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Preface

In the Internet, TCP (Transmission Control Protocol) has been widely used as its transport-
layer protocol. Many Internet services such as HTTP (Hyper Text Transfer Protocol)
for World Wide Web and FTP (File Transfer Protocol) are designed on the basis of TCP.
A number of researchers have been extensively working on TCP’s congestion control
mechanisms which is an essential part to realize the effective network utilization. It
has been known that the current TCP does not scale to high-speed networks directly, so
that researches on TCP mechanism for high-speed networks is now one of hot topics.
However, one problem of those researches is that neither stability nor fairness of TCP
is fully considered; that is, most studies on TCP mechanism focus only on its effective
throughput. Therefore, it is strongly needed to investigate TCP’s essential character-
istics in terms of fairness and stability as well as throughput. It is also an important
issue how TCP can be applied to very high-speed networks, and how TCP can adapt
to new Internet services, such as ADSL (Asymmetric Digital Subscriber Line) and cable
modem networks.

In this thesis, we first analyze the behavior of the TCP mechanism for better under-
standing of its dynamical behavior. The primary objective of this part is to investigate
stability and fairness of various versions of TCP mechanisms: TCP Tahoe, TCP Reno
and TCP Vegas. We analyze behavior of two TCP connections sharing a same bottle-
neck link, and evaluate system stability and fairness between these connections. Ana-
lytic results show that TCP Tahoe/Reno can achieve good fairness among connections,
but they cannot to keep stability of their window sizes because of the essential nature
of their algorithms. TCP Vegas, on the other hand, can achieve good stability, but its
fairness is sometimes degraded. We propose a simple modification on the congestion
avoidance mechanism of TCP Vegas for achieving better fairness and stability, and val-
idate its effectiveness through simulation experiments. The simulation results indicate
that our proposed mechanism achieves better stability than TCP Tahoe and Reno, and
also achieves better fairness than TCP Vegas.

We next focus on a problem in the packet retransmission mechanism of TCP. The
problem occurs when a fixed amount of bandwidth is assigned to a TCP connection, or
when an RTT (Round Trip Times) of a TCP connection changes frequently. In this case,
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TCP frequently performs unnecessary packet retransmission (we call mis-retransmission

in this thesis), which causes serious performance degradation. We analytically show
when and why packet mis-retransmission occurs. Based on our analytic result, we pro-
pose a mechanism to detect mis-retransmission by observing an RTT for a retransmitted
packet. Although our proposed mechanism cannot prevent mis-retransmission, per-
formance degradation can be avoided by restoring the window size throttled by mis-
retransmission. Effectiveness of our proposed mechanism is validated by simulation
experiment and by implementation in real networks.

Based on the above discussion, we investigate on applicabilities of the TCP mech-
anism to various high-speed networks. First, an ATM (Asynchronous Transfer Mode)
network is considered as a lower-layer protocol, and interference between two conges-
tion control mechanisms of TCP and ATM is investigated. Through several simulation
experiments, we show that UBR (Unspecified Bit Rate) service class is ill-matched to
TCP because many cell losses at the ATM layer are inevitable so that the total perfor-
mance is significantly degraded. We also show that ABR (Available Bit Rate) service
class is well-suited to TCP and it can achieve high performance in terms of through-
put and fairness among connections. However, it should be noted that such high per-
formance cannot be achieved without appropriate tuning of ABR’s control parameters.
Second, an asymmetric network is considered, where bandwidths of the upstream link
and the downstream link are different. Such network configurations can be found in
ADSL networks and CATV networks. The problem is that if the network is asymme-
try, i.e., if the difference in bandwidths of the upstream and downstream links is large,
TCP acknowledgement packets are lost at the upstream link. That causes TCP sender to
send some TCP packets in a burst, which results in packet losses at downstream links.
We analyze the performance of TCP mechanisms in an asymmetric network, and show
that as network asymmetry becomes large, performance degradation becomes large.
To prevent performance degradation, we introduce the appropriate setting of network
configuration parameters such as router buffer sizes of both of upstream and down-
stream links.

In the above researches, we have focused on the TCP mechanisms itself. We finally
investigate the effect of packet scheduling algorithms at the router buffer on fairness

among TCP connections. In more detail, we focus on the degree of fairness provided
to TCP connections. For comparison, three packet scheduling algorithms at the router
are considered: FIFO (First In First Out, or Drop-Tail), RED (Random Early Detection),
and DRR (Deficit Round Robin). FIFO is a traditional discipline which is deployed in
most current Internet routers. RED implements probabilistic packet dropping at the
FIFO buffer for better fairness and throughput. DRR is one of the derivations of WRR
(Weighted Round Robin) algorithms, which employs a per-flow queueing for every con-
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nection. Our concern is on proportional fairness among connections, where each con-
nection should receive proportional throughput to the bandwidth of its input link at the
router. We first show simulation results that FIFO cannot provide fairness among con-
nections because of bursty nature of packet losses. It is next shown that RED offers bet-
ter fairness than FIFO to TCP Reno connections, but it cannot keep a good fairness when
the output link capacity becomes small compared to the total input link capacity. DRR
can provide almost perfect fairness among connections, unless multiple TCP connec-
tions are assigned to a same Round Robin queue. We also propose DRR+ mechanisms,
where RED is used at each DRR queue, and show that our DRR+ can provide better
fairness than DRR through the simulation results.

TCP was first introduced in early 1970s, and has been gradually improved for tra-
ditional low-speed networks. Through all of our researches, we have found that the
main problem of the current TCP is that congestion control mechanisms of TCP Tahoe
and TCP Reno have not been designed to support either very high-speed networks or
new-emerging Internet services. TCP Vegas is a possible solution for the future Inter-
net, but some modifications proposed in this thesis are necessary for better performance
in terms of throughput, fairness and stability. Another conclusion of this thesis is that
a packet scheduling algorithm at the router’s buffer must be enhanced for supporting
various fairness definition such as proportional fairness. The Internet is going to change
continuously now and in the future. Protocol migration is a key issue for the Internet
development. Throughout this thesis, our proposals for performance improvement of
TCP do not pose an introduction of a new protocol, but minor modification to the ex-
isting TCP. We believe that TCP can be seamlessly migrated to the future Internet by
applying our research results.
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Chapter 1

Introduction

1.1 Backgrounds

TCP (Transmission Control Protocol) [1] is widely used in the current Internet, and many
of popular Internet services, including HTTP (and World Wide Web) and FTP (File Trans-
fer Protocol), use it as the de-facto standard transport-layer protocol. Thus, even if the
network infrastructure may change in the future, TCP and its applications would be
likely to be continuously used. Off course, TCP is very traditional protocol which was
first designed in early 1970s, and many efforts of researchers, developments and stan-
dardization have been extensively devoted to the TCP/IP technology. The authors in
[2] pointed out the importance of the congestion control in the Internet, and proposed
some algorithms of TCP to avoid and control congestion in the network. The paper has
brought many researchers to become aware of importance of TCP’s congestion control,
and an extensive literature has accumulated on it [3-7]. For example, Paxson [7] investi-
gated end-to-end Internet dynamics including the behavior of TCP’s congestion control
mechanisms, and characterized it. As the result of these efforts, many RFC (Request For
Comments) documents regarding TCP are announced to enhance its performance [8-
10].

On the other hand, explosive increase of the Internet population has made the Inter-
net larger and larger, and the network infrastructure which constructs the Internet has
been rapidly improved in all its aspects. In the access network from each Internet user
to ISP (Internet Service Provider), the new technologies, such as ISDN (Integrated Ser-
vices Digital Network), ADSL (Asymmetric Digital Subscriber Line) or CATV Internet
service, have emerged, replacing the traditional analog modem access using telephone
line. These technologies can provide larger bandwidth (128 Kbps ∼ 1Mbps or more),
or may sometimes provide asymmetric bandwidth to each user, which is very differ-
ent from a traditional analog modem network. When considering a backbone network,
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ATM (Asynchronous Transfer Mode) [11, 12] technology has been already introduced,
and other new networking technologies are also emerging including photonic networks
such as WDM (Wavelength Division Multiplexing) networks, to introduce much larger
bandwidth (Gbps ∼ Tbps). Therefore, existing research results about TCP may not be
directly applied to future high-speed Internet which is developed by such network-
ing technologies [5, 13]. Although some modifications of TCP have been already pro-
posed (for examples, [10, 14-16]), but most of them have focused only on TCP’s overall
throughput and have not paid so much attention to the other performance measures,
such as stability, fairness among connections, and so on.

Emergence of those new networking technologies makes it enable to realize new In-
ternet services. The conventional Internet has only been providing the best effort ser-

vice, and it could not offer throughput and/or delay guarantees. It also lacks of fair-
ness guarantees; TCP connections sometimes receive unfair service in terms of, e.g.,
throughput. For supporting commercial network services in the Internet, however, we
now need more advanced services, different from best effort service. That is, a new ser-
vice should be available within the network to support the differentiated services among
the users [17]. Following the diff-serv model, several kinds of network service have re-
cently been proposed; for example, a constant throughput may be preferred to some
connections, or QoS (Quality of Service) support is necessary for real-time applications.
For example, in [18], the authors have proposed an Explicit Capacity framework for al-
locating the network capacity to users in a controlled way even in congestion periods.
In that approach, the network defines service profiles in advance, and incoming pack-
ets are tagged when entering the network. The tagged packets are dropped first when
congestion occurs in the network.

Another important service that the next-generation Internet should support is fair

allocation of the bandwidth. It is one of most desired features for elastic applications, but
not supported in the current Internet, and we believe that fairness may be as impor-
tant as network efficiency. One service found in the literature is the USD (User Share
Differentiation) scheme [19], where users are provided different service qualities from
ISPs based on the contracts. However, the authors in [19] do not provide a quantitative
evaluation of USD to show how the users are differentiated.

One convincing way to realize such service differentiation is to be per-flow queue-
ing at the router in the network, and some algorithms have been proposed in the litera-
ture such as CBQ (Class Based Queueing)[20], WRR (Weighted Round Robin) [21], and
DRR (Deficit Round Robin) [22] that is one of the derivations of WRR. However, the ef-
fectiveness of these algorithms have been confirmed under Poisson arrivals of packets
from each connection, and the behavior of the upper-layer protocol, i.e., TCP, has not
been considered to evaluate their performance. On the other hand, some new transport-
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layer protocols have been developed for a new underlying network. Examples are XTP
(Xpress Transport Protocol) [23] and the one in [24] for ATM networks. However, TCP
has been already widely used in the current Internet, and many of the current Inter-
net services rely on TCP. Therefore, it is unrealistic proposal to replace TCP, with a new
transport-layer protocol immediately. Therefore, for gradual migration of TCP to the
next-generation Internet, we believe that it is necessary to modify TCP’s congestion
control mechanisms to support various types of services in the high-speed Internet.

1.2 Congestion Control Mechanisms of TCP

Most of the current TCP implementations are based on TCP Tahoe and TCP Reno, which
was first implemented in BSD UNIX [25]. However, there have been several versions
of TCP in the literature [4, 16, 26, 27]. For instance, TCP Vegas version [28, 29] has been
proposed in 1995, which improves several drawbacks of TCP Reno. TCP Vegas can
achieve much higher throughput than TCP Tahoe/Renomainly because of its improved
congestion avoidance mechanism, which is why we focus on three versions of TCP Tahoe,
Reno and Vegas in this thesis. In what follows, we briefly explain operational algo-
rithms of TCP Tahoe, Reno, and Vegas. Refer to [29, 30] for detailed explanation.

The congestion avoidance mechanism of TCP adopts a window-based flow control,
which controls the number of on-the-fly packets in the network. The source terminal is
allowed to send the number of packets given by its window size. The current window
size of the source terminal is often denoted by cwnd. The window size is updated at the
receipt of ACK (ACKnowledgement) packet. The key idea of the congestion avoidance
mechanism of TCP is to dynamically control the window size according to severity of
the congestion in the network.

The notable difference in various versions of TCP is in their algorithms to change
the window size. Hence, we first explain how the window size of the source terminal is
changed. For easier understanding, typical evolutions of window sizes in TCP Tahoe,
Reno, and Vegas are shown in Figure 1.1. These figures clearly illustrate the notable
difference in TCP Tahoe, Reno, and Vegas. In what follows, we denote the window size
at time t [sec] by cwnd(t) [packets].

1.2.1 TCP Tahoe

In TCP Tahoe, the window size cwnd is cyclically changed as indicated in Figure 1.1(a).
The window size continues to be increased until packet loss occurs. When it occurs,
TCP knows that the network is congested, and throttles its window size to the size to
1 [packet]. TCP Tahoe has two phases of operation mode: Slow Start phase and Con-
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Figure 1.1: Evolutions of Window Sizes in TCP Tahoe, Reno, and Vegas

gestion Avoidance phase. When an ACK packet is received by TCP at the sender side
at time t + tA [sec], cwnd(t + tA) is changed from cwnd(t) as follows (see, e.g., [30]);

cwnd(t + tA) =




Slow Start phase :

cwnd(t) + 1, if cwnd(t) < ssth

Congestion Avoidance phase :

cwnd(t) +
1

cwnd(t)
, if cwnd(t) ≥ ssth

(1.1)

where ssth [packets] is a threshold value at which TCP changes its phase from Slow
Start phase to Congestion Avoidance phase. TCP detects packet loss in two ways; time-
out and duplicate ACKs [30]. Sender TCP sets RTO (Retransmission TimeOut) timer at
every packet sent and if RTO timer expires before the corresponding ACK packets is re-
ceived, the sender determines the packet is lost in the network. The length of the RTO
timer is calculated from RTTs (Round Trip Times) of sending packets.

Since the RTO timer is usually set to a much larger value than the RTT, it takes long
time for the sender TCP to detect packet losses. Therefore, an another mechanism called
as fast retransmit is provided at TCP Tahoe. The source terminal detects packet losses in
the network by receiving duplicate ACKs; that is, if the source terminal receives three
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ACKs with the same sequence number, it probably indicates packet losses. In this case,
the source terminal is allowed to retransmit the (possibly) lost packet before the RTO
timer expires.

When packet loss is detected by timeout or duplicate ACKs, cwnd(t) and ssth are
updated as follows;

ssth =
cwnd(t)

2
(1.2)

cwnd(t) = 1

That is, TCP Tahoe enters Slow Start phase when packet loss occurs. Thus, TCP Tahoe
indefinitely switches its operation mode between Slow Start phase and Congestion Avoid-
ance phase.

1.2.2 TCP Reno

The operation algorithm of TCP Reno is equivalent to TCP Tahoe except that a packet
is retransmitted differently when a packet loss is detected by duplicate ACKs. Namely,
TCP Reno changes its window size according to Equation (1.1) in its Slow Start and
Congestion Avoidance phases. However, when a packet loss is detected by receiving
duplicate ACKs, TCP Reno halves its window size as following Equations;

ssth =
cwnd(t)

2
(1.3)

cwnd(t) = ssth

TCP Reno then enters an another operation mode called as “Fast Recovery phase” [30].
In this phase, change in the window size is determined by whether duplicate ACKs are
received or not. Namely, when duplicate ACKs are received, the window size is in-
creased by one packet. Otherwise, a non-duplicate ACK corresponding to the retrans-
mitted packet is received, the window size is changed to ssth. Figure 1.1(b) shows a
typical operation of TCP Reno.

1.2.3 TCP Vegas

In TCP Tahoe and Reno, the window size is increased until packet loss occurs due to
congestion. Then, the window size is throttled, which leads to the throughput degra-
dation of the connection. However, it cannot be avoided because of an essential nature
of the congestion control mechanism adopted in TCP Tahoe and Reno. It can detect net-
work congestion information only by packet loss. However, it becomes a problem since
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the packet may be lost when the TCP connection itself causes the congestion because
of its too large window size. If the window size is controlled appropriately such that a
packet loss never occurs in the network, the throughput degradation due to throttled
window could be avoided. This is the key idea of the congestion avoidance mechanism
of TCP Vegas.

TCP Vegas employs an another approach for gauging how the network is congested.
TCP Vegas controls its window size based on measurement of the actual RTTs of packets
sent before. If observed RTTs become large, TCP Vegas recognizes that the network be-
gins to be congested, and throttles its window size. If RTTs become small, on the other
hand, TCP Vegas determines that the network is relieved from the congestion, and in-
creases its window size. Then, the window size in an ideal situation becomes converged
to a certain value as shown in Figure 1.1(c), and the throughput is not degraded. In Con-
gestion Avoidance phase, the window size is updated as;

cwnd(t + tA) =




cwnd(t) + 1, if diff < α
base rtt

cwnd(t), if α
base rtt

< diff < β
base rtt

cwnd(t)− 1, if β
base rtt

< diff

(1.4)

diff =
cwnd

base rtt
− cwnd

rtt

where rtt [sec] is the observed round trip time, base rtt [sec] is the smallest value of
observed RTTs, and α and β are some constant values.

TCP Vegas has an another feature in its congestion control algorithm. That is slow
Slow Start mechanism. The rate of increasing its window size in slow start phase is a
half of that in TCP Tahoe and TCP Reno. Namely, the window size is incremented at
every other time ACK packet is received.

Note that Equation (1.4) used in TCP Vegas indicates that if observed RTTs of the
packets are identical, the window size remains unchanged. That can be seen by Fig-
ure 1.1(c), where the window size is converged to a fixed value in steady state.

1.3 Outline of Thesis

As discussed in Section 1.1, it is necessary to consider how we can modify the conges-
tion control mechanisms of TCP to adjust to the new Internet services on the future
high-speed network. In addition, it is also important to investigate the performance of
TCP’s congestion control mechanisms in more detail. In this thesis, therefore, we focus
on the following two objectives;

• Investigation of TCP behavior through mathematical analysis
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• Study of TCP’s applicability to the future high-speed Internet

In the rest of this Section, we summarize the objectives of this thesis and refer to other
related works in the literature.

