the router so that the packets from the connection
can be appropriately queued at the per—flow buffer at the router.

D. Definition of Fairness

We define the fair service by taking account of the input link
capacity. Itssimplest formisthat the throughputis given in pro-
portionto itsinput link capacity under the condition that the out-
put link capacity issmaller than total of theinput link capacities.
That is, we say that agood fairnessisachieved if the throughput
of connection i, p;, isgiven as

bwi

pi = BW -
Zj bw,

We note that other definitions of the fairness can be consid-
ered. A more natural definition may be the function of subscrip-
tion fees, which may be determined by (but not be proportional
to) the input link capacity in the ISP model. We will not treat
such a casefor simplicity of presentation, but it is not difficult to
incorporate it. For example, the weight factor is alowed to be
arbitrary in the DRR case. The RED case can also betreated in
this context by utilizing our analysis presented later.

IIl. THECASEOF TCPRENO

In this section, we consider TCP Reno to investigate the fair-
ness property of three packet scheduling algorithms. In addition
to the simulation results, we develop the analysis result for the
RED scheduling algorithm. The analysis results supports obser-
vations on the fairness property of the RED algorithm obtained
fromthe simulation results. We then investigate DRR to demon-
strate its effectiveness through simulation experiments.

Inwhat follows, we set four TCP connectionswhich have dif-
ferent capacities of 64, 128, 256 and 512 Kbps. The output link
capacity is varied from 400 Kbps to 960 Kbps to investigate the
effect of the output link capacity on fairness. In the simulation
results, we simulated 5,000 sec in each experiment to obtain the
result, which approximately correspondsto 300,000 packet gen-
eration.

A. FIFO Case

We first show the FIFO case in terms of the average through-
put during the simulation run (Figure 2(a)), the relative through-
put (Figure 2(b)), and packet loss rate (Figure 2(c)) for all con-
nections as a function of the output link capacity. Relative
throughput means the ratio of the average throughput against the
input link capacity. When all connections have identical rela-
tive throughput, it is said that the router perfectly providesfair
service among connectionsin our definition. In Figure 2(a), the
solidline labelled “total” showsthe total throughput of four con-
nections. From Figures2(a) and 2(b), itis clear that fairness can-
not be kept at all. In some region wherethe output link capacity
issmall, thethroughputof the connection with smaller input link
capacity islarger even than that of the connection with larger in-
put link capacity. It can be explained as follows. Inthe FIFO al-
gorithm, packet loss occurs independently of the packet arrival
rate as shown in Figure 2(c), and the packet |oss becomes bursty.
Since the connection with larger input link capacity experiences
a higher degree of burstiness of packet losses, its performance
degradation becomes larger.

B. RED Case
B.1 Simulation Results

We next investigate the RED case. Recalling that the buffer
sizeof therouter is setto be 60 Kbyte, we set th,,,;,, =10 Kbytes,
thmaes = 30 Kbytesand p = 0.02 in simulation. p shows the
packet dropping probability defined in RED, with whichincom-
ing packets are dropped when the avarage queue length is over
the threshold th,,,;,,. Figure 3 shows simulation results of the
RED algorithm in that case. By comparing the “total” line in
Figures 3(a) and 2(a), it can be observed that the RED algorithm
can attain higher total throughput than that of the FIFO algo-
rithm because RED can avoid bursty packet losses by dropping