1.3.1 Investigation of TCP Behavior through Mathematical Analysis

Fairness and Stability of the Congestion Control Algorithm of TCP [31-35]

As described above, inapplicability of the traditional transport-layer protocols such as
TCP to the future high-speed network have been repeatedly claimed in the literature.
Therefore, many researchers have been studying about TCP for high speed data trans-
fer. Some of them have focused on packet buffering algorithm at the internal router,
and some new algorithms have been proposed to achieve higher throughput and bet-
ter fairness among connection at the router buffer [36, 37]. The other approach is to
modify the congestion control algorithm of TCP to be appropriately applied to high-
speed networks [6, 26, 38, 39]. However, most of past studies have concentrated on the
throughput of TCP in spite of the fact that stability and fairness are other important is-
sues, and those sometimes become more essential than effectiveness [40].

Therefore, in Chapter2, we focus on fairness and stability of three versions of TCP
through mathematical analysis. Here, by “fairness”, we mean that by dynamically ad-
justing window size of TCP, throughputs of connections sharing the bottleneck band-
width is close. To make clear the essential nature of the congestion control mechanisms
of each version of TCP, we use a rather simple model where two connections share the
bottleneck bandwidth, and present some findings through the analytic approach. We
consider two cases of network configuration: the homogeneous case, where two TCP
connections have identical propagation delays, and the heterogeneous case where two
connections have different propagation delays in order to make clear the effect of the
difference of RTT (Round Trip Time) on fairness among connections. In addition to TCP
Tahoe and Reno versions, We also evaluate the performance of TCP Vegas version [28,
29], since there is few researches which focuses on fairness aspects of TCP Vegas. In
the analysis, we use the similar method to that appeared in [41] to evaluate fairness,
and focus on the changes of the two connections’ window sizes. Finally, we propose
the enhance mechanisms of TCP Vegas’ congestion control algorithm and evaluate its
effectiveness in both homogeneous and heterogeneous cases.
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Improvement of the Congestion Control Mechanism of TCP

to Avoid Mis-retransmission [42-44]

In Chapter 3, we investigate the TCP behavior in the network where fixed amount of
bandwidth is assigned to each connection. As discussed in Section 1.1, new networking
technology makes it possible for each connection to be provided constant bandwidth to
accommodate new Internet services. One of these services is ER (Explicit Rate) mode
within ATM ABR (Available Bit Rate) service class. In the ER mode, the intermediate
switch explicitly specifies the cell emission rate of the source end systems dependent
on the number of active connections [45, 46], and each connection is guaranteed a fixed
amount of the bandwidth when the number of active connections remains fixed. Al-
though ABR service class is thought to be used by data transfer using TCP, TCP is essen-
tially designed for sharing the network bandwidth among multiple connections with-
out bandwidth assignment. It assumes that the packet transfer delay fluctuates as a
function of time as in Ethernet, and most of literature regarding TCP assumes such net-
works.

We point out, in Chapter 3, that in such networks TCP may unnecessarily retrans-
mit some packets which are not lost in the network, because RTT becomes fixed to a
certain value. We call this wrong retransmission mis-retransmit. We also make clear
that mis-retransmission may occur even in the current Internet where no bandwidth
guarantee takes place, and that degrades TCP performance significantly. We evaluate
this performance degradation analytically, and propose an enhancement technique to
the congestion control mechanism of TCP to avoid performance degradation caused by
mis-retransmissions.

1.3.2 Study of TCP’s Applicability to the Future High-Speed Internet

Performance Evaluation and Parameter Tuning of TCP over ATM Networks [47-52]

The ATM (Asynchronous Transfer Mode) networks has been thought to provide large
bandwidth by preparing effective traffic management mechanisms [53]. ATM has four
service classes: CBR (Constant Bit Rate; or Deterministic Bit Rate in ITU-T terminol-
ogy), VBR (Variable Bit Rate; or Statistical Bit Rate), UBR (Unspecified Bit Rate), and
ABR (Available Bit Rate) service classes [54, 55], dependent on traffic characteristics and
QoS (Quality of Service) demands. To meet the QoS requirements, essential for stable
and efficient operation of ATM networks is congestion control. When we apply data
communications to the ATM layer, two service classes are considered to be available:
UBR and ABR service classes. The rate-based congestion control adopted in the ABR
service classes is suitable to data communications, especially for the existing LAN traf-
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fic [55-58]. The service offered by the ABR service class is sometimes referred to as “best-
effort” since it cannot provide QoS in terms of, e.g., cell transfer delay. However, an ap-
propriate control parameter setting of the rate-based congestion control can assure the
cell loss ratio to be almost zero [57], which is very different from the UBR service class
in which no congestion control mechanism is provided.

There have been much literature about UBR/ABR services for data transmission
(see, e.g., [59-62] and references therein), but their main concern was ATM layer per-
formance. As a next step, of course, we need to study the upper layer protocols to be
applied to the ABR service class. Such a study is especially important when the existing
TCP/IP network is migrated to ATM networks. In Chapter 4, we investigate perfor-
mance of TCP over ABR/UBR networks for data transmission, and show some results
that explain the effectiveness of ABR service class for TCP traffic, and inapplicability of
UBR service class.

Performance Evaluation of HTTP/TCP on Asymmetric Networks[63-67]

Different from the traditional analog modem networks, some of new network technolo-
gies regarding access networks, which connectseach users to ISP, may provide asymmet-
ric bandwidth for upstream (from the client to the server) and downstream (from the
server to the client). For example, ADSL (Asymmetric Digital Subscriber Line) [68, 69]
uses existing telephone lines, and offer 1∼20 Mbps for upstream, and 0.1∼1 Mbps for
downstream. Cable modem service can provide 5∼50 Mbps for upstream, and 0.5∼5 Mbps
for downstream. Those technologies are considered to be suitable for the Internet ac-
cess, because the user’s access to the Internet is essentially asymmetric. The user usu-
ally retrieves the information from the Internet through WWW (World Wide Web) ser-
vice or file transfer service. The problem is that TCP has not been designed for asym-
metric networks, and the performance of HTTP/FTP over TCP protocols on such net-
works has not been investigated enough except [14]. In [14], the authors pointed out
that the performance of TCP on asymmetric networks is degraded due to the traffic
burstiness of the sender. However, in [14], the authors only focus on the mean through-
put of TCP Tahoe and Reno.

In Chapter 5, we extensively investigate the performance of HTTP/TCP on asym-
metric networks with analytical and simulation approach. Our analytical approach is
similar to the one adopted in [14], but in addition to traditional HTTP/1.0 and TCP
Tahoe, we consider new HTTP/TCP protocols; HTTP/1.1 [70] and TCP Vegas. Through
the analysis, we discuss which combination of HTTP and TCP protocols is appropriate
in asymmetric networks. We also point out that the original TCP Vegas is not suitable
for the asymmetric networks because its essential congestion control mechanisms make
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it not to fully utilize the downstream bandwidth. We thus propose to modify TCP Vegas
with minimum change to resolve the problem specific to the asymmetric network.

Comparisons of Packet Scheduling Algorithm for Fair Service among Connections[71-

75]

As described before, it is necessary to provide commercial network services by the In-
ternet, which only provides the best effort service currently. That is, a new service should
be available within the network to support the differentiated services among the users [17,
18], where a constant throughput may be preferred to some connections, or QoS sup-
port is necessary for real-time applications. Another important service that the next-
generation Internet should support is fair allocation of the bandwidth, which is our main
subject of Chapter 6. It is one of most desired features for elastic applications, but not
supported by the current Internet, and we believe that network fairness is as important
as network efficiency. One of these services found in the literature is the USD (User
Share Differentiation) scheme described in [19], where users are provided different ser-
vice qualities from ISPs (Internet Service Providers) based on the contracts. However,
the authors in [19] do not provide a quantitative evaluation of USD to show how the
users are differentiated.

One way to realize such service differentiation seems to be DRR (Deficit Round Robin)
presented in [22] where the WRR (Weighted Round Robin) scheduling is performed
among active connections. In [22], an extensive evaluation of the DRR algorithm is pro-
vided, but they assume Poisson arrivals of packets from each connection. That is, the
authors do not consider the behavior of the upper-layer protocol, i.e., TCP.

In Chapter 6, therefore, we focus on the degree of fairness provided to TCP connec-
tions by comparing three packet scheduling algorithms at the router, those are FIFO
(First In First Out), RED (Random Early Detection), and DRR. For TCP, we consider
the Reno version, which has widely been used in the current Internet, and TCP Vegas
version, adopting a different congestion control mechanism from TCP Reno for larger
performance gain. Although the packet scheduling algorithms and TCP versions that
we use in Chapter 6 are not new. The main objective is that the fairness properties of
three packet scheduling algorithms are also shown through analytical results.
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Chapter 2

Fairness and Stability of Congestion
Control Mechanisms of TCP

Although many researchers have studied about TCP for high speed data transfer, most
of past studies have concentrated on the effectiveness of TCP in spite of the fact that
stability and fairness are other important issues, and those sometimes become more
essential than effectiveness. In this chapter, we focus on stability and fairness of sev-
eral versions of TCP; TCP Tahoe, Reno and Vegas through a mathematical analysis.
We consider two cases of network model: homogeneous case where two TCP connec-
tions have identical propagation delays, and heterogeneous case where two connec-
tions have different propagation delays. Through the mathematical analysis and sim-
ulation, we point out the instability of TCP Tahoe and TCP Reno, and the unfairness of
TCP Vegas. Based on the analysis results, we finally propose the improvements of TCP
Vegas for fairness enhancement,and evaluate its effectiveness both in the homogeneous
and heterogeneous cases.

2.1 Network Model

The network model that we will use in the analysis and simulation in this chapter is de-
picted in Figure 2.1. The model consists of two sources (SES1, SES2), two destinations
(DES, DES2), two intermediate switches (or routers) (SW1, SW2), and links intercon-
necting between the end stations and switches. We consider two connections; Connec-
tion 1 from SES1 to DES1, and Connection 2 from SES2 to DES2. Both connections are
established via SW1 and SW2, and the link between SW1 and SW2 is shared between
two connections. The bandwidth of the shared link is µ [packet/sec]. The buffer size of
SW1 is B [packets]. The propagation delays between SESi and DESi are τi (i = 1, 2).

In analysis and simulation, we consider the situation that Connection 1 starts to trans-
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Figure 2.1: Network Model

fer data packets at first, and Connection 2 joins the network afterward. Each SES trans-
mits data packets according to the TCP protocol. It is assumed that each SES is a greedy
source, that is, each SES has infinite data to transmit. TCP packet size is fixed at m [bytes].
Then, we will focus on the dynamics of congestion window size as a function of time,
which is defined as cwndi(t). Stability and fairness between connections are investi-
gated by comparing cwnd1(t) and cwnd2(t).

2.2 Analysis and Evaluation

In this Section, we analytically investigate the congestion control mechanisms of TCP in
terms of stability and fairness between two connections. We mainly focus on changes
of cwnd1(t) and cwnd2(t), the time-dependent behavior of the window sizes of connec-
tions.

2.2.1 Analysis Method

To investigate fairness between two connections,we employ the cwnd1-cwnd2 graph de-
picted in Figure 2.2 [41]. In this graph, x-axis and y-axis represent the window sizes of
Connections 1 and 2, respectively. The point (cwnd1(t), cwnd2(t)) represents the status
observed at time t. The line labeled with “Fairness Line” corresponds to the case of
cwnd1 = cwnd2, i.e., the window sizes of both connections are equivalent if the point is
on the line. By the “Efficiency Line”, it is shown whether the link is fully utilized or not.
All packets from both connections are served at the bottleneck link with the bandwidth
of µ. Thus, if the link is fully utilized at time t, µ equals the sum of the rates at which
the packets of both connections are served. By approximately representing the arrival
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rate of packets by cwnd1(t)/τ1 and cwnd2(t)/τ2, we have a relation

µ =
cwnd1(t)

τ1

+
cwnd2(t)

τ2

(2.1)

We further introduce We as

We = cwnd1(t) + cwnd2(t) (2.2)

such that the values of cwnd1(t) and cwnd2(t) satisfy Equation(2.1). Then, the Efficiency
Line corresponds to We, which means that if the point is located lower than the “Effi-
ciency Line,” the link bandwidth is not fully utilized. In the homogeneous case (τ1 = τ2

= τ ), Equation (2.2) after substituting Equation (2.1) becomes

We = 2 τ µ

The Packet Loss line in the figure represents cwnd1 + cwnd2 = Wl [packets], where Wl is
the sum of We and the buffer size of the intermediate bottleneck switch;

Wl = We + B

Thus, packet loss occurs if the point is beyond the “Packet Loss Line”. If the points are
located between “Efficiency Line” and “Packet Loss Line”, it can be said that TCP offers
an ideal control mechanism in the sense that the network bandwidth is fully utilized
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and no packet loss occurs. When the fairness is also important, the points should be
kept around the “Fairness Line”.

Before presenting the analytic results, we illustrate simulation results in Figure 2.3
to give some feeling on the behavior of TCP. We will use it as an illustrative example for
deriving analytic results. Note that discussions on the results will also presented in the
following Subsections. In the figure, the changes of the window sizes of two connec-
tions as a function of time are shown for the homogeneous case where two connections
have same propagation delays. In simulation, Connection 2 joins the network at time t =
1000 [msec]. We set µ = 20 [Mbps], τ1 = τ2 = 5 [msec], B = 10 [packets] and m = 1 [Kbytes]
for parameters of the model shown in Figure 2.1. The other parameters are set as α = 2,
β = 4 for TCP Vegas. Figure 2.4 shows the cwnd1-cwnd2 graph obtained from Figure 2.3.

In Figures 2.5 and 2.6, we show the heterogeneous case where the propagation de-
lays of the two connectionsare different. In simulation, we set µ = 20 [Mbps], B = 10 [pack-
ets], τ1 = 4 [msec], τ2 = 8 [msec], m =1 [Kbytes], and α =2, β = 4 for parameters of TCP
Vegas. Connection 2 joins the network at time t=1500 [msec]. We will explain the effect
of propagation delay on the congestion control mechanisms of TCP by using Figures 2.5
and 2.6 and our analytical results.

2.2.2 TCP Tahoe

In TCP Tahoe, the change of the window size is cyclic as shown in Figure 1.1(a) where
the single connection utilizes the link. It is also true when two connections with identi-
cal propagation delays share the link (Figure 2.3(a)) since packets from two connections
are lost at the end of the cycle. It is explained as follows. Suppose that both of two TCP
senders open the window at same speed in Congestion Avoidance phase. Each con-
nection increments its window size by one packet simultaneously, and injects a new
packet into the network. Finally, the sum of the window sizes of both connections be-
comes equal to Ws, the sum of bandwidth-delay products of the link (We) and the buffer
size at switch (B). Then new packets from both connections are likely to be dropped at
the switch buffer because the sum of the window sizes exceeds the network capacity
by two packets. It is true that we treat a special case for the network configuration, but
the problem described above is inherent in TCP Tahoe.

When propagation delays of two connections are different, on the other hand, the
above discussions never be directly applicable. However, we can confirm that even if
two connections have different propagation delays, the packet losses of both connec-
tions are likely to occur simultaneously in Figure 2.5(a). Therefore, in the analysis, we
will assume that packet losses of the two connections take place simultaneously.

We introduce the following notations. Cycle i starts at the time when (i−1) th packet
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Figure 2.3: Simulation Results of Homogeneous Case

is lost, and terminates at i th packet loss. W i
1 [packets] and W i

2 [packets] are window
sizes of Connections 1 and 2 when i th packet of two connections are lost. Similarly,
ssthi

1 [packets] and ssthi
2 [packets] are defined as ssthresh of cycle i for two connections,

respectively. Let us assume that cycle i begins at time t = 0 [sec]. From Equation (1.2),
we obtain;

ssthi
j =

W i−1
j

2
, j = 1, 2 (2.3)

When packet loss occurs, the window size is reset to one packet (since fast recovery
is not used in TCP Tahoe). Then, the window size increases according to Slow Start
phase until cwndj(t) reaches ssthi

j. Afterwards, the window size increases according to
Congestion Avoidance phase as follows (see Equation (1.1));

cwndj(t) =
(t−ssth ti

j)

2τj
+ ssthi

j, j = 1, 2 (2.4)
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Figure 2.4: cwnd1-cwnd2 Graph of Homogeneous Case

where ssthti
j [sec] is the time when Slow Start phase terminates, that is, when cwndj(t)

reaches ssthi
j. At the end of cycle i, i th packet loss takes place in both connections since

the sum of the window sizes of both connections reaches Wl (defined in Equation (2.3)),
i.e.,

Wl = cwnd1(t
i
loss) + cwnd2(t

i
loss) (2.5)

We can obtain ti
loss [sec], the time when i th packet loss occurs, from Equations (2.3) and

(2.4) as follows;

ti
loss =

τ1 · τ2

τ1 + τ2

Wl (2.6)
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Figure 2.5: Simulation Results of Heterogeneous Case

Finally, W i
j is obtained from Equations (2.3) through (2.6) as;

W i
j =

W i
j

2
+

1

τj

τ1 · τ2

2(τ1 + τ2)
Wl

=
1

τj

τ1 · τ2

2(τ1 + τ2)
Wl −

(
1

2

)i−1
(

1

τj

τ1 · τ2

2(τ1 + τ2)
Wl −W 1

j

)
(2.7)

The above result implies that the window sizes of both connections are exponentially
converged as i → ∞, and the converged value is in proportion to the inverse of the
propagation delays. It is then clear that if the propagation delays are equivalent, TCP
Tahoe provides fair service between connections. We can also see that the congestion
control of TCP Tahoe lacks in an ability to stabilize the window sizes in the sense that
the window size oscillates as a function of time as shown in Figures 1.1(a), 2.3(a) and
2.5(a).

However, it is also observed that in the heterogeneous case of different propagation
delays, the window sizes of two connections become different in TCP Tahoe, and the
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Figure 2.6: cwnd1-cwnd2 Graph of Heterogeneous Case

connection with longer propagation delay suffers from the small window size. This
can be observed in Figures 2.5(a) and 2.6(a), in which Connection 2 with longer prop-
agation delay has a small window size during the simulation, and the network status
point (cwnd1(t), cwnd2(t)) is always lower than the “Fairness Line.” One may think that
the fairness measure should be defined by taking account of the propagation delays,
and that it is natural that the connection with the longer propagation delay achieves
the less throughput. It may be true, but our point is that in TCP Tahoe, the throughput
is not proportional to the propagation delay. We introduce Ai

j [packets] as the number
of packets transmitted in cycle i of the connection j, and Sj [packets/sec] as throughput
for the connection j. That is, the following relation holds;

Sj =
Ai

j

ti
loss

(2.8)
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Thus, by utilizing Equations (2.3) through (2.7), we have

Sj =
Ai

j

ti
loss

=

∫ ti
loss

0 cwndj(t)dt

ti
loss

=
3W i

j

4τj

By letting i→ ∞, we have

Sj → 3

τ 2
j

τ1 · τ2

2(τ1 + τ2)
Wl (2.9)

That is, the throughput becomes proportional to the inverse of the square of the prop-
agation delay in the heterogeneous case.

2.2.3 TCP Reno

As described in Section 1.2, the congestion control mechanism of TCP Reno is similar to
that of TCP Tahoe, except that TCP Reno has a Fast Recovery phase to be able to react
the random packet loss quickly. That is, in the Fast Recovery phase, the window size
is temporarily inflated until non-duplicate ACK is received, and it is restored to ssth.
After that, the Congestion Avoidance phase begins as in TCP Tahoe. Therefore, if we
ignore the temporary inflation of the window size in Fast Recovery phase, TCP Reno
controls the window size as if Slow Start phase were eliminated from the change of the
window size of TCP Tahoe. As a result, the transition of network status point (cwnd1(t),
cwnd2(t)) follows Equation (2.7). That is, TCP Reno also has an ability to keep a fair ser-
vice among connections in the homogeneous case, but it cannot keep fair service among
connections in heterogeneous case, as in the case of TCP Tahoe. See Figures 2.3(b) and
2.4(b) for the homogeneous case and Figures 2.5(b) and 2.6(b) for the heterogeneous
case.

2.2.4 TCP Vegas

In TCP Vegas, it is noticeable that the window sizes of both connections remains con-
stant at different values as shown in Figures 2.3(c) and 2.5(c). It can also be observed
in the cwnd1-cwnd2 graph in Figures 2.4(c) and 2.6(c) where the network status point
(cwnd1(t), cwnd2(t)) first moves from (W 1

1 , 1) to (W 2
1 ,W 2

2 ), and is converged at that point.
In this Subsection, we analytically derive W 1

1 [packets] (the window size of Connec-
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tion 1 when Connection 2 is activated), and W 2
1 [packets], W 2

2 [packets] (converged val-
ues of window sizes of Connections 1 and 2) to make clear the characteristics of the con-
gestion control mechanism of TCP Vegas.

Let l1 [packets] and l2 [packets] be the mean numbers of packets queued in the switch
buffer before and after Connection 2 joins the network, respectively. Since the window
size in TCP Vegas converges to a fixed value in steady state, l1 and l2 should also be con-
verged to some values. We first consider the situation where only Connection 1 is active
in the network. When the window size of Connection 1 becomes stable, the following
inequalities should be satisfied from Equation (1.4);

α

base rtt11
<

W 1
1

base rtt11
− W 1

1

rtt1
<

β

base rtt11
(2.10)

where base rtt11 [sec] is base rtt of Connection 1, being equal to the round trip time with-
out queueing delays at the switch buffer. That is,

base rtt11 = 2 τ +
1

µ
(2.11)

and rtt1 [sec] is the round trip time in steady state, i.e.,

rtt1 = 2 τ +
l1 + 1

µ
(2.12)

From Equations (2.11) and (2.12), Equation (2.10) can be rewritten as;

{2 τ µ + (l1 + 1)} α

l1
< W 1

1 < {2 τ µ + (l1 + 1)} β

l1
(2.13)

W 1
1 can also be obtained by summing the bandwidth-delay products of the shared link

(2 τ µ) and the number of packets in the switch buffer (l1);

W 1
1 = 2 τ µ + l1 (2.14)

By substituting Equation (2.14) into Equation (2.13), we simply have

α < l1 < β. (2.15)

Also, Equation (2.15) can be written by using Equation (2.14) as

2 τ µ + (α + 1) < W 1
1 < 2 τ µ + (β + 1) (2.16)
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From the above equations, we observe that in steady state, the mean number of packets
in the switch buffer is kept stable between α and β , and the link bandwidth is always
fully utilized.

We next observe the TCP behavior after Connection 2 joins the network. When Con-
nection 2 starts to transmit packets into the network, the number of packets queued in
the switch buffer increases. Then the round trip time of Connection 1 increases, and its
window size is decreased to satisfy the condition that the window size should be stable.
See Equation (1.4). Since all packets of both connectionsare served at the bottleneck link
with the bandwidth of µ [packets/sec], the following equation is satisfied;

W 2
1

rtt1
+

W 2
2

rtt2
= µ (2.17)

The window size of each connection changes according to Equation (1.4) as follows;

α

base rtt1
<

W 2
1

base rtt1
− W 2

1

rtt1
<

β

base rtt1
(2.18)

α

base rtt2
<

W 2
2

base rtt2
− W 2

2

rtt2
<

β

base rtt2
(2.19)

where rtt1 [sec], rtt2 [sec], base rtt1 [sec], base rtt2 [sec] are Round Trip Time and base rtt

of Connection 1 and Connection 2, respectively, and can be obtained as follows;

rtt1 = 2τ1 +
l2
µ

(2.20)

rtt2 = 2τ2 +
l2
µ

(2.21)

base rtt1 = 2τ1 +
1

µ
(2.22)

base rtt2 = 2τ2 +
l1
µ

(2.23)

By substituting Equations (2.20) from (2.23) into (2.18) (2.19), and after some manipu-
lation, we have

(2τ1µ + l2)
α

l2
< W 2

1 < (2τ1µ + l2)
β

l2
(2.24)

(2τ2µ + l2)
α

l2 − l1
< W 2

2 < (2τ2µ + l2)
β

l2 − l1
(2.25)

Namely, network status point (cwnd1(t), cwnd2(t)) converges to the values satisfying
Equations (2.24), (2.25), and (2.17). Furthermore, from the condition that network status
point (cwnd1(t), cwnd2(t)) that satisfying Equations (2.24), (2.25), and (2.17) exists, we
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can determine the range of l2, the numbers of packets queued in the switch buffer after
Connection 2 joins the network. It is obtained by solving Equation (2.24) and (2.25) for
l2 as follows;

3 +
√

5

2
α < l2 <

3 +
√

5

2
β

We can observe from Equations (2.24) and (2.25) that the window sizes of both con-
nections converge in almost proportion to the propagation delay. It means that if the
propagation delays of connections are equivalent, the window sizes should become iden-
tical. However, it is also observed in Equations (2.24) and (2.25) that W 2

1 and W 2
2 have

some ranges, and the real convergence point is determined arbitrarily. The range of
the convergence is dependent on the congestion control algorithm of TCP Vegas itself,
which is the condition that the window size remains unchanged has a some range as
specified in (Equation (1.4)).

There is another reason why TCP Vegas can not achieve fairness between connec-
tions. That is caused by the difference of base rtt’s of two connections (Equations (2.22)
and (2.23)) even in the homogeneous case with identical propagation delays. When
Connection 2 joins the network, the switch buffer is occupied by several packets of Con-
nection 1. Thus, base rtt of Connection 2 includes some buffering delay at the switch
and it becomes larger than that of Connection 1. Therefore, the window size of Con-
nection 2 becomes lower to satisfy the second equation of Equation (1.4). This cannot be
avoided in TCP Vegas if the number of packets at the switch buffer is not much changed
in steady state.

The unfairness of TCP Vegas explained above was confirmed by comparing with
simulation. The results shown in Figures 2.3(c) and 2.4(c) is one example, but by re-
peating the simulation experiments, we observe that the values of W 2

1

W 2
2

range from 1.03
to 1.58. On the other hand, Equations (2.24) and (2.25)) show that the upper and lower
values of W 2

1

W 2
2

are 0.95 to 2.12.
On the other hand, the window size in the heterogeneous case becomes almost pro-

portional to the propagation delay of each connection as indicated by Equations (2.22)
and (2.23). Thus, the throughput defined as (window size)/(propagation delay) be-
comes identical, and we may say that the fairness becomes better in the heterogeneous
case. However, the obtained throughput has some range dependent on the chosen pa-
rameters α and β in TCP Vegas, which causes the unfairness between connections. It
can also be confirmed by Equations (2.22) and (2.23).

In summary, TCP Vegas can improve fairness between connections to some extent,
but there still be some unfairness due to the range of the convergence point. In the next
Section, we will explain our enhanced TCP Vegas, and show some analytic results to
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Figure 2.7: Evolution of Window Size of Enhanced TCP Vegas

confirm the effectiveness of our proposed method.

2.3 Enhanced TCP Vegas

Equation (1.4) used in TCP Vegas indicates that if RTTs of the packets are stable, the
window size remains unchanged. The range that the network is viewed as “stable” was
derived in the previous Subsection. It is a fundamental problem of TCP Vegas, and our
solution is to eliminate the condition of unchanging the window size. The following
algorithm is used in our enhanced TCP Vegas to prevent the convergence of the window
size;

cwnd(t + tA) =


 cwnd(t) + 1, if diff < δ

base rtt

cwnd(t)− 1, if δ
base rtt

≤ diff
(2.26)

diff =
cwnd(t)

base rtt
− cwnd(t)rtt

where δ is a some small constant value. The same algorithm can be obtained by setting
α=β in TCP Vegas (Equation (1.4)), which clearly shows that the condition of unchang-
ing the window size is eliminated. Figure 2.7 shows a typical example of our enhanced
Vegas version. Here, we use δ=3. We can see from the figure that the window size is os-
cillated around the appropriate value. By using the algorithm above, we can overcome
the unfairness problem observed in TCP Vegas.

We now explain why it can achieve the fairness. The window size of each connection
oscillates as a function of time. The point around which the window sizes are oscillated
is determined as follows. From Equation (2.26), we first have

cwnd

base rtt
− cwnd

rtt
=

δ

base rtt
(2.27)
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Figure 2.8: Simulation Results of Enhanced TCP Vegas.

Let W 2
1 [packets] and W 2

2 [packets] be the central points of oscillations of the window
sizes of Connections 1 and 2, respectively. By applying Equation (2.27) to Connection 1
and Connection 2, the following equations can be obtained;

W 2
1

base rtt1
− W 2

2

rtt1
=

δ

bnase rtt1
(2.28)

W 2
2

base rtt2
− W 2

2

rtt2
=

δ

base rtt2
(2.29)

where rtt1 [sec], rtt2 [sec], base rtt1 [sec] and base rtt2 [sec] are determined from;

rtt1 = 2τ1 +
l2
µ

(2.30)
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rtt2 = 2τ2 +
l2
µ

(2.31)

base rtt1 = 2τ1 +
1

µ
(2.32)

base rtt2 = 2τ2 +
1

µ
(2.33)

Note that Equation (2.33) is different from that of TCP Vegas (Equation (2.23)). It is be-
cause our enhanced method simply prevents the convergence of the window size as
shown in Equation (2.26). Then the window sizes of both connections are changed dy-
namically. It also leads to the fluctuation of the number of packets at the switch buffer,
and thus base rtt1 and base rtt2 become converged to the same value.

From Equation (2.17), Equations (2.28) and (2.29) can be solved as follows;

W 2
1 = (2τ1µ + l2)

δ

l2
(2.34)

W 2
2 = (2τ2µ + l2)

δ

l2
(2.35)

Furthermore, in similarly to TCP Vegas, we can obtain l2 from Equations (2.17), (2.34)
and (2.35);

l2 = 2δ (2.36)

We note that l2 in the above equation is a converged value, and actually the queue size
at the switch buffer is fluctuated in some range. However, there is a significant differ-
ence between TCP Vegas and enhanced TCP Vegas. In TCP Vegas, converged window
sizes of both connections (Equations (2.24) and (2.25)) may be different because it has
the range in the condition that the window size remains unchanged (Equation (1.4)). On
the other hand, in enhanced TCP Vegas, it is avoided by oscillating the window size.

From Equations (2.34) and (2.35), we can confirm that the central point of oscillation
becomes completely proportional to the propagation delay. It means that our enhanced
TCP Vegas can provide good fairness even in terms of throughput defined as (window
size)/(propagation delay). These results are quite different from those of TCP Vegas,
which sometimes fails in obtaining fairness between connections as having been de-
scribed in Subsection 2.2.4. Our enhanced TCP Vegas discards the ability of the stable
operation which is intended in the original TCP Vegas. However, the oscillation range
of the window size is small. The example can be seen in the cwnd1-cwnd2 graph (Fig-
ures 2.8(c) and 2.8(d)). The network status points (cwnd1(t), cwnd2(t)) oscillate around
the ‘Fairness Line’, and the range of oscillation falls between ‘Efficiency Line’ and ‘Packet
Loss Line’. That is, in our enhanced version of TCP Vegas, the throughput can be kept
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high as in the original one, and the unfairness problem is resolved at the expense of the
stable operation of the window sizes.

2.4 Conclusion

In this Chapter, we have focused on stability and fairness properties of TCP through
an analytic approach and have made clear the basic characteristics of four versions of
TCP; TCP Tahoe, TCP Reno, TCP Vegas and our proposed enhanced TCP Vegas. We
have obtained the following results through analysis and simulation;

• Homogeneous case:

– TCP Tahoe and TCP Reno can provide the fairness between connections at
the expense of stability and throughput.

– TCP Vegas can achieve higher throughput and stability than TCP Tahoe and
TCP Reno, but lacks in fair share of the link.

– Enhanced TCP Vegas can improve fairness without throughput degradation.
It is due to fluctuated window sizes.

• Heterogeneous case:

– In TCP Tahoe and TCP Reno, the connection with longer propagation delays
suffers from very lower throughput.

– In TCP Vegas, fairness between connections can be improved to some extent.
However, unfairness is not perfectly resolved in the heterogeneous case.

– Our enhanced TCP Vegas can achieve a good fairness between connections
while keeping high throughput at the expense of stability.

In the current work, we have only focused on the simple network topology, a single-
hop network with two connections. For future work, we need to study the more gen-
eral network topology, which has multihop connection between sender and receiver to
investigate the effect of the number of congested links of the connections on the con-
gestion control mechanisms of various versions of TCP. More importantly, we have as-
sumed that TCP connections follow the pre-specified congestion control algorithm. In
recent papers such as [22, 36], researchers focused on isolation of ill-behaved flows emit-
ting packets independently on the congestion level of the network to occupy the link
bandwidth unfairly. The proposed scheduling algorithms at the switch can offer the
fair service according to the pre-determined weights of flows, but have a limit since in-
corporation of the propagation delays is not considered. We feel that our results can
contribute to the extension of the proposed method, but it requires a further research.
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Chapter 3

Improvement of the Congestion Control
Mechanism of TCP

to Avoid Mis-retransmission

Some of new networking technologies make it possible for each connection to be pro-
vided constant bandwidth to accommodate new Internet services. One of there services
is ER (Explicit Rate) mode within ATM ABR (Available Bit Rate) service class. In the ER
mode, the intermediate switch explicitly specifies the cell emission rate of the source
end systems dependent on the number of active connections [45, 46], and each connec-
tion is guaranteed a fixed amount of the bandwidth during which a number of active
connections remains to be fixed. However, TCP is essentially designed for sharing the
network bandwidth among multiple connections without bandwidth assignment. It
assumes that the packet transfer delay fluctuates as a function of time as in Ethernet,
and TCP performance under such bandwidth-guaranteed networks has not been in-
vestigated enough.

In this Chapter, we investigate TCP’s problem in the packet retransmission mecha-
nism of TCP. The problem occurs when a fixed amount of bandwidth is assigned to a
TCP connection, or when an RTT (Round Trip Times) of a TCP connection changes fre-
quently. In this case, TCP frequently performs unnecessary packet retransmission (we
call mis-retransmission in this thesis), which causes serious performance degradation. In
the analysis of this chapter, We focus on the change of RTT and RTO values, and make
clear why mis-retransmission occurs. We also point out that mis-retransmission may
occur even in the current Internet where no bandwidth guarantee takes place because
of temporary oscillation of RTTs. We evaluate this performance degradation analyti-
cally, and propose an enhancement technique to the congestion control mechanism of
TCP to avoid performance degradation caused by mis-retransmissions.

27



3.1 Timeout-based Retransmission Mechanism of TCP

In this Section, we briefly introduce the timeout-based retransmission mechanism of
TCP now in broadly use [30, 76]. TCP employs a timeout based retransmission mecha-
nism to react network congestion. More specifically, the TCP sender sets the RTO timer
for each sending packet. Until the RTO timer expires, the sender may not receive a cor-
responding ACK packet from the receiver. At that time, the sender determines that the
packet is lost within the network, and retransmits that packet. At the same time, the
sender throttles the window size to one packet because the lost packet indicates the net-
work congestion.

The value of RTO timer is calculated using RTTs of packets which have already been
successfully transmitted. When the TCP sender receives ACK from the receiver, it de-
termines the next value of the RTO timer (RTOn [sec]) according to the RTT value of the
n-th packet (RTTn [sec]]). RTOn is determined in the following way [30];

Errn = RTTn − An−1 (3.1)

An = An−1 + g · Errn (3.2)

Dn = Dn−1 + h · (|Errn| −Dn−1) (3.3)

RTOn = An + k ·Dn (3.4)

where An represents the weighted average value of RTTs given as

An = (1− g) · An−1 + g · RTTn, (3.5)

and Dn does the fluctuation part of RTTs as

Dn = (1− h) ·Dn−1 + h · |RTTn − An−1|. (3.6)

The coefficients, g, h and k, are generally set as g = 0.125, h = 0.25, k = 4 [30]. As shown
in Equation (3.4), the value of RTO timer (we simply denote “RTO value” in the rest of
this Chapter) is the sum of mean and fluctuation part of RTT, and k = 4 achieves the
safe operation. However, above equations imply that no fluctuation of RTTs leads to a
fixed value of An’s (see Equation (3.2)), and therefore, Dn reaches zero (Equation (3.3)).
Then, RTOn also reaches a fixed value identical to An’s, the mean of RTTs. This is a
main problem that we will treat in the following Sections. That is, even if the RTT of
some packet is increased slightly, it is recognized as the packet loss after the RTO value
becomes very close to the RTT values.