500 ‘ ‘ ‘ ‘ ‘ ‘ 1g 10 ‘ ‘ ‘
450 | 64 Kbps e ] “ y 64 Kbps -
. 128 Kbps = - = N X < 128 Kbps =
@ 400 | 256 Kbps = - 3 081 7 S 87 256 Kbps -~
& 350 512 Kbps ---=-- o =) ek g 512 Kbps ---=---
= 300 | P 3 06" € 60 " 1
S 200 I o 04F . 64 Kbps —x—1 I 4t
© 150, .. /s 1 £ ’ ’ 128 Kgps """ - 3
< T O s s T N 256 Kbps e | G |
RS i AR Bl SV 512 Kbps = £ %y
5O # 7o emxe X q - Optimal ------- /
L L L L L L O L L L L L L O L L L L L L
400 500 600 700 800 900 400 500 600 700 800 900 400 500 600 700 800 900
Output Link Bandwidth [Kbps] Output Link Bandwidth [Kbps] Output Link Bandwidth [Kbps]
(a) Average throughput (b) Relative throughput (c) Packet lossrate
Fig. 2. FIFO case with TCP Reno
T T T T 1 T 7 1 T T T
228 L 54 Kbps o - O et ° 64 Kbps -
_ 128 Kbps = o 5 PO gy S 128 Kbps -
@ 400 256 Khps = g 08 [ e S 8r 256 Kbps =
S 350 512 Kbps = o~ 5 P o T e g 512 Kbps ---=---
= 300 | 3 06" oL T T 6Ky
3 250 f o — £ T " 2 -
S 200 e © 04 5 . 64 Kbps —<—1 3 4} *ea -
© 150 t 85 5 ’ _,- 128 KEPS """ * g Fheadgig
< e ° | o= 256 Kbps e | G L TR, ]
= 100 g2 5w : & 024 512 Kbps = 8 2 '\-k'\
50 groxeoemeremenee Optimal ------- .
L L L L L L O L L L L L L O L L L L L L
400 500 600 700 800 900 400 500 600 700 800 900 400 500 600 700 800 900
Output Link Bandwidth [Kbps] Output Link Bandwidth [Kbps] Output Link Bandwidth [Kbps]
(a) Average throughput (b) Relative throughput (c) Packet lossrate
Fig.3. RED casewith TCP Reno
arriving packets with probability p, which resultsin that TCP's Window Size
fast retransmit algorithm works effectively. However, if we fo- Wmax
cus on the fairness, it is clear that an improvement is very lim- cwnd ()
ited. It isespecially truewhe_n the output link capamty_lssmz_all; w,
the throughput of all connectionsbecomesamost identical (Fig-
ure 3(a)). Also, the packet loss rates of al connections are al- winaxi2 b /
most equal as shown in Figure 3(c). Of course, thisisone of key URTT,
features that the RED algorithm intends; the number of the lost
packets of each connection can be kept in proportionto its input Lcycle
link capacity by its mechanism. The problem isthat it leads to 5 —
i time

the unfairnesstreatment of connectionswith different capacities.

The above result is just one example. Also, it is question-
able whether simulation time of 300,000 packets generation is
adequate or not for examining the fairness degree. To examine
its generality, we next show the analysis of the RED algorithm.
Through analysis, it is proven that the unfairness observed in
simulation isinherent in the RED algorithm.

B.2 AnalysisResults and Discussions

We assume in the following analysis that there are NV connec-
tions in the network (Figure 1) with the input link capacities of
bwy, bwo, ..., bwy [packets/sec], where bw; < bws <, ..., <bwy.
We denotethe packet dropping probability of the RED algorithm
by p, and the propagation delay between sources and the desti-
nation by 7. We also assume that the average queuelength is al-
ways larger than th,,:., that is, al arriving packets are dropped
with probability p. For analysis, we focus on TCP' stypical cy-
cle of the window size as shown in Figure 4; the cycle begins
at the time when the previous packet |0ss occurs, and terminates
when the next packet |oss occurs. We consider that the cycle be-
ginsattimet = 0 [sec]. We do not take account of the slow start
phase[10] sincethe objective of the RED algorithmisessentially

Fig. 4. TCP'scyclicaly changeof thewindow size for connection ¢

to avoid falling into that phase.

Since all arriving packets are dropped at the router with prob-
ability p by our assumption, the connection can send 1/p pack-
ets in one cycle (between the events of packet losses). We de-
fine the number of packets transmitted during one cycleas N,,,
that is, N, = 1/p. During the cycle, the window size of con-
nection ¢, cwnd;(t) [packets], isincreased linearly sincewe only
consider the congestion avoidance phase[10]. Thewindow size
ishalved when packet | oss detected by fast retransmit, and there-
fore cwnd,;(t) isgiven as