TCP has another retransmission mechanism called fast retransmission, where the
sender can detect a few numbers of packet losses within the window. If the packet loss
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is detected, the packet is retransmitted without waiting the timeout. As shown in Sec-
tion 3.2, our problem on mis-retransmission cannot be resolved by introducing the fast
retransmission algorithm.

3.2 Mis-Retransmission of TCP Packets

In this Section, we will focus on the case where the ER mode of the ATM ABR service
class is applied to TCP, and explain why and how mis-retransmission of TCP packet
occurs in the network when a fixed amount of bandwidth is assigned to the TCP con-
nection. Its analysis method is also shown.

3.2.1 Why Mis-retransmission Occurs?

As having been described in the previous Section, when a fixed amount of bandwidth
is assigned to a TCP connection, the RTO value is converged. It can be verified by re-
peatedly applying Equations (3.1) through (3.4) under the condition that RTTn is fixed
at rtt. That is,

lim
i→∞

RTOi = rtt. (3.7)

This fact indicates that if the fluctuation of RTT is very small compared with the mean
of RTT, the RTO value becomes close to RTT itself. After then, if RTT is suddenly in-
creased due to decrease of the assigned bandwidth or increase of the machine load, RTT
can easily become larger than the RTO value. It is because the calculation of RTO value
(Equations (3.1) through (3.4)) cannot follow the sudden change of RTT. As a result, the
TCP sender recognizes that the packet is lost within the network, and it retransmits
the packet, which is just a mis-retransmission. Such a case is likely to happen in the
ER mode of the ATM ABR service class. In the ER mode, the intermediate switch of
the network explicitly specifies cell emission rate to each connection according to the
number of active connections [45, 46]. If the network condition is stable, that is, if the
number of active connections is fixed, each connection is assigned a fixed amount of the
bandwidth. It means that when the ER mode is applied to TCP, the RTO value easily
becomes close to RTT. When the new connection actively joins the network, the band-
width assigned to the existing connections suddenly decrease in the ER mode. Then,
RTT is increased, and becomes larger than the RTO value. It results in packet retrans-
missions. However, it is completely unnecessary in this case since the packet is not lost
within the network, but is only delayed due to the decrease of the assigned bandwidth.
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3.2.2 TCP Behavior after Mis-retransmission

Simulation Experiment 1

As an illustrative example, we show a detailed behavior of the TCP connection using
simulation experiments, and explain how TCP acts against the mis-retransmission. In
the simulation experiment, we only consider the single connection using [150 Mbps]
link. At time 0 [msec], the TCP sender starts transmission. In simulation, the propaga-
tion delay between source and destination terminals is set to 1 [msec], and the packet
size of TCP is set to 4 [Kbyte]. The maximum window size of TCP is 64 [Kbyte]. We
generated the mis-retransmission by intentionally setting the RTO value of the packet
No.503 to a smaller value.

In Figure 3.1(a), the line labeled as “last ack” represents the number of successfully
acknowledged packets. The line with “snd next” shows the sequence number of the
packet that is expected to be transmitted next. The sequence number of the packet that
has been sent by the TCP sender is shown by the line labeled as “sending packet.” The
maximum sequence number that the TCP sender can transmit the packet is shown by
the line “cwnd+last ack,” and therefore the difference between the line “last ack” and
the line “cwnd+last ack” represents the congestion window size. By intentionally set-
ting the RTO value of the packet No.503 to a smaller value, mis-retransmission of the
packet No.503 occurs at time 128.5 [msec].

As shown in the figure, the window size (cwnd) is throttled down at time 128.5 [msec]
due to mis-retransmission of the packet, that is, the mis-retransmission leads to the TCP’s
slow start phase [30]. After the mis-retransmission happens, the sender retransmits all
the packets within the window from time 128.5 [msec] to 132.5 [msec], but all of those
are needless to be retransmitted. Since these packets have been correctly received at
the destination terminal, the ACKs corresponding to the retransmitted packets are for
the same packet. In simulation, it is the packet No.518. It causes TCP’s fast retransmis-
sion [30, 10] for the No.519 packet, and the window size is again throttled at 136.5 [msec].
After that, the TCP sender enters congestion avoidance phase [30], where the window
size increases linearly as a function of time. That is, the mis-retransmission causes much
degradation of the TCP throughput because of the needless retransmission process.

For only comparison purposes, we also conducted the simulation experiment where
the mis-retransmission is avoided by setting the RTO value to be infinite. Since we as-
sume that no cell loss occurs within the network, the infinite the RTO value works well
in this simulation experiment. The result is shown in Figure 3.1(b). By comparing with
this figure, the previous result in Figure 3.1(a) presents significant throughput degra-
dation due to mis-retransmission of the packet. The additional delay incurred by the
mis-retransmission at time 128.5 [msec] becomes about 6 [msec] in this case.
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Figure 3.1: Detailed behavior of TCP against the mis-retransmission
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Figure 3.3: Effect of Mis-retransmission: W = 64 [Kbyte]

Simulation Experiment 2

We next show other simulation results in which we use the network model depicted
in Figure 3.2. The number of TCP connections is two, and the link speed is 150 Mbps.
In the figure, SW stands for the intermediate ATM switch in which the ER mode is op-
erated. In simulation, the connection 1 (SES1→ SW1→ SW2→ DES1) starts sending
TCP packets, and at time 500 [msec] the connection 2 (SES2→ SW1→ SW2→ DES2)
joins the network. When the bandwidth is assigned to each connection fairly by the ER
mechanism, the bandwidth assigned to the connection 1 is suddenly decreased to a half
after the connection 2 starts sending TCP packets. Then, the RTT value of connection 1
becomes larger than the RTO value and the mis-retransmission occurs.

Figure 3.3 shows the last ack (the number of successfully acknowledged packets)
of each connection as a function of time after the connection 2 starts the transmission.
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Figure 3.4: Effect of Mis-retransmission: W = 128 [Kbyte]

Here, the maximum window size of TCP is set to be 64 [Kbyte]. In Figure 3.3(a) where
the propagation delay τ is set to be 0.01 msec, the solid line labeled as “Original TCP”
shows how the mis-retransmission affects the throughput. After the simulation starts,
the RTO value of connection 1 gradually becomes close to RTT. In this case, the RTT
value is 3.86 msec, and the RTO value is 4.06 msec. The packet retransmission does not
occur until time 500 msec (while not shown in the figure) since in our simulation the
system is stable. At time 500 msec, the connection 2 is added. Then the RTT value of
connection 1 is suddenly increased to 4.70 msec, but the RTO value is still 4.06 msec.
The mis-retransmission then occurs at time 501 msec. As a result, last ack does not in-
crease around at time 520 msec. For comparison, the dotted line labeled as “TCP with-

out Timeout” is also shown in the figure. It is the fictitious but ideal case that the mis-
retransmission does not occur by setting the RTO value to be infinite.

Figure 3.3(b) compares two cases (“Original TCP” and “TCP without Timeout”) by
setting the propagation delay to be 4 msec. Throughput is further degraded due to re-
peatedly occurrences of mis-retransmissions when the propagation delay is set to be
large. It is because when τ is large, the bandwidth-delay product of the connection be-
comes large. Then it takes more time until the maximum window size is fully utilized
once the window size is throttled to be one packet. That is why the TCP sender cannot
send some duration after the mis-retransmission.

It has been recognized that for large bandwidth-delay product networks, the win-
dow size should be enlarged to obtain high throughput. However, the larger window
size further degrades the throughput due to mis-retransmission. It is because if the
maximum window size W gets larger, the sender TCP should re-transmit more packets
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when the time-out takes place. Figure 3.4 shows this case where the window size W is
set to be 128 [Kbyte].

In the next Subsection, we will give the analysis to examine the degree of the per-
formance degradation caused by mis-retransmissions.

3.2.3 Analysis

In what follows, we will present the analysis method to derive the additional delay
caused by one mis-retransmission of the packet. We will use the following notations.
The link speed is denoted as BW [Mbps]. The propagation delay between source and
destination terminals is represented by τ [sec]. The maximum window size is W [Kbyte],
and the packet size is m [Kbyte]. By assuming that each packet has a fixed length iden-
tical to m, the TCP sender can transmit W/m packets without acknowledgments. TCP’s
current window size (cwnd) at time t [sec] is represented by cwnd(t) [packets]. We set t =
t0 at the time when the mis-retransmission occurs. We assume that RTTs of transmitted
packets are initially settled down at rtt [sec].

Now we assume that cwnd(t) reaches the maximum window size W before the mis-
retransmission occurs. When the mis-retransmission occurs at time t = t0, the TCP sender
enters slow start phase, and the slow start phase ends when cwnd(t) reaches ssth. It equals
to W/2 in the current case. The TCP sender then enters the congestion avoidance phase.
This phase terminates when the TCP sender begins to receive the duplicate ACKs at
time t = t1. Note that in the case of Figure 3.1(a), the mis-retransmission occurs at time t

= t0 = 128.5 [msec]. The TCP sender then enters the slow start phase. Its congestion avoid-
ance phase starts and ends at time t = 130.5 [msec] and t = t1 = 132.5 [msec], respectively.

The TCP sender receives the non-duplicate ACKs corresponding to all packets within
the window until the mis-retransmission occurs, From time t0 to t1, W/m non-duplicate
ACKs are received. Therefore, the window size cwnd(t1) at time t1 can be calculated
from Equation (1.1) as;

cwnd(t1) =

√
mW +

(
W

2

)2

(3.8)

After that, the TCP sender again retransmits the packet for duplicate ACKs accord-
ing to the fast retransmission algorithm. At the same time, the sender enters the fast
recovery process. However, this process has no effect on our analysis because the win-
dow size after the fast retransmission process is not dependent on the process itself, but
on the window size just before the fast retransmission process (cwnd(t1)) according to
the fast retransmission algorithm. Let us denote t2 for the end of the fast retransmission
process (136.5 [msec] in the case of Figure 3.1(a)). At time t = t2, the fast retransmission
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algorithm sets the window size to be a half of that before the fast retransmission, which
is cwnd(t1). Therefore, the window size cwnd(t2) is updated as;

cwnd(t2) =
cwnd(t1)

2

=
1

2

√
mW +

(
W

2

)2

(3.9)

For t > t2, the window size cwnd(t) increases since TCP gets into the Congestion
Avoidance phase. If cwnd(t2) is enough large to fully utilize the link capacity, the ad-
ditional delay D caused by the mis-retransmission is just equal to the initial value of
the round trip time rtt. It corresponds to the time duration of fast retransmission pro-
cess because it takes rtt to come back the ACKs corresponding to the fast retransmitted
packets. (In Figure 3.1(a), it is from 132.5 [msec] to 136.5 [msec].) Therefore, we have a
relation

D = rtt (3.10)

On the contrary, if cwnd(t2) is too small to fully utilize the link capacity, the window
size is not completely recovered before TCP enters the congestion avoidance phase. From
Equation (1.1) and Figure 3.1(a), the time duration from the mis-retransmission occurs
until cwnd(t) reaches W is

T = 2 rtt +
4W −√4mW −W 2

4m
(3.11)

The above Equation (3.11) can be obtained as follows. The first term (2 rtt) corresponds
to the time duration from the mis-retransmission occurs (t = 0 [sec]) until the fast re-
transmission process finishes at time t = t2. (136.5 - 132.5 = 4.0 [msec] in the case of Fig-
ure 3.1(a)). The second term is the time duration from the fast retransmission process
finishes at time t = t2 until cwnd(t) reaches W during the congestion avoidance phase. It is
obtained from Equation (1.1).

The window size cwnd(t) for the duration t2 ≤ t ≤ t0 + T is calculated from Equa-
tion (1.1) as;

cwnd(t) = cwnd(t2) +
m2

rtt
t (3.12)

Then, the total amount of data that the TCP sender can transmit during the time dura-
tion T can be calculated by integrating cwnd(t) from time t = t0 to t = t0 +T . By defining
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it by A, we have

A = W +
∫ t0+T

t2
cwnd(t)dt

=
W (15W + 60m)

32m
(3.13)

If the mis-retransmission had not occurred, the TCP sender could transmit the data
at rate R = W/rtt during the time duration A/R = rtt · (A/W ). Therefore, the additional
delay, D, incurred by the mis-retransmission is finally obtained as;

D = T − rtt · A

W

=
17W + 4m− 8

√
4mW + W 2

32m
rtt (3.14)

3.2.4 Numerical Results and Discussions

Based on the analysis presented in the previous Subsection, we compare the additional
delay D as a function of the packet size m in Figure 3.5. Three different values of the
propagation delays are used; τ = 0.1, 1, and 2 [msec]. In Figures 3.5(a) and (b), the maxi-
mum window sizes W are set at 64 [Kbyte] and 128 [Kbyte], respectively. In the figures,
the additional delay D is presented in unit of rtt. The values of rtt [sec] is dependent
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on the bandwidth-delay product, and is given as;

rtt =




2τ +
m

BW
, if W ≤ 2τ BW

W

BW
, if W > 2τ BW.

(3.15)

In the figures, the simulation results are also presented in order to show accuracy of
our analysis. The simulation model is just same as Simulation Experiment 1 used in
Subsection 3.2.2, i.e., the single TCP connection uses 150 [Mbps] link. The simulation
results were obtained by measuring the additional delay caused by intentionally gen-
erating mis-retransmission. From the figures, we can observe that the additional delay
D becomes smaller as the packet size m is larger. It is because it takes more time for the
window size to increase such that the link bandwidth can be fully utilized. This can be
explained by Equation (3.14) which shows that the value of the packet size m signifi-
cantly affects the additional delay D.

By comparing Figure 3.5(a) with Figure 3.5(b), we can observe that the larger W

makes the additional delay D larger. As explained in Subsection 3.2.2, the TCP sender
retransmits all packets within the window. Therefore, when W becomes larger, the TCP
sender should retransmit more packets at the occurrence of the mis-retransmission. How-
ever, those are needless to be retransmitted. It is also shown in Equation (3.14) where
the value of W affects the result.

From the above results, it is clear that the performance degradation caused by the
mis-retransmission becomes remarkable when bandwidth-delay product gets larger. In
the next Section, we will modify TCP to limit the performance degradation.

3.3 TCP Enhancement against Mis-retransmission

In this Section, we will propose a new mechanismof TCP to limit the performance degra-
dation at a minimum caused by mis-retransmission.

3.3.1 A Proposed Mechanism

Figure 3.6 displaysanother view of the detailed behavior of TCP when mis-retransmission
occurs. At time t1, the packet transmitted at time t0 is mis-retransmitted since the actual
RTT (realRTT ) of that packet is larger than the RTO value. The sender therefore decides
that the packet has been lost. The ACK packet corresponding to the original packet is
received at time t2, and the packet corresponding to the mis-retransmitted packet is re-
ceived at time t3. Since the TCP sender cannot determine whether the ACK packet is
responded for the original packet or for the retransmitted one, it decides that the time
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Figure 3.6: Another View of the Detailed Behavior of TCP after Mis-retransmission

duration t2 − t1 is the RTT (observedRTT ) of the retransmitted packet. When RTTs of
the TCP connection are stable, the value of observedRTT is much smaller than the value
of realRTT . That is, if the retransmission is mis-retransmission, the RTT of the mis-
retransmitted packet becomes smaller than that of packets before the occurrence of the
mis-retransmission.

Therefore, the sender in our enhancedTCP treats a retransmission as a mis-retransmission
if,

(RTT of retransmitted packet) < k · (RTT before retransmission has occured). (3.16)

where k is a threshold between 0 and 1. When such a mis-retransmission is recognized
by the sender, the value ssth is restored to the one just before the occurrence of mis-
retransmission. Then the TCP sender can open the window quickly. Furthermore, the
retransmission process is not performed because it is not necessary at all, and the sender
begins to transmit new packets.

In our proposed mechanism, mis-retransmissions are detected by comparing the
RTT of the retransmitted packet with that before retransmission has occurred. There-
fore, if the fluctuation of RTTs is large, the proposed method sometimes fails to detect
the mis-retransmission. Figure 3.7 shows this case where the mis-retransmission can-
not be detected. In this case, realRTT of the packet suddenly becomes large so that
observedRTT also becomes too large to satisfy Equation (3.16). Next, we illustrate Fig-
ure 3.8 where the correct retransmission is detected as a mis-retransmission. In this case,
the packet is truly lost, but the RTT of the retransmitted packet (observedRTT ) is too
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small. Then Equation (3.16) becomes satisfied and the sender determines the retrans-
mission is mis-retransmission. Therefore, an appropriate choice of the threshold k is a
key issue to our TCP. If k is close to 0, it becomes difficult to detect mis-retransmissions
as can be seen in Equation (3.16). On the other hand, if the large value of k is selected,
the sender TCP may often detect the mis-retransmission even when the retransmission
is actually required. In the below, we show the modified code in which we set k = 0.5.
Its appropriateness will be validated in the next Subsection.

The modified TCP source code requires six new variables and additional 13 lines at
the sender side, and no changes are necessary at the receiver side. The following code
is to be added to the original TCP code of 4.4BSD-Lite distribution [76].

• tcp var.h, line 105

/* variable for mis-retransmission detection */
tcp_seq to_snt; /* snd_nxt */
tcp_seq to_seq; /* last_ack */
u_long to_cwnd; /* cwnd */
short to_rtt; /* RTT */
short to_time; /* time */
int to_ph; /* detection phase? */

• tcp timer.c, line 206

/* record the variables at retransmission */
tp->to_cwnd = tp->snd_cwnd;

39



observed RTT

Sender Receiver

RTO

Send Packet

Lost

Receive ACK

(real RTT)
Retransmit Packet

Figure 3.8: Case where Correct Retransmission is Recognized as Mis-retransmission

tp->to_snt = tp->snd_nxt;
tp->to_seq = tp->rcv_nxt; /* last_ack */
tp->to_rtt = tp->t_rtt;
tp->to_time = tcp_now; /* time */
tp->to_ph = 1;

• tcp input.c, line 407

/* mis-retransmission detection */
if ( tp->to_ph == 1 ) {
tp->to_ph = 0;
if ( (tcp_now - tp->to_now) < (1/2)*tp->to_rtt ) {

tp->snd_ssthresh = tp->to_cwnd;
tp->snd_nxt = tp->to_snt;

}
}

3.3.2 Simulation Results of the Proposed Method

In this Subsection, we evaluate the effectiveness of our proposed method described in
Subsection 3.3.1 by a simulation technique. We consider that TCP is applied to the ER-
based ABR network.

The first simulation model is identical to the one used in Simulation Experiment 1
presented in Subsection 3.2.1. That is, the single TCP connection uses the link with
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150 [Mbps] capacity. Figure 3.9 corresponds to Figures 3.1(a) (original TCP) and 3.1(b)
(TCP with an infinite value of RTO to intentionally avoid the mis-retransmissions). We
can see from this figure that although our enhanced TCP also mis-retransmits the packet
at time 128.5 [msec], it quickly detects the mis-retransmission and the window size is
recovered fast. As a result, the throughput is not much degraded when compared with
the original TCP (Figure 3.1(a)).

We next use the simulation model depicted in Figure 3.2. As in Simulation Experi-
ment 2, two connections share the link with 150 [Mbps] capacity. The connection 1 starts
sending TCP packets at time 0 [msec], and at time 500 [msec] the connection 2 joins the
network. The result is depicted in Figure 3.10(a) which shows last ack’s of three ver-
sions of TCP; the original TCP, TCP with an infinite value of RTO, and our enhanced
TCP. Here, the maximum window size W is set to be 64 [Kbyte] and the propagation
delay τ is 0.01 [msec]. The figure clearly shows that the performance degradation of
TCP after the mis-retransmission is very limited in our enhanced mechanism. How-
ever, when the propagation delay gets large, throughput degradation of our enhanced
TCP becomes noticeable. It is shown in Figure 3.10(b) where the propagation delay is τ

= 4 [msec]. It is because our enhanced mechanism cannot avoid the mis-retransmission
itself so that the throughput degradation is not completely avoided. As described previ-
ously, since our enhanced mechanism needs the ACK packet corresponding to the orig-
inal packet, it takes more time to detect mis-retransmission for the larger propagation
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Figure 3.10: last ack of Three Methods after Mis-retransmission: W = 64 [Kbyte]

delay. The cases of W = 128 [Kbyte] with 0.01 and 4 [msec] propagation delays are pre-
sented in Figure3.11. The same tendencies can also be observed in these figures. In the
current simulation experiment, the connection 2 joins the network once. Of course, in
the actual system, the addition/deletion of active connections occurs more frequently.
In such a case, the performance degradation of the original TCP would become unac-
ceptable while it is limited in our proposed TCP.

3.3.3 Robustness to Existing Network

In the previous Subsection, we have conducted the simulation experiments for TCP to
be applied to the new data communication service; the ER-based ABR service class of
ATM networks. We have shown that our proposed method works well in such an envi-
ronment that RTTs do not fluctuate. On the other hand, in the current network system,
RTTs vary dependent on the time. It is just a reason that the estimation method of RTT
was introduced in TCP as having been described in Section 2. Accordingly, we need to
confirm that our proposed method does not give an ill effect on the current system.

For this purpose, we modified the TCP code as presented in Subsection 4.1, and ap-
plied it to the Ethernet. In the experiment, file transfer was executed using ftp between
two workstations connected to the Ethernet. Then, we measured the file transfer time.
Figure 3.12 shows the file transfer times as a function of the file size. In the figure, the
cases of original TCP and our enhanced TCP are compared. As shown in the figure, we
can confirm that the performance is not degraded by applying our proposed mecha-
nism to the existing network. That is, selection of the threshold value of k = 0.5 is suit-
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Figure 3.11: last ack of Three Methods after Mis-retransmission: W = 128 [Kbyte]

0.01

0.1

1

10

100

1 10 100 1000 10000

F
ile

 T
ra

ns
fe

r 
T

im
e 

(s
ec

)

File Size (KByte)

Original TCP
Enhanced TCP

Figure 3.12: File Transfer Time vs. File Size

able to the Ethernet.

3.4 Conclusion

In this Chapter, we have focused on one serious problem of TCP’s packet retransmis-
sion strategy. It arises when TCP is applied to the network where a fixed bandwidth can
be assigned to each connection. An example is the ATM ABR service class where the ER
mode mechanism is implemented. Through the simulation results, we have explained
why mis-retransmission of the packet occurs, and have derived the analytic method
to examine the degree of performance degradation caused by mis-retransmission. We
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have also proposed an enhanced mechanism to improve the congestion control mecha-
nism of TCP to detect mis-retransmission and to avoid performance degradation. Then,
its effectiveness has been shown using the simulation experiments.

We have verified that our enhanced version of TCP does not give an ill effect on the
existing Ethernet, but the experiments are limited. We need further experiments using
real networks such as FDDI and, of course, the ER mode of the ATM ABR service when
it is available.

44



Chapter 4

Performance Evaluation and Parameter

Tuning of TCP over ATM Networks

In this Chapter, we investigate performance of TCP over ATM networks for data trans-
mission. The main reason in this Chapter is to investigate the interaction of the con-
gestion control mechanism of TCP, and ATM’s rate control algorithms. For supporting
TCP, we consider two service classes available at the ATM layer: UBR and ABR service
classes (which we will refer as TCP over UBR and TCP over ABR). It has been shown
in [77] that TCP over UBR cannot provide an effective resource usage. A main reason
is that if at least one cell of multiple cells segmented from the upper-layer PDU (Pro-
tocol Data Unit: TCP/IP data packet in this case) is lost, the entire packet is treated to
be lost since the ATM or AAL layers do not provide the cell retransmission function for
error recovery. For supporting UBR, which has no congestion control mechanism, we
consider EPD (Early Packet Discarding) [77] mechanism is considered (we will refer as
TCP over UBR with EPD or simply TCP over EPD). EPD discards whole incoming cells
constructing a packet when congestion occurs at the ATM switch to fully utilize outgo-
ing link at the switch.

On the other hand, the ABR service class can provide more generic data transfer ser-
vice at the expense of its control cost. A defect is to require several control parameters of
the congestion control algorithm, and as has been shown in [47], an appropriate choice
of control parameters is a key issue for the rate-based congestion control to work effec-
tively [57, 61]. In this chapter, we find the appropriate parameter setting of ABR ser-
vice class for supporting TCP, and show its effectiveness through some simulation ex-
periments. To do that, we use two types of network model: singlehop network model
and multihop network model for confirming the robustness of TCP over UBR/ABR net-
work.
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4.1 Congestion Control Methods for TCP over ATM Net-

works

In this Section, we present congestion control methods we will investigate in our simu-
lation experiments. Definitions of control parameters and values used in our simulation
are summarized in Table 4.1.

Plain UBR (Unspecified Bit Rate) Service Class protect[55]

No congestion control mechanism is provided at both of the switch and end systems.
When the cell buffer at the switch becomes full, all incoming cells are discarded.

EPD (Early Packet Discard) Mechanism[77]

In the case of EPD, no end-to-end congestion control is employed at the ATM layer.
Instead, EPD introduces a simple mechanism at the switch to reduce the packet loss.
When at least one cell of the packet is lost, it would be impossible to reassemble the
packet at the destination end system. Therefore, to avoid the waste of bandwidth by
transferring incomplete packets, EPD discards all cells of the newly arriving packet when
the queue length at the switch buffer exceeds some threshold value. By this mechanism,
the packet, a part of which has already been accepted at the buffer, can be conveyed
safely. For implementing this mechanism, EPD requires a VC table at each port. On ar-
rival of the first cell of the packet, the corresponding entry of the VC table for that con-
nection is marked if the queue length is longer than the threshold, or cleared otherwise.
All subsequent cells of the packet are discarded if the VC table is marked. When the
end-of-packet cell (EOP) arrives, the entry is cleared. Following [77], we set the thresh-
old at half the buffer size in simulation.

EPD/A Mechanism [58]

In addition to the EPD mechanism, EPD/A is equipped with a per-VC accounting method,
by which the number of cell in the switch buffer per connection is counted to keep the
fair service among connections. That is, even if the queue length at the switch buffer,
Q, exceeds the threshold of EPD, the arriving packet of connection i is accepted if the
number of cells of connection i in the switch buffer, Qi, satisfies the following equation;

Qi <
Q

NV C
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where NV C is the number of active connections. By this mechanism, it is expected to
alleviate the unfairness service among connections found in EPD.

Rate-based Congestion Control for ABR (Available Bit Rate) Service

Class [55]

The ABR service class provides the rate-based congestion control. Each source end sys-
tem periodically sends the forward RM (Resource Management) cell to the correspond-
ing destination end system for every NRM data cells sent. RM cells are used to notify
congestion status of the network to the source via the destination. When the switch de-
tects its congestion, it informs destination end systems of the congestion occurrence by
marking the EFCI (Explicit Forward Congestion Indication) bit in the header of each
forward RM cell. When the forward RM cell arrives at the destination end system, it
is then sent back to the source as a backward RM cell to notify the congestion. In our
simulation, the congestion occurrence and relief are recognized by the threshold value
of the queue length at the buffer of Switch 1. This kind of the switch is a most basic one
for the rate-based congestion control and sometimes called an EFCI switch or a binary
switch. See [78] about another type of the switch.

Each source end system changes its cell emission rate, called ACR (Allowed Cell
Rate), according to the congestion status notified by the backward RM cells. Only when
it receives EFCI bit cleared backward RM cell, each source end system increases its ACR

linearly as

ACR← min(ACR + AIR ×NRM , PCR) (4.1)

where PCR (Peak Cell Rate) is a maximum allowable rate and AIR (Additive Increase
Rate) is a control parameter to determine the slope of rate increase. ACR is decreased
when at least one of the following conditions is met.

(a) The source end system receives the EFCI bit marked backward RM cell. In this case,
ACR is updated as

ACR← max(ACR − ACR×NRM

RDF
,MCR)

(4.2)

where MCR is a minimum of ACR, i.e., a guaranteed cell rate for the connection.
RDF (Rate Decrease Factor) is also a control parameter to determine the degree of
rate decrease.
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(b) Before receiving a backward RM cell, at least the number XRM of forward RM cells
have been sent since the receipt of the last backward RM cell. In this case, ACR is
updated as

ACR← max(ACR− ACR×XDF,MCR)

(4.3)

where XDF is the XRM Decrease Factor.

(c) Before sending the forward RM cell, the following conditions are satisfied.

ACR > ICR

and

T > TOF ×NRM

where ICR is the Initial Cell Rate, T is the time elapsed since the last forward RM
cell transmission, and TOF is the Time Out Factor. In this case, ACR is decreased
as

ACR← max(ACR− ACR× T × TDF, ICR)

(4.4)

where TDF is the Timeout Decrease Factor.

At the connection setup, each source negotiates with the network to determine the
control parameters ICR, XRM and P-Vector. P-Vector is a set of control parameters pre-
defined in [55], and among several control parameters included in P-Vector, our concern
is AIRF and RDFF which control cell flow.

4.2 Singlehop Network Case

In this Section, we evaluate the performance of TCP over UBR, TCP over UBR with EPD
(TCP over EPD), and TCP over ABR in terms of throughput and fairness among connec-
tions, using simple singlehop network model.
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Figure 4.1: Singlehop Network Model

4.2.1 Network Model

Our simulation model for singlehop network is depicted in Figure 4.1. The model con-
sists of homogeneous NVC sources end systems (SES), corresponding NVC destination
end systems (DES), and a single bottleneck link shared by the number NVC of active con-
nections. At the output buffer of the left-hand side switch(Switch 1) the queue length
is observed for congestion control in the cases of TCP over EPD and TCP over ABR.
The i th source end system sends cells to the corresponding i th destination end sys-
tem. Each connection is terminated in the TCP layer at both of source and destination
end systems. We assume that each source always has TCP data packets to transmit.
The propagation delays between source and destination end systems are set to be iden-
tical and denoted by τ [sec]. Note that the switch location is irrelevant in our simulation
since congestion indication is always propagated via the destination in both of TCP and
rate-based congestion control method adopted here. See below.

We model both Transport and ATM layers at each of source/destination end sys-
tems. The TCP layer is assumed to always have packets to transmit. The TCP packet is
passed to the ATM layer, and segmented to cells to be transmitted to the network. An
actual cell emission rate may be limited by the TCP window size, or by the rate of ABR.
As soon as the destination end system receives cells, those cells are reassembled into
the packet, and then passed to the TCP layer. Corrupted packets are discarded at the
receiver side if at least one cell of the packet is lost at SW1. In simulation, a TCP packet
size is fixed at 4,352 [Byte] (approximately 90 ATM cells). We further assume that IP
is irrelevant and it only determines the size of the packet as in [77]. AAL5 is used for
the AAL sublayer. In addition, processing time of TCP is neglected. This assumption
may be unrealistic since the processing overhead affects performance considerably in
some cases. Nevertheless, we assume zero processing times since it heavily depends
on the processing power of machines, and it only introduces uncertainty for investigat-
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ing our objective, i.e., potential capabilities of the above-mentioned congestion control
mechanisms for supporting high speed data transfer.

4.2.2 Performance Comparisons

In this subsection, we provide comparative results for TCP over UBR, TCP over EPD
and TCP over ABR in terms of the throughput and the fairness among connections. Ta-
ble 4.1 summarizes the control and simulation parameters used in this subsection. The
run time of each simulation experiment is 50 [sec], which is reasonably long to obtain
steady state statistics. The start time of connections are staggered by 1 [msec]: i th con-
nection starts its packet transmission at (i−1) [msec] to avoid the traffic phase effect [79].
In this Subsection, control parameter values for the ABR service are fixed (see Table 4.1).
Parameter tuning for improving the performance will be presented in the next Subsec-
tion.

Throughput Comparison

In what follows, we compare the performance of three methods mainly in terms of the
effective throughput, which is defined as the total numbers of successfully transmitted
packets (i.e., the sum of latest sequence number of the received acknowledgments at
sources) in cells normalized by the link capacity.

The first result in Figure 4.2 shows the effective throughput and the number of lost
packets during the simulation run dependent on the buffer size. The propagation delay
between sources and destinations, τ , is set at 0.01 [msec], approximately 2 [Km]. The
number of connections, NVC , is set to 10. We note that the similar result can be found
in [77] for TCP over UBR and TCP over EPD cases. From the figure, we can see the
effectiveness of TCP over ABR independently on the buffer size. Another observation
is related to EPD. When the buffer size becomes large, the effective throughput of EPD
is slightly decreased. It is because cells (and hence packets) are not likely to be lost at
the large buffer. It leads to larger response times of acknowledgments, and henceforth
larger round trip time estimation at the TCP layer [2]. Since the time out for detecting
the packet loss is based on the round trip times of packets, it results in slow reaction
against the packet losses once it happens.

Similar results can be observed when the propagation delay is changed to ten times
larger than the previous case, i.e., 0.1 [msec] as shown in Figure 4.3. Other parameters
are fixed in obtaining this figure. In ABR, the number of lost packets is increased, but
the throughput degradation is not observed in the figure (except the small buffer size
case) because the increase of packet losses can still be compensated by the packet re-
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Figure 4.2: Comparisons of Three Methods as a Function of Buffer Size: τ = 0.01 [msec],
NVC = 10
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Figure 4.3: Comparisons of Three Methods as a Function of Buffer Size: τ = 0.1 [msec],
NVC = 10

transmissions at the TCP layer.
When the propagation delay becomes much larger, however, the order of the per-

formance gain in three methods is reversed. The case of 1.0 [msec] propagation delay
is shown in Figure 4.4. The throughput of EPD and UBR cases are slightly decreased,
but throughput degradation of ABR is drastically except the case of the large buffer size.
In UBR and EPD, the congestion management relies on the TCP layer. Thus, the effect
of the propagation delay is not so large if our concern is the throughput. However, we
should note here that the bandwidth-delay product [80] is not an issue in this parameter
settings; the number of connections is 10 and the advertised window size is 64 [Kbyte].
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Figure 4.4: Comparisons of Three Methods as a Function of Buffer Size: τ = 1.0 [msec],
NVC = 10

A rough estimation shows that the bandwidth-delay product in the current case is

bandwidth− delay product

= Link bandwidth× two-way propagation delay

= 150 [Mbps]× (2 × 1.0 [msec])

≈ 300 [Kbit]

while in the current parameter setting, we have

window size × the number of connections

= (64 [Kbyte] × 8)× 10

≈ 5 [Mbit]

It is apparent, however, that the smaller number of connections and/or the larger prop-
agation delay immediately would lead to the performance degradation even in UBR
and ABR since the bandwidth-delay product becomes relatively large in such a case. In
that case, we need to increase the window size to overcome the large bandwidth-delay
product.