Wma:v + 1
2 RTT,

cwnd;(t) = t, 1<i<N, 3

where RT'T; [sec] is an average round trip time of packets for
connections, and W,,,... [packets] isthe value of thewindow size
at the time when packet loss occurs. Then, the following equa-
tion for the total number of the packets in one cycle should be
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setisfied for connection ;
T;
/ cwnd;(t)dt = Ny, 1<i<N, 4
0

where T; is thetime duration of the cycle as shown in Figure 4.
From Eqgs.(3) and (4), we can obtain W/ ... [packets], the win-
dow size at the time when the next packet loss occurs, as

W =

max

Wnae” + 2N, )
From Eq.(5), we can obtain W, [packets], the average value
of W4 by equating W, . and W,,... Thatis,

ax

Woae =~ V/8/(3p) (6)

As aresult, we derive W, [packets], the average window size
during the cycle as;

Wa = (3/4) Wm(m (7)
See Figure 4. From the equation above, we can see that the
change of thewindow size does not depend on each connection’s
input link capacity, but on the packet dropping probability of the
RED algorithm.

For further analysis, we make an assumption that each con-
nection’s window size is fixed at the average value, W,. We
then derive p;, the throughput of connection i when W, pack-
ets of itswindow are served at the router. To simplify the anal-
ysis, we consider the situation where all connections' first pack-
ets of the windows arrive at the router simultaneously as shown
in Figure 5. Inthis figure, each square shows the burst of con-
nection i's W, segments, and its length represents the time du-
ration ZZJ [sec]. Since al connections have different capacities
bw; on their links, it takes different time duration W, /bw; for
all packets of connectioni to arrive at therouter asillustrated in
Figure5. That is, the segment burst of connection i is not served
at the same rate, and it depends on the number of the connec-
tions sending simultaneously their packets. We divide all con-
nections' packet burst into N ‘phases’ according to the number

of connectionswhich send the segmentssimultaneously. For ex-
ample, since the number of connections transmitting their seg-
ments is 4 in phase i, the router processes segments of ¢ con-
nections at rate BIW [segments/sec]. We denote the number of
packets of connection i belonging to phase j by W; ; [packets]
(1 < 4,57 < N). Since al segments in the phase are dealt at
therate in proportion to itsinput link bandwidth, we determine
W, n for phase N asfollows;

Wy = W,

bwi

Win = Wnyn- 1<i<N.

wa’

In the same manner, we can obtain all of W; ; by solving thefol-
lowing equations;

N
Wi = Wa= Y Wik 1<j<N-1,
k=j+1
bwi . . .
Wi,j = Wj,j' 1SJSN—1,1§Z§]—1

?
bwj

The rate at which the packets are served at the router in phase 7,
S; [packets/sec], must depend on the total capacity of the con-
nections of phase j. Since, in phase j, all packets belonging to
from connection 1 to connection j are served at the router, S; is
given as,

j
BW, it Y bwy, > BW,

Sj _ i k=1 (8)
> bw;, otherwise
k=1

Therefore, the throughput of connection ¢ during phase j, R; ;,
can be determined as follows;

Wi, i
Ri;j =W, jiﬂsj _ 2k=1"Vkj ©)
Zk:l Wk,j SJ
From Egs.(8) and (9), p; can be calculated asfollows;
N
Wi,
pPi = Z ( WJ RiJ) (10)

k=N+1—1

Although the RED &l gorithm can eliminate the bursty packet
losses |eading to TCP' sretransmission timeout expiration, time-
out expiration cannot be avoided perfectly [11]. Even if time-
out expiration rarely happens, the effect of timeout expiration on
throughputislarge. Therefore, we next consider the throughput
degradation caused by retransmission timeout expiration. We
denote the probability of occurringtimeout expirationinthewin-
dow by P;,. Wedetermine P,, accordingtothefollowingsimple
equation;

P, = (ll)

i (V[;a> pte (1 —p)Wett=

=2

We assume that RT'O; [sec], the timeout duration for retrans-
mission, becomestwice R1'T;, the Round Trip Timefor connec-
tion . RT'T; can be calculated by considering the effect of the
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other connections' traffic;

RTT; = 2r+Y W./BW+W./pi
ki

(12)

From theseresults, wefinally have p, the throughput of connec-
tion ¢, by considering the effect of TCP's retransmission time-
outs;

Wa/pi pi
Wa/pi + RTO,”"
_ pi-Wat (L=Ry)-p}- RTO, 13
W, + p; RTO;

(1_Pt0)'pi+Pto'

Eq. (13) isobtained asfollows. Thefirstterm (1 — P,,) - p; rep-
resents the throughput without retransmission timeout, and the

second term W/W¢ p; isthat with retransmission timeout.

a/pi+RTO;
By Eg. (13), we can TCP throughput of each connection under
RED algorithm, which takes account of the throughput degrada-
tion caused by TCP retransmission timeouts.