The longer propagation delay degrades performance of ABR, which can be observed
by comparing Figure 4.2 through 4.4 although ABR achieves the smallest number of lost
packets among three methods in all cases. In this Chapter, we use the binary switch
for the rate-based congestion control. The long propagation delay causes control de-
lay on congestion occurrence. Then, the rate decrease at the source end systems is also
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Figure 4.5: Time Dependent Behavior of TCP over EPD: τ = 1.0 [msec], NVC = 10, Buffer
Size = 200 [Kbyte]

delayed. It introduces a long congestion period, which is one of main problems of the
rate-based congestion control algorithm [81, 82]. When the packets are corrupted due
to cell losses during the long congestion period, the time out at the TCP layer tends to
occur frequently. Then, the TCP window size is decreased to one packet according to
its congestion control strategy. If the cell losses take place continuously for some time,
window sizes of all TCP connections are decreased. It is just the ABR case with inap-
propriate control parameter settings. In the case of EPD, on the other hand, such a case
can be avoided. Once a packet is accepted at the buffer, the whole packet consisting of
multiple cells can be transfered onto the output link. This mechanism can assure the
randomness of packet dropping to some extent, and the packet loss is likely to be de-
tected by the fast retransmit policy, which avoids the throughput degradation [36]. As
a typical example, we show time-dependent behaviors of queue length at the switch
buffer and the TCP window size during first 500 [msec] of simulation run for EPD and
ABR in Figures 4.5 and 4.6, respectively. Figure 4.6 clearly demonstrates the “synchro-
nization” of the TCP window size among connections in the case of ABR. It is noted,
however, that the appropriate parameter setting makes it possible to avoid the synchro-
nization and to improve performance of ABR, which will be discussed in the next Sub-
section. We further notice that while EPD can provide better throughput in this case,
its randomness is not completely achieved; good throughput is obtained by a limited
number of connections. A fairness aspect of both EPD and ABR will be presented in the
next Subsection.

Last, we illustrate the effect of the number of connections on the effective through-
put in Figure 4.7. The propagation delays, τ , are set to 0.01 [msec] (Figure 4.7(a)) and
1.0 [msec] (Figure 4.7(b)), and the buffer size is 300 [Kbyte]. When the propagation de-
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Figure 4.6: Time Dependent Behavior of TCP over ABR: τ = 1.0 [msec], NVC = 10, Buffer
Size = 200 [Kbyte]

lay is small (0.01 [msec]), the high throughput can be kept even with the larger number
of connections in both of ABR and EPD. On the other hand, when the propagation de-
lay becomes large, the throughput is degraded by the larger number of connections in
ABR. It is another problem of ABR that the maximum queue length is increased almost
linearly by the number of connections [81]. Then, cell losses and resulting packet losses
are increased in the case of ABR. The parameter tuning of ABR in this case will be also
discussed in the next Subsection.

Fairness Comparison

Since the fairness aspect in throughput has already been examined in [58], we limit our
presentation to the results of different parameter sets from those in [58]. Note that those
results will be used in the next Section for comparison purposes.

In Figure 4.8, we present the number of successfully transmitted packets for each
connection as a function of time in ABR and EPD. The propagation delay and the buffer
size are set to 0.01 [msec] and 300 [Kbyte], respectively. From this figure, we can see an
excellent fairness property of ABR. An exception is observed during very early time of
simulation since the connection with the larger number experiences the larger round
trip time at the start up time. Then the increase of the TCP window size is delayed.
On the other hand, in the case of EPD, the fairness cannot be provided; a close glance
exhibits that only a limited number of connections transmit packets at time. See, for ex-
ample, around 300 [msec] in Figure 4.8(a). One connection transmits about 40 packets
during 10 [msec] while other connections does only a few packets. This phenomenon
can be explained as follows. In EPD, when the queue length exceeds the threshold, the
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Figure 4.7: Comparisons of EPD and ABR Methods as a Function of the Number of Con-
nections NVC : Buffer Size = 300 [Kbyte].

newly arriving packets are blocked as long as the cells belonging to the same accepted
packet arrive. After the EOP cell arrives, another newly arriving packet can be accepted.
The problem is that the new packet (actually the first cell of the packet) is likely to come
from the same connection. That is, the link tends to be possessed by the limited connec-
tions for some time.

The next figure shows the case of the larger propagation delay, 1.0 [msec] (Figure 4.9).
While the degree of fairness among connections is not very different from the previous
case in EPD, it is degraded in ABR. This indicates that the large propagation delay heav-
ily affects the behavior of ABR in fairness as well as in throughput. The main reason is
that the packet losses take place in this case, which leads to the unfairness treatment
among connections even in the case of TCP over ABR. In Figure 4.9(b), we can find that
all the curves become flat at around 230 [msec]. This is because, during 230 [msec],
almost all connections’ packets are lost during some time because of buffer overflow.
Then, connections wait TCP timer expiration. After the TCP time out, connections be-
gin to send packets at almost same time.

The hogging tendency in EPD becomes stronger by the smaller buffer size as shown
in Figure 4.10. In this figure, the buffer size is changed to 10 Kbyte while the propaga-
tion delay is set to be again small (0.01 [msec]). As has been shown in Figure 4.4, the
total throughput of EPD is larger than the one of ABR. However, it was achieved by
the large throughput of limited connections. On the other hand, the difference of the
throughput among connections is still fairly small in the case of ABR when compared
with the case of EPD. We note here that the fairness among connections in ABR can be
further improved, which will be presented in the next section.

Last, we provide another view of fairness. We examine the transfer time of the burst
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Figure 4.8: Number of Successfully Transmitted Packets as a Function of Time:
τ = 0.01 [msec], NVC = 10, Buffer Size = 300 [Kbyte]

which consists of multiple packets. For this purpose, we add a new connection un-
der the condition that the network is in steady state. By this experiment, we intend to
demonstrate that the burst transmission delay is much affected by the start time of the
new connection in the case of EPD while not in ABR. As typical examples (not excep-
tional cases), we present two cases where the new connection starts its packet transmis-
sion at 175 [msec] and 250 [msec]. Figures 4.11 and 4.12 show the cases of EPD and ABR,
respectively. In the figures, we plot the number of successfully transmitted packets de-
pendent on time. In ABR (Figure 4.12), we can observe that the burst delay is almost
in proportional to the burst size in ABR. Exceptional are early packets, which is due to
the slow start of the window size in TCP. On the other hand, EPD cannot provide such
a property: it sometimes achieves very fast transmission (see first thirty packets in Fig-
ure 4.11(a)), or no transmission (Figure 4.11(b)).

4.2.3 Parameter Tuning for TCP over ABR

In the previous Subsection, we have shown that the ABR service can provide an effec-
tive use of the bandwidth compared with EPD and UBR except the cases of (1) the small
buffer size, (2) the large number of connections and (3) the large propagation delay. As
will be shown in the below, performance degradation of ABR is mostly caused by inap-
propriate setting of control parameters, but selection of appropriate parameters is not
an easy task when we use a simulation technique through try and error. Therefore, we
utilize the analytical result obtained in [47]. In [47], two conditions are imposed to
achieve full link utilization and no cell losses at the buffer by assuming that all connec-
tions behave identically.
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Figure 4.9: Number of Successfully Transmitted Packets as a Function of Time:
τ = 1.0 [msec], NVC = 10, Buffer Size = 300 [Kbyte]

Condition 1: For the maximum queue length (denoted by Qmax) to be less than the buffer
size, we should have

BL ≥ Qmax

= Q + RDF

√
2AIR NVC Q

BW

−NVC RDF log
(
1 +

2AIR Q

BW

)

+τ
√

2AIR BW Q + AIRNVC RDF τ

+
AIRBW τ 2

2
. (4.5)

where Q represents a threshold value at the cell buffer. From the above equation,
we can see that both of RDF and AIR should be small, but the reduce rate RDF

has a larger effect than the increase rate AIR on the maximum queue length.

Condition 2: The minimum queue length should not reach zero for avoiding “under
utilization” of the link. Since the required condition is more complicated, we omit
the equation. The results in [47] show that RDF and AIR should be large to satisfy
this condition.

There may exist many combinations of parameters that satisfy the above two condi-
tions. In that case, we choose larger AIRF and smaller RDFF , which leads to the more
rapid rate increase and decrease. It means that it can achieve the good transient behav-
ior.
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Figure 4.10: Number of Successfully Transmitted Packets as a Function of Time:
τ = 0.01 [msec], NVC = 10, Buffer Size = 10 [Kbyte]

We have another possibility that there exist no control parameter set satisfying the
above two conditions since the above two conditions imply opposite directions regard-
ing RDF and AIR. Such a case tend to occur when the propagation delay is large as will
be shown in the below.

Parameter Tuning for the Effective Throughput

In what follows, our investigation is devoted to improve the effective throughput. We
then show that as a side effect, the fairness among connections can also be improved.
We examine the values of increase and decrease rates of ACR under the condition that
the propagation delay can be estimated a priori, which is implemented by the ABR ser-
vice [55]. We have another control parameter Q, the threshold value of the queue length
for congestion indication. While it is not determined in the negotiation process, we can
determine it in the design phase of the ABR service based on two conditions presented
in the above. However, our main concern in this Chapter is to tune the ABR control
parameters. Therefore, in the below, we will seek two parameters, AIRF and RDFF ,
based on the above two conditions for given Q (a half of the buffer size) and other sys-
tem parameters.

We begin with the small buffer size case for the small propagation delay. For given
conditions that NVC = 10, the Buffer Size = 10 [Kbyte], and the propagation delay τ =
0.01 [msec], we change parameters as

AIRF : 1/64→ 1/256

RDFF : 16→ 2
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(b) Start Time is 250 [msec].

Figure 4.11: Number of Successfully Transmitted Packets as a Function of Time in EPD:
τ = 0.01 [msec], NVC = 10, Buffer Size = 300 [Kbyte]

where AIRF = (AIR×NRM /PCR) controls the increase rate of ACR, and a smaller value
of AIRF leads to the moderate rate increase. On the other hand, RDFF (= RDF/NRM )
controls the decrease rate of ACR, and a quick rate decrease is accomplished by a smaller
value of RDFF .

Using the above parameters, we have confirmed that the throughput can be increased
to 0.964 from 0.888 (see Figure 4.2(a)) as a result of limiting the number of lost pack-
ets (decreased to 51 from 9,598). A more notable result obtained in this experiment is
that the fairness among connections is much improved. Compare Figure 4.13 with Fig-
ure 4.10(a) for EPD case and Figure 4.10(b) for ABR case without parameter tuning. We
should note here that even with tuned parameters, we still have some lost packets. The
difference is mainly due to the simplification of the analysis adopted in [47]. In [47], it is
assumed that all connections behave identically, and that the rate changes is accounted
in the unit of bits, that is, the fluid flow approximation is applied in the analysis. There-
fore, we may need some margin when the results in [47] is applied in real situations.

The large propagation delay is next considered. We first use 300 [Kbyte] as large
buffer size, and the propagation delay is set to 1.0 [msec]. In this case, we have the fol-
lowing parameters for satisfying two Conditions 1 and 2: AIRF = 1/128 and RDFF

= 2. AIRF is set to be large compared with the previous case. The throughput is in-
creased from 0.9178 (Figure 4.4(a)) to 0.9588. The reason is that the corresponding num-
ber of lost packets is decreased to 0 from 8,464 (Figure 4.4(b)). Furthermore, the fair-
ness, which has not been achieved in the case without tuning, can be improved. In Fig-
ure 4.14, we show the time dependent behavior of the queue length at the switch buffer
and the number of successfully transmitted packets. These figures correspond to Fig-
ures 4.6(a) and 4.9(b) without parameter tuning.
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Figure 4.12: Number of Successfully Transmitted Packets as a Function of Time in ABR:
τ = 0.01 [msec], NVC = 10, Buffer Size = 300 [Kbyte]
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Figure 4.13: Number of Successfully Transmitted Packets as a Function of Time in ABR
with Parameter Tuning: τ = 0.01 [msec], NVC = 10, Buffer Size = 10 [Kbyte]

One problem is that we could not find the parameters which satisfy both conditions
in the case of the small buffer size (10 [Kbyte]). Allowing “under utilization”, but in-
hibiting the cell loss leads to parameters AIRF = 1/256 and RDFF = 2. The result was
that while the number of lost packets is decreased to 1,163 from 62,953, the through-
put was unexpectedly decreased to 0.435 from 0.458. (EPD achieved the throughput
of 0.853 in Figure 4.4(a).) One favorable point is that it can achieve the fairness among
connections as shown in Figure 4.15. In the figure, the case of EPD is also shown for
comparison purpose. We next change the parameters so that the condition of no under
utilization is fulfilled, but the cell loss is allowed. By this settings, we expect the abil-
ity of TCP packet retransmissions to improve the performance. If we use parameters
AIRF = 1/256 and RDFF = 4, the throughput is improved to 0.542 at the expense of the
fairness degree as shown in Figure 4.16.

60



0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 L

en
gt

h

Time (ms)

(a) Queue Length at Switch Buffer

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r 

of
 A

ck
no

w
le

dg
ed

 P
ac

ke
ts

Time (ms)

(b) The Number of Successfully Transmitted
Packets

Figure 4.14: Time Dependent Behavior of TCP over ABR with Parameter Tuning: τ =
1.0 [msec], NVC = 10, Buffer Size = 300 [Kbyte]

Last, in Figure 4.17, we show the comparison of three cases: EPD, ABR without tun-
ing, ABR with tuning. The first two cases are drawn from Figure 4.4(a). In obtaining the
last case, we change the control parameters so that high throughput can be obtained for
given buffer size. Table 4.2 summarizes the parameter sets of ABR after tuning. For ac-
tual implementation, 10 [Kbyte] buffer seems to be rather small. However, we can see
from the figure that EPD can achieve the high throughput at the expense of fairness
among connections even with the small buffer size. On the other hand, while ABR can-
not provide the better performance with the small buffer size, higher throughput can
be attained by carefully choosing control parameters.

The last experiment in this Subsection is parameter tuning dependent on the num-
ber of connections NVC . As has been shown in Figure 4.7(b), the throughput of ABR
is degraded by the larger number of connections when we use fixed values of control
parameters. However, it can be avoided. For example, when NVC = 30, the parameters
should be AIRF = 1/128 and RDFF = 4 for the case of 1.0 [msec] propagation delay and
300 [Kbyte] buffer size. That is, the total increase rate is reduced. Then, the through-
put is dramatically improved from 0.740 (Figure 4.7(b)) to 0.995, which outperforms
even the EPD case (0.931). The reason is that the number of lost packets is decreased
from 34,862 to only 59 during simulation run. As an example behavior, we compare
the queue length dependent on time in Figure 4.18. Recall that 300 [Kbyte] buffer cor-
responds to approximately 5,800 [cells]. By comparing Figures 4.18(a) and (b), we can
observe that the cell loss and under utilization can be successfully avoided.

We last note that in the above results, the sensitivity on parameter selections has not
been discussed. However, it is not a serious problem in our case since TCP can recover
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Figure 4.15: Number of Successfully Transmitted Packets as a Function of Time in EPD
and ABR: τ = 1.0 [msec], NVC = 10, Buffer Size = 10 [Kbyte], AIRF = 1/256,
and RDFF = 2

the small number of cell losses and performance degradation can be sustained.

Case where a New Connection is Added

We next treat the case where the new connection is added to the network. The selec-
tion of the initial transmission rate, ICR, is important in the rate-based congestion con-
trol [83] since if ICR is set too large,the queue length at the buffer grows suddenly, which
may result in cell losses. According to [47], we need to fulfill the following conditions.

ICR = min

(
PCR,

max(BL−Qmax, 0)

τ + Qmax/BW

)
, (4.6)

and

XRM =
ICR

NRM

(
τ +

Qmax

BW

)
, (4.7)

where Qmax is given by the right-hand side of Equation (4.5). In the case of TCP over
ABR, however, we have the slow start mechanism of TCP [2].Therefore, the selection
of ICR does not contribute performance improvement of the new connection due to
the small window size of TCP, Which limits the initial packet transmission rate.Then,
the smaller value of ICR only degrade the performance. To see this, ICR for the new
connection was varied and the transient behavior of the system was observed.

As an extreme example, the case of ICR = PCR is plotted in Figure 4.19 to present
ACR, the queue length, and the number of successfully transmitted packets dependent
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Figure 4.16: Number of Successfully Transmitted Packets as a Function of Time in ABR
with Parameter Tuning: τ = 1.0 [msec], NVC = 10, Buffer Size = 10 Kbyte,
AIRF = 1/256 and RDFF = 4
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Figure 4.17: Comparisons of EPD, ABR with and without Parameter Tuning as a Func-
tion of Buffer Size: τ = 1.0 [msec], NVC = 10

on time. In obtaining the figure, we used the following parameters: the propagation de-
lay τ = 0.01 [msec], the number of connectionsNVC = 10, and the buffer size = 300 [Kbyte].
The new connection begins its packet transmission at 250 [msec]. The figure shows that
even when the new connection starts its transmission with ICR, a stable operation can
be accomplished. Further, we can observe that the slopes of the number of successfully
transmitted packets are almost same among the connections including the new added
connection, which indicates that the fairness can be offered even to the new connection.

For comparison, time dependent behaviors of the new connection with several val-
ues of ICR are shown in Figure 4.20. In the figure, the behaviors of other existing con-
nections are omitted. From the figure, we observe that the larger ICR is preferable for
the new connection. When we consider a short-length burst, however, the delays are
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Figure 4.18: Time Dependent Behavior of Queue Length with and without Parameter
Tuning: τ = 1.0 [msec], NVC = 30, Buffer Size = 300 [Kbyte].

not different due to the slow start of TCP. In the figure, the short-length burst corre-
sponds to less than twenty packets. Such a property is not expected since the larger ICR

should lead to the smaller burst delays for the performance objective. Fortunately, we
can choose ICR so that the cell loss does not occur at the switch buffer [47]. It means that
we can expect the high speed transmission even for short burst by utilizing a more ag-
gressive window increase algorithm instead of the slow start mechanism in TCP. Such
a investigation should be a future research topic.

4.3 Multihop Network Case

In this Section, we show the simulation results of the case of multihop network model,
to investigate the robustness of TCP over UBR with EPD (TCP over UBR), TCP over
EPD/A and TCP over ABR networks. We also consider the TCP over ABR with an EPD
enhancement where an EPD mechanism is incorporated into ABR.