Figure 6 shows the throughput results from our analysis as a
function of the output link capacity. In the figure, points repre-
sent the simulation results (which correspondto Figure 3(a)), and
the lines show analysis results. We can observe from this fig-
ure that our analysis can give good agreements with simulation
results, and that the unfairness property of the RED algorithm
in the case of small output link capacity can be observed. This
unfairness can be explained from the analysisresult asfollows.
When the output link bandwidth becomessmall, therate at which
the packets are served at the router of phase j becomes BW in
almost al the phases. Itisclearly showninEq. (8). Thatis, pack-
ets arriving at the router are served at rate BIW, which resultsin
that the throughput of all connections become equivalent. Fur-
thermore, the connection whose input link bandwidth is larger
can suffer from throughput degradation caused by TCP retrans-
mission timeouts. This is aso the reason why the throughput of
the connection with the 512 [Kbyte/sec] input link bandwidthis
largely degraded, which can be explained by Eg. (13).

B.3 Enhancement to RED

We last consider the enhancement to the RED agorithm
(called enhanced RED) to avoid this unfairness by setting p de-
pendently on each connection’s input link capacity, according
to the analysis results. We set p;, which is the packet dropping
probability of connection, such that each connection’ sthrough-
put becomes proportional to its input link capacity. The appro-
priate valuesof p;’sare calculated for all connectionsasfollows.

1
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Fig. 7. The effect of enhanced RED

1. Initidize p;'s.
2. Cdculate p; from the current p; according to the analysisre-
sults. See Eq.(13).
3. If p; is proportional to the input link capacity, set p; to the
current value.
4. If not, compare p; with the ideal value, and adjust p; of the
connection having thelargest difference between p; and theideal
value. That is,

« If p; islarger than the ideal value, change p; to a p;.

o If p; issmaller than theideal value, change p; to b p;.
The values of control parameters a and b that we will use in the
following simulation are 1.1 and 0.9.
In the enhanced RED algorithm, we calculate p,;’sfor all connec-
tions according to the above algorithm. Figure 7 showsthe sim-
ulation results on the relative throughput of the enhanced RED
algorithm. Compared with Figure 3(b), it is clear that our en-
hanced version of the RED algorithm gives much better fairness
than the original RED algorithm. In simulation, however, we set
the control parameter values of ¢ and b intuitively. It isafuture
research topic to seek an appropriate method to determine those
parameters.

C. DRR Case

Asexplained in Subsection |1-A, the router buffer islogically
divided into several queuesin DRR and each connection is as-
signed its own queue. Wefirst consider the case where the large
buffer is equipped with the router so that every connection is
given a sufficient amount of buffer. In our model depicted Fig-
ure 8, four DRR queues are formed in the router, and DRR pa-
rameters are set such that each DRR queue is served in propor-
tion to the input link capacity of the assigned connection.

Figure 10(a) showsthe simulation results of relative through-
put. Different from the FIFO (Figure 2) and RED (Figure 3) al-
gorithms, the DRR algorithm providesvery good fairnessamong
connections even when the output link capacity is small. When
the output link is large, on the other hand, the degree of the
fairness is dightly degraded. It is because TCP's retransmis-
sion timeouts tends to frequently occur due to bursty packet |oss
at the queue since the FIFO discipline is used in each DRR
gueue. Then, the retransmission timeout degrades the perfor-
mance more seriously. Thusthe degree of performancedegrada-
tion depends on the bandwidth—delay product of the connection.
Furthermore, in the DRR algorithm, the capacity not used by a
certain queue due to connection’ sretransmission timeout can be
used by other connections. It increases the total throughput, but
it islikely to lead to the unfairness among connections. Thisis
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why fairness is degraded in the case of the large output link.

While the DRR algorithm assigns the DRR queues to each
connection, several connections should be assigned to one DRR
gueue as the number of connections grows. It is because the
number of DRR queues which can be prepared must be limited
by the router buffer size and processing overhead. However, the
performance of the DRR algorithm in such a case has not been
known. For investigating such aninsufficient buffer case, we as-
sume that there are two queues and four connections, and each
connection is assigned to the queue as shown in Figure 9. The
64 Kbps and 128 Kbps connections are assigned to one queue
(queuel in the figure) and the 256 Kbps and 512 Kbps connec-
tions to another queue (queue 2). Each queue is assumed to be
served in proportionto thetotal capacity of the assigned connec-
tions.

We show the simulation resultsin the insufficient buffer case
in Figure 10(b) for the relative throughput. The buffer sizes
of two queues are equivalently set to be 30 Kbytes. The lines
labeled ‘total-1' and ‘total-2' indicate total throughput of two
gueues, queue 1 and queue 2. Although each queue is served
in proportion to the total capacity of the assigned connections,
the two connections assigned to the same queue show unfair
throughput. This is because we assumed that the arriving pack-
ets are served according to a simple FIFO discipline within the
DRR queue. As described in Subsection I11-A, the FIFO algo-
rithm cannot keep fairness among connection at all.

In this subsection, we have observed that the DRR algorithm
gives much better fairness than FIFO and RED algorithms, but
its fairness property is sometimes lost as each connection has
different capacity or when multiple connectionsare assigned to
one DRR queue. Wehenceforth consider to improvethefairness
property of the DRR algorithm in the next subsection.

D. DRR+ Case

In the previous subsection, we have shown that the DRR al-
gorithm has some unfairnessproperty. The main reason was that
each DRR queue serves packets by the FIFO discipline. In this
subsection, we show some simulation results of DRR+, where
the RED algorithm is applied to each DRR queueto prevent un-
fairness. In simulation, we consider both sufficient/insufficient
buffer case. Note that, in the insufficient buffer case, we ap-
ply the enhanced RED algorithm to two DRR queues depicted
in Figure 9. That is, in each queue, we set the assigned connec-
tions packet dropping probabilities according to the enhanced
RED algorithmin Subsection 111-B.

Figure 11 showsthe simulation resultson therel ative through-
put. Our proposed method keeps good fairness in the sufficient
buffer case (Figure 11(a)). Furthermore, when Figure 11(b) is
compared with Figure 10(b), the fairness is significantly im-
proved even in the insufficient buffer case.

IV. TCPVEGASCASE

In this section, we changethe version of TCPto TCP Vegasto
investigate the fairness property of three packet scheduling algo-
rithms. TCP vegas conjectures the available bandwidth for the
connection, and therefore its principleis likely to be well fit to
the DRR algorithm. On the other hand, the RED algorithm does
not help improvethefairnesswhen TCP Vegasisemployed since
each connection’swindow size is not dominated by the packet
dropping probability of the RED algorithm, but by the essential
algorithm of TCP Vegas. The purpose of this section isto con-
firm the above observations.
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A. FIFO Case with larger input link bandwidth. Therefore, while the result de-

Figure 12 plots simulation results of the FIFO caseusing TCP
Vegas. Note that we omit the graph showing the number of
packet loss since no segment loss was observed at the FIFO
buffer. Compared with the TCP Reno case (Figure 2), it is
clear that TCP vegas provides|ess fairness than TCP Reno. Es-
pecially, the connection with has smaller input link bandwidth
achieve amost 100% throughput (Figure 12(b)). This unfair-
ness property iscaused by the essential characteristic of TCPVe-
gas. In TCP Vegas, no segment loss occurs at the router buffer
if the network is stable, because the window size of all connec-
tion convergesto certain values (Figure 12(c)). In Figure 12(c),
it isnoticeable that the converged window sizeisindependent on
each connection’ sinput link bandwidth because base_rtt of each
connectionis almost equal (See Subsection I1-B). In the current
simulation setting, the converged window size is enough large
for connections having smaller input link bandwidth to utilize
its bandwidth—delay-product,but it is too small for connections

pends on the network environment, TCP Vegas sometimes fails
to achievefairnessamong connectionsdue to theessential nature
of its congestion control mechanism.