4.3.1 Network Model

The simulation model for multihop network is depicted in Fig. 4.21. The model consists
of source end systems (SES), destination end systems (DES), six switches (SW1∼SW6)
and links. The connection of VC i is established from SES i to DES i. Every connection
passes through the bottleneck switch, SW5, where ten connections share the output link
of the switch, SW5. Using this model, we study the throughput and fairness among con-
nections, traversing different numbers of links. We assume the output-buffered switch,
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Figure 4.19: Time Dependent Behavior with ICR = PCR for the New Connection:
τ = 0.01 [msec], NVC = 10, Buffer Size = 300 [Kbyte]

and the bandwidth of each link is assumed to be 156 [Mbps] (325.2 [cell/msec]). The
propagation delay from each of switches to SES/DES is fixed at 0.005 [msec], corre-
sponding to approximately 1 [Km] long. By setting the propagation delays between
switches to be identical, we denote τ as the propagation delay between farthest switches
(SW1 and SW6). In simulation, τ is set to be 0.01 [msec] (approximately 2 [Km] long)
or 1.0 [msec] (approximately 200 [Km]) by considering LAN and WAN environments,
respectively.

4.3.2 Performance Comparisons

In this Subsection, we provide comparative results for TCP over EPD(/A) and TCP over
ABR in terms of the throughput and the fairness among connections. Unless otherwise
stated, the control and simulation parameters follow that of the singlehop network case
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Figure 4.21: Multihop Network Model

(summarized in Table 4.1). Figure 4.22 shows the case of TCP over ABR, plotting the
number of successfully transmitted packets and the number of lost packets as a func-
tion of time. In the figure, results of connections VC1, VC6, VC7, VC8, VC9 and VC10,
are plotted (results of VC2-VC5 are omitted because those behave like VC1 or VC6). We
set RIF to 1/256 and RDF to 1/32 in this case based on the analytic result in Subsec-
tion 4.2.3 where the single bottleneck link is considered. The propagation delay, τ , is set
to be 0.01 [msec]. The buffer size of switches is 300 [Kbyte], approximately 5,700 [cells].
From this figure, we can observe an excellent fairness property of TCP over ABR. In the
figure, the behavior of first 1 sec during a simulation run is plotted to illustrate the tran-
sient behavior and the fairness among connections. The total throughput of all connec-
tions is 0.967. Noting that the overhead due to RM cells (one RM cell for 31 data cells)
is introduced in the rate-based congestion control, the link utilization of output link at
SW5 is almost full.

The next figure, Fig. 4.23, shows the case of TCP over EPD. The total throughput
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Figure 4.22: TCP over ABR: τ = 0.01 [msec], Buffer Size = 300 [Kbyte]
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Figure 4.23: TCP over EPD: τ = 0.01 [msec], Buffer Size = 300 [Kbyte]

becomes 0.934, slightly smaller than that of TCP over ABR (0.967) because of lost pack-
ets and resulting packet retransmissions. Furthermore, it shows considerable unfair-
ness among connections. VC9 and VC10, the connections with small propagation delay,
lose more packets than VC1 with larger propagation delays. It is because for the smaller
propagation delay of connections, the source can detect a packet loss faster, and retrans-
mit packets by fast retransmission [10]. Then the source can send more packets, which
results in an increase of lost packets, and the obtained throughput for each connection
is much different with each other.

Figure 4.24 shows that the fairness of TCP over EPD can be slightly improved among
connections by providing a per-VC accounting mechanismwith EPD (TCP over EPD/A).
A notable point is that a misbehaved connection (VC10) observed in Fig. 4.23(a) disap-
pears. However, the throughput is decreased to 0.898 from 0.93. Further, the fairness
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Figure 4.24: TCP over EPD/A: τ = 0.01 [msec], Buffer Size =300 [Kbyte]
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Figure 4.25: TCP over ABR: τ = 1.0 [msec], Buffer Size = 50 [Kbyte]

degree is still inferior to that of TCP over ABR (Fig. 4.22(a)). When comparing with
TCP over EPD (Fig. 4.23(a)), the number of lost packets of the connection with the small
propagation delays (e.g., VC10) increases. It is because the packets from such a connec-
tion is more frequently discarded at the switch since the per-VC accounting mechanism
tries to perform a fair sharing of the link at the switch.

We next consider the long propagation delay and the small buffer size, i.e., τ is changed
from 0.01 [msec] to 1.0 [msec] and buffer size is changed from 300 [Kbyte] to 50 [Kbyte].
Figures 4.25, 4.26 and 4.27 show the case of TCP over ABR, TCP over EPD, TCP over
EPD/A, respectively. In this experiment, the total throughput of each case becomes
0.636, 0.891 and 0.903. Note that, the throughput of TCP over ABR is drastically de-
graded when cell loss takes place at the intermediate switch (Fig. 4.25(b)). As pointed
out in Subsection 4.2.3, the drawback of the rate-based congestion control is that two
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Figure 4.26: TCP over EPD: τ = 1.0 [msec], Buffer Size = 50 [Kbyte]
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Figure 4.27: TCP over EPD/A: τ = 1.0 [msec], Buffer Size = 50 [Kbyte]

conditions, no cell loss occurrence and no under-utilization, cannot be fulfilled at the
same time in some cases as in the current one. Our current parameter setting is to al-
low the small cell loss. Then, the throughput is degraded as well as the fairness is also
lost. It is possible that cell loss is avoided by tuning control parameters of ABR. For ex-
ample, Fig. 4.28 shows the case where RIF is changed to 1/1024 from 1/256 and RDF

to 1/8 from 1/32. We observed no cell loss as expected, and the total throughput is
improved to 0.814, but still lower than that of TCP over EPD (0.891) because of under-
utilization at SW5. On the other hand, in TCP over EPD, the throughput is still high
while the degree of unfairness is much larger than that of TCP over ABR. As shown in
Fig. 4.27, an introduction of the per-VC accounting does not help improve the fairness
among connections in this case.

In summary, TCP over ABR can provide high throughput and fairness unless the
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Figure 4.28: TCP over ABR: τ = 1.0 [msec], Buffer Size = 50 [Kbyte], RIF = 1/1024, RDF
= 1/8
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Figure 4.29: Network Model with VBR Connections

propagation delay is large and the switch buffer is small. On the other hand, TCP over
EPD can offer high throughput even in such conditions at the compensation of the fair-
ness. The fairness can be improved by providing the per-VC accounting mechanism to
EPD (TCP over EPD/A), but its effect is limited. In the case of TCP over ABR, it is possi-
ble to obtain higher throughput at the expense of the fairness as in TCP over EPD(/A).
That is, the rate-based congestion control algorithm has a freedom to choose control pa-
rameters, which affects a balance of the throughput and the fairness. In the following
Subsection, we will seek another solution to obtain good throughput and fairness in
TCP over ABR.
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Figure 4.30: Aggregation Rate of VBR Traffic as a Function of Time

4.3.3 Effect of VBR Traffic

In this section, we investigate the effect of VBR traffic on the performance of TCP traffic
which utilizes the ABR service class. As an example of the VBR traffic, we have used
an MPEG-1 encoded video stream of 30 [frame/sec], 352 × 240 [pixels] with 4.5 [Mbps]
average rate and 14.84 [Mbps] maximum rate. In the simulation experiments in this
Subsection, ten identical VBR sources (SESvbr 1 to SESvbr 10) are added at SW5 with
different starting points (Fig. 4.29). The aggregate cell generation rate of VBR traffic as
a function of time is shown at Fig. 4.30. In the following simulation experiments, it is
assumed that VBR traffic is given higher priority than ABR/UBR traffic, i.e., VBR traf-
fic cells are transmitted prior to ABR/UBR cells at the switch buffer if VBR cells exist.
In other words, the bandwidth available to the ABR/UBR service class is varied de-
pendent on time, and we want to examine the robustness of the rate-based congestion
control method in such an environment.

When there does not exist the VBR traffic, TCP over ABR showed an excellent per-
formance as illustrated in Fig. 4.22 if we set the small propagation delay (0.01 [msec])
and large switch buffer (300 [Kbyte]). When we use the same values for RIF and RDF

as in previous section (RIF = 1/256, RDF = 1/32), the total throughput of TCP over
ABR traffic is slightly degraded with VBR traffic. The total throughput of TCP traffic
becomes 0.569. Since the mean cell generation rate of VBR traffic is 45 Mbps in total
(about 0.29 in utilization), the available bandwidth to the ABR service class is not fully
utilized even if we take account of RM cells overhead in the ABR service class (1/32 ≈
0.03). The fairness is also lost in this case as shown in Fig. 4.31. On the other hand, TCP
over EPD shows an excellent performance. The obtained throughput is 0.614, larger
than that of TCP over ABR. Further, by comparing Figs. 4.32 and 4.23 (cases with and
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Figure 4.31: TCP over ABR with VBR Traffic: τ = 0.01 [msec], Buffer Size = 300 [Kbyte],
RIF = 1/256, RDF = 1/32

without VBR traffic), we can see that the existence of VBR traffic does not affect the fair-
ness among connections so much.

We next examine the parameter tuning for TCP over ABR. Figure 4.33 shows the case
where RIF is changed to 1/512 and RDF to 1/32. We choose these values from Condi-
tion 1 and Condition 2 of Subsection 3.3 by setting BW to 100 [Mbps] (247.2 [cells/msec])
because the average rate of VBR traffic is 45 [Mbps] (106.0 [cells/msec]). The total through-
put is improved to 0.630 because no cell loss occurs by appropriate control parameters.
Then, the good fairness property can be achieved as shown in Fig. 4.33(a). That is, even
if VBR traffic exists in the network, the performance of TCP over ABR can be kept high
by appropriately choosing the control parameters of the rate-based congestion control.
However, call admission control (CAC) for the CBR/VBR service classes should reflect
the existence of the ABR service class. That is, the call acceptance for the CBR/VBR ser-
vice class should be limited to keep a some amount of the bandwidth available to the
ABR service class.

4.4 Conclusion

In this Chapter, we have investigated performance of TCP over ATM networks for TCP
data transfer. We have compared TCP over UBR, TCP over EPD and TCP over ABR
with some simulation experiments, and have obtained the following results about their
nature of throughput and fairness among connections:

Singlehop Network Case:
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Figure 4.32: TCP over UBR with EPD with VBR Traffic: τ = 0.01 [msec], Buffer Size =
300 [Kbyte]

TCP over ABR can outperform the other two methods (TCP over UBR and TCP
over UBR with EPD) if the control parameters of rate-based congestion control al-
gorithm are chosen carefully. While the duality problem of two congestion control
mechanisms of TCP and ATM was observed in some parameter settings, we have
also shown that it can be avoided when we can choose control parameters of ABR
service class appropriately.

Multihop Network Case:

Even in multihop network case, TCP over ABR can achieve higher throughput
than TCP over UBR and TCP over UBR with EPD. In the WAN environment, how-
ever, where the propagation delay is over 1 ms, an EPD enhancement is preferred
since a pure ABR mechanism cannot avoid cell loss unless the switch buffer is suf-
ficiently large. We can decrease cell loss and improve the performance while we
need a careful setting of the threshold values.

If VBR traffic exists in the network, the control parameters of ABR is carefully
tuned according to the volume of the VBR traffic to avoid cell loss. However, a
simple calculation of mean VBR traffic rate is sufficient in order to take account of
the effect of the VBR traffic. Of course, the larger buffer is preferred to avoid the
cell loss since the bandwidth available to the ABR service class cell is certainly re-
duced due to the VBR traffic.
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Figure 4.33: TCP over ABR with VBR Traffic: τ = 0.01 [msec], Buffer Size = 300 [Kbyte],
RIF = 1/512, RDF = 1/32

We have left several research topics; when the propagation delay is large and the
buffer size is relatively small, we have no means to attain high performance in ABR.
One solution was to provide the EPD mechanism to the ABR service as having been
demonstrated in this paper. Another approach may be to re-consider the congestion
control mechanism of TCP to be suitably applied to the ABR service class. One example
seems to be the Slow Start algorithm.
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Table 4.1: Control and Simulation Parameters for Singlehop/Multihop Network Case
TCP Specific Parameters

Packet size 4,352 [Byte] (Approx. 90 [cells])
Receiver’s advertised window size 64 [Kbyte]

UBR Service Class Specific Parameters
PCR (Peak Cell Rate) 353.2 [cells/msec]

EPD Specific Parameters
Threshold at switch buffer half the buffer size

ABR Service Class Specific Parameters
NRM 32
PCR (Peak Cell Rate) 353.2 [cells/msec]
MCR (Minimum Cell Rate) PCR/1000
ACR (Allowed Cell Rate) variable
XDF (XRM Decrease Factor) 1/2
AIRF (= AIR NRM/PCR) 1/64
AIR (Additive Increase Rate) (see above)
RDFF (= RDF/NRM ) 16
RDF (Rate Decrease Factor) (see above)
ICR (Initial Cell Rate) PCR/20
XRM 32
XDF (XRM Decrease Factor) 1/2
TOF (Time Out Factor) 2
TDF (Timeout Decrease Factor) 1/8
Threshold at switch buffer half the buffer size

Network Specific Parameters
Link bandwidth, BW 353.2 [cells/msec]
Distance between source and destination, τ 0.01, 0.1, 1.0 [msec]
The number of active connections, NVC 10
Buffer size: variable

(10 [Kbyte] ∼ 300 [Kbyte])
Simulation Related Parameters

Simulation Runtime 50 [sec]

Table 4.2: Parameter Set of ABR after Tuning as a Function of Buffer Size: τ = 1.0 [msec],
NVC = 10

Buffer Size at Switch AIRF RDFF
10Kbyte 1/256 4
50Kbyte 1/256 4
100Kbyte 1/128 4
200Kbyte 1/256 2
300Kbyte 1/256 2
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Chapter 5

Performance Evaluation of HTTP/TCP

on Asymmetric Networks

In this Chapter, we extensively investigate the performance of HTTP/TCP on asym-
metric networks such as ADSL (Asymmetric Digital Subscriber Line) or Cable modem
networks. Since these network services provides asymmetric bandwidth for upstream
link (from the client to the server) and downstream link (from the server to the client),
the throughput of TCP may degrades because it was not designed for asymmetric net-
works. Our analytical approach is similar to the one adopted in [14], but in addition
to TCP Tahoe, we also consider TCP Vegas, which adjusts the sending window size by
observing the round trip times of the connection. We investigate the degree of TCP per-
formance degradation under asymmetric networks and the applicability of TCP Vegas
to asymmetric networks.

Furthermore, we evaluate the performance of the Web document transfer on such
asymmetric networks by analytically treating HTTP over TCP networks. For HTTP, we
consider HTTP/1.1 [70] as well as HTTP/1.0. The new HTTP/1.1 can save the condi-
tion of the previous TCP connection to avoid the unnecessary connection establishment
process when the next transfer request is immediately issued on the same connection.
Through the all of results, we discuss which combination of HTTP and TCP protocols
are appropriate in asymmetric networks.

5.1 Model Definitions

In this Section, we first describe our asymmetric network model in Subsection 5.1.1.
Then, HTTP/1.0 and HTTP/1.1 protocols are briefly summarized in Subsection 5.1.2.
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Figure 5.1: Network Model

5.1.1 Network Model

The network model which we will use in the analysis and simulation is depicted in
Figure 5.1. The model consists of a server, a client, and two links; downlink from the
server to the client and upstream link from the client to the server. The upstream and
the downstream links have asymmetric bandwidth, denoted as µf [data packets/sec]
and µr [ACK packets/sec], respectively. Note that µf and µr are represented by units of
data/ACK packet, respectively. The buffer sizes are denoted as Bf [data packets] and
Br [ACK packets], and the propagation delays between the server and client are τf [sec]
and τr [sec].

Following [14], we introduce an asymmetry factor k defined as µf/µr to represent the
degree of network asymmetry. For instance, if the bandwidth of downstream and up-
stream links are 16 [Mbps] and 160 [Kbps], respectively, and the data packet size and
ACK packet size are 1 [Kbyte] and 40 [byte], we then have µf = 2000 [data packets/sec],
µr = 500 [ACK packets/sec]. Then, the asymmetry factor k becomes µf/µr = 4. As the
asymmetry factor k becomes large, the upstream link with smaller bandwidth cannot
serve all ACK packets generated by the client, and some of ACK packets are lost at the
buffer of upstream link. It causes the performance degradation of TCP, which will be
discussed in detail in Section 5.3.

5.1.2 HTTP (Hyper Text Transfer Protocol)

Figure 5.2(a) shows a time chart of typical Web document transfer using HTTP/1.0.
When the client requests the Web document to the server, a new TCP connection is al-
ways established between the client and server. The client first sends a HTTP request
command to the server. Then, the server begins to transfer the Web document using
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Figure 5.2: Web File Transfer by Two Versions of HTTP

TCP. When the document is completely transfered, the TCP connection is immediately
closed. It always takes one and a half of RTT (Round Trip Time) before the document
transfer is actually started.

In HTTP/1.1, on the other hand, the client saves the information of previously es-
tablished TCP connections. It can be used when the successive request is destined for
the same server. The overhead of document transfer then becomes smaller than that of
HTTP/1.0 because another connection establishment phase can be omitted as shown in
Figure 5.2(b).

5.2 Analysis

In this section, we present the analysis of Web document transfer delay in asymmetric
networks. As shown in Figure 5.2, there are two phases in the Web document transfer;
connection setup phase and document transfer phase. We will consider the analysis of
Web document transfer delay by dividing it into these two phases.
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5.2.1 Connection Setup Phase

As has been described in Subsection 5.1.2, it takes one and a half of RTT for the server to
establish a new TCP connection in HTTP/1.0. In HTTP/1.1, it takes the same time as in
HTTP/1.0 for the first document request, but the following transfers does not need to
establish other TCP connections so that it takes only a half of RTT to start the document
transfer (Figure 5.2(b)).

Therefore, the connection setup time Tsetup is,

Tsetup =




3
2
rtt, (all transfers in HTTP/1.0 and the first transfers in HTTP/1.1)

1
2
rtt, (the second and later transfers in HTTP/1.1)

(5.1)

where rtt is the round trip time of the connection.

5.2.2 Document Transfer Phase

In this Subsection, we will obtain time dependent behavior of the window size, cwnd(t) [pack-
ets], and then obtain the mean throughput in each version of TCP.