B. The RED Case

We next show the simulation results of the RED case in Fig-
ure 12. Asin the case of TCP Reno (Subsection I11-B), the fair-
ness is dightly improved when compared with the FIFO case
(Figure 12(b)). However, there still be significant unfairness
among connections. This can be explained by the throughput
analysis presented in the below. In the following analysis, we
use the same notations as those introduced in Subsection 111-B.

At the moment, we consider the situation where no segment
lossoccursat therouter, and each connection’ swindowsize con-
vergesto a certain value. The packet dropping of the RED wiill
be considered |ater.

Let [; [segments] be the number of connection i’s segments
in the router buffer,and L = [; + --- + Iy. Assume that each



connection’ sthroughput p; [segments/sec] is proportional to the
avarage number of its segments in the router buffer. This as-
sumption is reasonable when the FIFO discipline is applied at
the router buffer. Then, the following equation with respect to
p; issatisfied;

pi = min (bw;, (I;/L)BW) (14)

Accordingto the algorithm of TCP Vegas (Eq. (2)), we obtain;

o Wi Wi < ﬁ

- . (15)
base_rtt;  base_rtt; ritt;  base_rtt;
basertt; = 27+ 1/BW (16)
Ttti 2T + li/pi (17)
WL‘ = 2Tp7; + l1 =ritt; - Pi (18)

where rtt; [sec] and W; [segments] are the RTT and the win-
dow size of the connection, respectively. base_rtt; [sec] corre-
spondsto base_rtt of connection 4, which is the minimum value
of RTTs of the connection. By substituting Egs. (16)—(18) into
Eqg. (15), we obtain the following equation;
Oz+pi/BW<li<6+pi/BW (19)

From Eq. (19), L (=11 +- - -+ ) can be calculated asfollows;

N N
NQ+ZBp—;V <h++in <Nﬁ+ZBpViV
=1 j=1

N N
NQ+Z;;V<L<N5+Z;;V (20)
j=1 Jj=1
Recalling that bw; < bwy < ... < bwy, Eq. (14) yields
pi_{ (Ii/L)BW M+1<i<N (21)

Then, from Egs. (19)—(21),weobtain p; for M +1 < i < N as
follows;

M
L
L-Y"u =1
J=1

Therefore, W;, which is the converged window size of connec-
tion 4, can be obtained by substituting Eg. (19) and Eqg. (22) to
Eqg. (18).

In the above derivation, however, we do not take account of
random segment | osses adopted in the RED algorithm. We next
consider the effect of throughput degradation caused by proba-
bilistic segment loss of the RED algorithm. Although each con-
nection’ swindow size is controlled to be converged to acertain
value in TCP Vegas, it is sometimes decreased by segment loss
by the RED algorithm. We assume that the segment loss can be
detected by the fast retransmit algorithm. Then, if the segment
loss occurs after the window size reaches W;, the window size
ishalved to W, /2. That is, if W;/2 < 27p;, the throughputis
degraded until the window size reaches 27p;. In Figure 14, we

define ‘one cycle' to be the time duration between two segment
losses caused by RED. One cycle is divided into three phases,
phase 1, phase 2, and phase 3 asin Figure 14. In phase 1, thewin-
dow sizeisincreasing according to the TCP Vegas's algorithm,
but the window sizeis less than 27p;. That is, the throughput
is degraded by the segment loss during phase 1. In phase 2, the
window size continuesto increase asin phase 1, but the window
size islarger than 27p,; and there is no throughput degradation.
In phase 3, the window size reaches the converged value, which
isobtained from Eq. (18). It remains unchanged until the packet
loss occurs at the end of this phase.

Let T; [sec] and A; [segments] bethe timeduration of phase1,
and the number of transmitted segmentsin phase i, respectively.
Furthermore, we introduce p, ; [segments/sec] as the avarage
throughput of connection ¢ during phase ;.

In phase 1 and phase 2, theratio of window size increasing is
1/rtt; [segments/sec] because the window size is increased ac-
cording to TCP Vegas's congestion avoi dance a gorithm formu-
lated by Eq. (2). Therefore, , ; is;

W. .
L+ 27 1
D. = 2 = 2 il
Pi1 ( D) )/( T+ Pi)

Because there is no throughput degradation in phase 2 and
phase 3, p, » and p, 5 areidentical to p;, i€,

(23)

Pi2 = Pig = Pi (24)

Sincetheincreased rate of window sizeis 1/rtt; [segments/sec],
T, and T5 can be calculated as follows;

Tl = <2Tp7 — %) . ’I“tti (25)
A, and A, can also be calculated as follows;
1 W; W;
A = 3 (27’pi + 7) (27'/)Z — 7) 27)
1

In phase 3, the window size is converged to TW;, and segment
loss occursat the router caused by the RED algorithm at the end
of thisphase. Since the avarage number of transmitted segments
during 1 cycleis(1/p), A3 and T5 can be obtained as;

Ay =
Ty =

I/p— A1 — Ay

(29)
(30)

Finally, we can obtain p;, the throughput of connection ¢ from
Egs. (23)—(26), (30) asfollows;

T1pig +Topi o + Tsp; 3
T+ 15 +1T3

pi = (31)

Figure 15 shows the result of the analysis as a function of
the output link capacity. Compare with Figure 6. Our analysis
again gives good agreementswith simulation results, and it con-
firmsthe unfairness property of TCP Vegas when applied to the
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RED algorithm. In TCP Reno (Subsection 111-B), we could im-
provethe fairness by setting p (the packet dropping probability)
dependently on each connection’sinput link capacity according
to the analysis results. In TCP Vegas, however, we cannot ap-
ply it because the converged window size is independent on p
as shownin Egs. (18). That is, we cannot control each connec-
tion's throughput by p. Therefore, if we want to removethe un-
fairness property in the RED algorithm with TCP Vegas, we may
have to give some modificationsto the algorithm of TCP Vegas
itself. Otherwise, we need to use the DRR algorithm as will be
presented in the next subsection.

C. The DRR Case

Figure 16 shows the case of DRR. It can be observed from the
figurethat fairnessamong connectionsisfairly good (Figure 16),
and better than TCP Reno case (Figure 10(a)). With TCP Reno,
some connections could not utilize all amount of bandwidth as-
signed by the DRR mechanism due to segment loss. With TCP
Vegas, on the other hand, no segment loss occurs at the router
buffer, and then each connection can completely utilizethe band-
width assigned by the DRR mechanism. However, asthe number
of connections becomes large, the scalability problem is intro-
duced as having been explained in Subsection I11-C. In Subsec-
tion I11-D, we have succeeded to avoid the unfairness by apply-
ing the RED mechanism to each DRR queue. Inthe current case,
however, we cannot apply it because of the essential incompati-
bility of TCP Vegas to the RED algorithm as explained in Sub-
section 1V-B. We need further investigation on this problem.

V. CONCLUDING REMARKS

In this paper, we have evaluated the performance of therouter
packet scheduling algorithmsfor fair service among connections
through the simulation and analysis. We have obtained the fol-
lowing results on TCP Reno version; the FIFO agorithm can-
not keep fairness among connectionsat al. The RED agorithm
can improvefairnessto some degree, but it failsto keep fairness
in the different capacity case. The DRR agorithm offers bet-
ter fairness than the FIFO algorithm and the RED algorithm, but
its fairness property is lost when each connection has different
capacity and/or when multiple connections are assigned to one
DRR queue. Accordingly, we have proposed the DRR+ ago-
rithm, where the RED algorithmis applied to each DRR queueto
prevent unfairness, and show that it can improvefairness among
connectionsin the different capacity case. We have also investi-

Fig. 15. Accuraciesof analysisresultin

Fig. 16. DRR casewith TCP Vegas

gated the effect of TCP Vegas, which is expected to get higher
throughput than TCP Reno, and have made clear through the
simulation and analysis results that TCP Vegas cannot help im-
proving the fairnessamong connectionsin FIFO and RED cases.
TCP Vegas hasagood featureto attain the better performance
than TCP Reno, as discussed in Section IV. However, it fails to
keep the good fairness among connections with different input
(and output) line capacities. For TCP Vegas to be introduced in
the future Internet where the RED algorithm iswidely deployed,
the algorithm of TCP Vegas should be modified to improve the
fairness among connections, which is afuture research topic.
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