TCP Tahoe Version

As shown in Figure 1.1(a), in Tahoe version, cwnd(t) has cycles. We assume that one
cycle starts on time t = 0 [sec]. When an ACK packet is received by TCP at the server
side at time t+tA [sec], cwnd(t+tA) is updated from cwnd(t) as shown in Equations (1.1).
Furthermore, when packet loss is detected, the value of ssth at time t is updated by
Equation (1.2). From Equation (1.1), we obtain

d cwnd(t)

d ack(t)
=




m, if cwnd(t) < ssth;
m2

cwnd
, if cwnd(t) > ssth;

(5.2)

where ack(t) [packets] is the accumulated number of ACK packets received by the server
from t = 0. The rate of receiving ACK packets by the server TCP depends on whether
the upstream link (from the client to the server) can serve all ACK packets generated
by the client TCP. Then, we can derive dack(t)

d t
as follows;

d ack(t)

d t
=




cwnd(t)

rtt
, if cwnd(t)

rtt
≤ µr;

µr, if cwnd(t)
rtt

> µr;
(5.3)
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where rtt [sec] is RTT for the case where the downstream link buffer is empty, i.e.,

rtt =
1

µf
+ τf +

1

µr
+ τr (5.4)

Finally, cwnd(t) can be obtained from Equations (5.2) and (5.3) by utilizing the following
relationship;

d cwnd(t)

d t
=

d cwnd(t)

d ack(t)

d ack(t)

d t
(5.5)

The instantaneous throughput at time t, ρ(t) [packets/sec], is then obtained by Equa-
tion (5.5) as;

ρ(t) =




cwnd(t)

rtt
, if cwnd(t)

rtt
≤ µf ;

µf , if cwnd(t)
rtt

> µf ;
(5.6)

One cycle of TCP Tahoe terminates when packet loss occurs. Let Wmax [packets] de-
note the window size at time when packet loss occurs. To obtain Wmax, we need to con-
sider how the packet loss occurs. There are two reasons;

Case 1: the window size exceedsthe bandwidth-delay product of the connection. Here,
the buffer sizes at both upstream and downstream links are also included.

Case 2: the burst size (the number of packets that the server TCP sends continuously)
exceeds the buffer size on the downstream link. If the network has some asym-
metry (i.e., k > 1), the upstream link cannot serve all ACK packets since the rate
of returning ACK packets exceeds the upstream link capacity. It results in losses
of ACK packets at the upstream link buffer. In TCP, each ACK packet is labeled
the largest number of data packet successfully received at the client. Thus, the
server receives non-sequential ACK packets if some of ACK packets are lost. It re-
sults in that the server continuously emits several data packets according to ACK
packets that the server has received, which we call the burst of the data packets.
The length of burst (i.e., the number of consecutively transmitted data packets)
depends on how many ACK packets are lost at the upstream link buffer, and is
given k since the upstream link can serve only 1/k of all ACK packets the client
generates.

Thus, two cases in the above are determined by the relation between the size of the
downstream link buffer, Bf , and the asymmetry factor of the network, k, as follows.
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Case 1: The asymmetry factor k is smaller than the downstream link buffer size (k ≤ Bf)

In this case, the burst length (the number of data packets generated by the server)
is smaller than the downstream link buffer size. Then packet loss occurs when the
window size exceeds the bandwidth-delay product of the connection. Therefore,
Wmax is given as

Wmax = µf

(
τf +

1

µf

)
+ Bf +

µf

µr

[
µr

(
τr +

1

µr

)
+ Br

]

= µfT + Bf + kBr

Case 2: The asymmetry factor k is larger than the downstream link buffer size (k > Bf )

In this case, packet loss occurs when the burst size exceeds the buffer size. Once
the upstream link is fully utilized, the server receives ACK packets with rate of
µr. The corresponding window size, Wr, is equal to the sum of the upstream link
capacity (bandwidth-delay product) and its buffer size, i.e.,

Wr = µr · rtt + Br

Let wr = bWr/mc be the number of bursts on the connection (including both of
upstream link and downstream link). Further, we introduce bi to represent the
number of packets in the ith burst (i = 1, · · ·wr). Then, the current window size, W ,
is given by

∑wr
i=0 bi in the current case.

When the window size reaches Wr, bi for all i is equal to one because no ACK
packet is lost at that time. After that, the length of the burst is incremented in
turn as the server receives an ACK packet and the window size is increased by
one packet. Since in Congestion Avoidance phase, the window size is increased
at rate of m/rtt, the size of jth burst (j = (i + W + 1) mod wr) is increased in ith
increment of the window size after the window size reaches Wr. Then, the packet
loss occurs if the size of some burst exceeds the buffer size of the downstream link
Bf , and one cycle terminates.

In [14], the authors used an approximate method to calculate Wmax. However, if
we calculate the increment process of the window size repeatedly, we can accu-
rately obtain the value of the window size at time when the maximum length of
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wr bursts exceeds Bf . That is,

Wmax =
∑

i

bi when max
i

(bi) = Bf + 1 (5.7)

That is, Wmax can be determined for given values of k and Bf . It is then used to obtain
the length of one cycle, T , by solving the following equation;

cwnd(T) = Wmax

The mean TCP throughput, ρ, is finally obtained as;

ρ =
1

T

∫ T

0
ρ(t) dt (5.8)

TCP Vegas Version

In TCP Vegas, evolution of the window size does not have any cycle. See Figure 1.1(c).
We first consider Case 1’ (k ≤ Bf ) which corresponds to Case 1 of TCP Tahoe. In TCP
Vegas, after the window size reaches Wmax, the window size is tried to be converged
around Wmax, and the downstream link can be fully utilized. In what follows, we cal-
culate Wmax.

The convergence of TCP Vegas is achieved by the following algorithm. TCP Vegas
observes RTT of each packet, and controls the window size according to RTTs. From
Equation 1.4 in Section 1.2, the window size is kept unchanged if the following condi-
tion is satisfied [28, 29, 84];

m α

base rtt
<

cwnd

base rtt
− cwnd

rtt
<

m β

base rtt
(5.9)

where rtt [sec] is the observed round trip time, base rtt [sec] is the smallest value of
observed RTTs, m [byte] is the TCP packet size, and α and β are some constant values.
By letting ql [packets] be the number of packets queued in the downstream link buffer
when the window size, cwnd [packets], reaches Wmax, we have rtt, base rtt and cwnd as
follows;

rtt = τf + τr +
Br

µr

+
ql

µf

base rtt = τf + τr +
Br

µr
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cwnd = µf · rtt

By utilizing the above relations, Equation (5.9) can be simplified as;

α < ql < β

To simplify the analysis, we assume that ql equals (α + β)/2. It is an appropriate sim-
plification since ql is varied between α and β . Then we obtain Wmax as follows;

Wmax = µf

(
τf +

α + β

2µf

)
+ µr

(
τr +

Br

µr

)

When the window size reaches Wmax, the downstream link is fully utilized without
packet loss. We thus have

ρ(t) = µf

We next consider Case 2’ (k > Bf ) corresponding to Case 2 of TCP Tahoe. Since
the server emits several data packets continuously as is the case of TCP Tahoe, TCP Ve-
gas cannot also avoid packet losses. Therefore, the window size has cycles like that of
TCP Tahoe (Figure 1.1(a)). The analysis in this case is almost same as that of TCP Tahoe
(Case 2), except that TCP Vegas employs slow Slow Start described in Subsection 1.2.3.

5.2.3 Derivation of Web Document Transfer Delay

We finally obtain the total of Web document transfer delay Ttotal by summing up connec-
tion setup time obtained in Section 5.2.1, and the actual document transfer time, where
is obtained from ρ(t) in Section 5.2.2 by solving the following equation;

∫ Ttransfer

0
ρ(t) dt = S (5.10)

where S [packets] is the size of Web document. Finally, Ttotal [sec] can be obtained from
Equations (5.1) and (5.10) as;

Ttotal = Tsetup + Ttransfer (5.11)
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Table 5.1: Parameter Set Used in Numerical Examples

Variable Default Value
TCP data packet size m 1 [Kbyte]
TCP ACK packet size mack 40 [byte]
Downstream link buffer size Bf 8 [packets]
Downstream link bandwidth µf 4000 [packets/sec]
Downstream link propagation delay τf 1 [msec]
Upstream link buffer size Br 5 [packets]
Upstream link bandwidth µr 1000 [packets/sec]
Upstream link propagation delay τr 1 [msec]
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Figure 5.3: Throughput vs. Asymmetry Factor k

5.3 Numerical Examples and Discussion

In this Section, we show some numerical examples based on our analysis presented in
Section 5.2, and discuss on the mean TCP throughput in asymmetric networks and Web
document transfer times via HTTP over TCP. For TCP, we use two versions; TCP Tahoe
and Vegas. HTTP 1.0 and 1.1 are also considered for HTTP. Then, we will discuss which
combination of HTTP and TCP is suitable for asymmetric networks. The parameters
displayed in Table 5.1 are used in this section unless otherwise stated.

5.3.1 Comparisons of TCP Mean Throughputs

In this subsection, we only consider TCP level performance. Figure 5.3 shows the through-
put of two versions of TCP as a function of the asymmetry factor of the network, k =
µf/µr. Here, we change µf while fixing µr to determine k. Therefore, a larger value of
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k means larger downstream link bandwidth µf . In the figure, we also plot simulation
results to confirm the accuracy of our analysis presented in the previous section.

Figure 5.3(a) is the case of the TCP Tahoe version. We can see from this figure that
when the asymmetry factor k is small, the throughput increases in proportion to k. Then,
it is suddenly decreased and kept constant when k is large. These two regions corre-
spond to Cases 1 and 2 presented in Subsection 5.2.2, respectively. That is, if k is smaller
than the downstream link buffer size Bf , packet loss occurs only when the window size
exceeds the sum of bandwidth-delay product of the connection and the upstream and
downstream link buffer sizes. In other words, the throughput increases in proportion to
the downstream link bandwidth, µf . If k is larger than Bf , on the other hand, packet loss
takes place when the size of the burst generated by the server exceeds the downstream
link buffer size. It is independent of µf , and therefore the throughput is kept constant.
Our analysis gives good approximation except that the throughput falls down as the
asymmetry factor k gets large. The difference is due to the fact that some of bursts gen-
erated by the server are divided in two in simulation and Wmax becomes larger than the
analysis result.

We next see the case of TCP Vegas. As can be observed in Figure 5.3(b), it is no-
ticeable that the simulation result of TCP Vegas shows quite low throughput (the line
labeled as “Simulation (Vegas)”). This can be explained as follows; as described in Sub-
section 1.2.3, TCP Vegascontrols the window size according to the change of RTTs. Namely,
it stops increasing the window size when RTT gets slightly larger than the smallest RTT
value (base rtt). Since the increase of RTT is caused by queueing at intermediate buffers,
ACK packets passing through the upstream link is first delayed at the upstream link
buffer in asymmetric networks. As a result, the window size is converged to the capac-
ity of the upstream link, but it is small in the current case. It leads to very low through-
put of TCP Vegas.

Of course, TCP Vegas was originally designed not for asymmetric networks, and
we made a small change in the algorithm of TCP Vegas to resolve this problem. In the
original TCP Vegas, the change of RTTs is found by comparing the observed RTT with
a minimum RTT, base rtt. Our change is to update base rtt at a regular interval so that
TCP Vegas could set base rtt to the value which includes the queuing delay at the up-
stream link buffer. The line labeled by “Simulation (enh-Vegas)” in Figure 5.3(b) shows
the case of our modified Vegas, where the update interval is set to be 100 [msec]. The
throughput is remarkably improved. Since our analysis assumes that TCP Vegas can
fully utilize the capacity of the network, analysis results give a good accuracy when
compared with the simulation results. Namely, our enhanced version of TCP Vegas can
set the window size to an appropriate value. We will use this enhanced Vegas version
in the numerical results shown in the the following subsection.
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Figure 5.4: Document Transfer Time vs. Propagation Delay

It is clear by comparing Figures 5.3(a) and 5.3(b) that the mean throughput of TCP
Vegas is higher than that of TCP Tahoe for small k, but lower for large k. If k ≤ Bf , TCP
Vegas can appropriately control the window size like Figure 1.1(c), and no packet loss
occurs. Therefore, TCP Vegas can achieve higher throughput than TCP Tahoe. When k

becomes larger than Bf , however, packet loss occurs even in TCP Vegas and the change
of the window size has cycles like TCP Tahoe (Figure 1.1(c)). It is because even TCP
Vegas cannot avoid packet losses caused by the bursty generation of data packets by
the server. Furthermore, at the beginning of the cycle, the window size of TCP Vegas
is not increased as fast as that of TCP Tahoe according to its slow Slow Start discipline
as described in Section 1.2.3. Then, the throughput of TCP Vegas becomes lower than
even that of TCP Tahoe.

5.3.2 Web Document Transfer Delay through HTTP over TCP

In this section, we will show analytic results of Web document transfer delay when us-
ing HTTP over TCP. We consider four combinations of HTTP over TCP; HTTP/1.0 over
TCP Tahoe (labeled “http-tahoe” in Figures 5.4-5.7), HTTP/1.0 over TCP Vegas (“http-

vegas”), HTTP/1.1 over TCP Tahoe (“http1.1-tahoe”), and HTTP/1.1 over TCP Vegas
(“http1.1-vegas”).

First, we investigate the case of a single Web document transfer. In this case, there
is no difference between HTTP/1.0 and HTTP/1.1 in our performance study because
the advantage of HTTP/1.1 is to omit the connection setup phase in transmitting two or
more documents consecutively. Therefore, only a choice of TCP Tahoe or Vegas affects
the performance. Figure 5.4 shows the Web document transfer delay as a function of the
propagation delay between the server and the client. Here, we set τf = τr. The asymmet-
ric factor k is fixed at 3.75 (i.e., µf = 40 [Mbps]). In the figure, four cases of the document
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size are considered; 10 [Kbyte], 100 [KByte], 1,000 [Kbyte] and 10,000 [Kbyte]. A typi-
cal value of the document size on the existing Web server is 10 [Kbyte], but we can find
1,000 or 10,000 [Kbyte] documents of audio and movies. We can observe from this fig-
ure that when the propagation delay becomes large, the performance of TCP Vegas gets
worse than that of TCP Tahoe. Furthermore, as the document size becomes smaller, the
performance of TCP Vegas gets worse than that of TCP Tahoe with the smaller propa-
gation delays. It is due to the slow Slow Start of TCP Vegas. It is true that TCP Vegas
could achieve higher throughput than TCP Tahoe in steady state, but it takes more time
to reach the steady state due to its slow Slow Start because the increase of TCP window
size is triggered by reception of ACK packets. Therefore, when the propagation delay
is large, the ill effect of slow Slow Start becomes more significant. Because of the same
reason, as the document size becomes small, TCP Vegas gives larger transfer delay than
TCP Tahoe by the smaller propagation delays. It is because the document transfer tends
to be terminated before TCP Vegas reaches the steady state.

Another comparative result of TCP Tahoe and Vegas is shown in Figure 5.5 where
the documenttransfer delays are plotted as a function of the asymmetry factor k. As one
may expect, when k becomes large, the transfer delay of TCP Vegas becomes worse than
that of TCP Tahoe. It is because the throughput of TCP Vegas is degraded by larger k as
having been shown in Section 5.3.1 (see Figure 5.3). Since typical values of the asymme-
try factor in ADSL networks is 1 to 10, the performance of TCP Vegas is not so high in
ADSL networks. Or, if TCP Vegas is used in the asymmetric networks, the downstream
link buffer size, Bf , should be large enough in order to achieve high performance.

To investigate the effect of HTTP/1.1, we next consider multiple Web document trans-
fer. Here we assume that the multiple documents are consecutively requested by the
same client. Figure 5.6 presents the total transfer delay as a function of the number of
Web documents. In the figure, four combinations of HTTP and TCP are shown. Fig-
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Table 5.2: Probability Distribution of Web Documents

Probability File Size(s)
40% 2 Kbyte,3Kbyte
25% 1 Kbyte,5Kbyte
15% 4 Kbyte,6Kbyte

5% 7 Kbyte
4% 8 Kbyte,9 Kbyte,10 Kbyte,11 Kbyte
4% 12 Kbyte,14 Kbyte,15 Kbyte,17 Kbyte,18 Kbyte
6% 33 Kbyte
1% 200 Kbyte

ures 5.6(a) and 5.6(b) show cases of the small propagation delay (τf = τr = 0.01 [msec])
and the large propagation delay (τf = τr = 10 [msec]), respectively. The asymmetric fac-
tor k is set to be 3.75. In obtaining these figures, we assume that the size of the first doc-
ument is 100 [Kbyte] while those of following documents are 10 [Kbyte]. From these
figures, we can observe that when the propagation delay is small, the effect of intro-
ducing HTTP/1.1 is quite small (Figure 5.6(a)). Even if the propagation delay becomes
large, the effect of HTTP/1.1 is limited, and the selection of TCP becomes more impor-
tant (Figure 5.6(b)).

We last consider another case for the document size distribution. The probability
distribution of the document that we tested is shown in Table 5.2, which we brought
from [85]. Figure 5.7 shows the mean document transfer delay as a function of the prop-
agation delay between the server and the client. It can be observed from this figure that
if the propagation delay is small (100 [µsec] ∼ 1 [msec]) such as the case of ADSL net-
works, it is a good choice to use TCP Vegas. On the other hand, HTTP/1.1 does not give
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performance improvement in asymmetric networks.

5.4 Conclusion

In this Chapter, we have analytically investigated of the performance of Web document
transfer on HTTP over TCP in asymmetric networks. Our conclusions are summarized
as follows;

TCP Vegas:

TCP Vegas may show very low throughput because it controls its window size
according to the smallest bandwidth of the connection, which corresponds the
downstream link in the asymmetric network. This can be avoided by applying
the modification as we have shown. However, the throughput may be degraded
in some cases; e.g., the propagation delay is small and/or the size of documents
is small. Therefore, TCP Vegas is not necessary in the asymmetric network.

HTTP/1.1:

HTTP/1.1 can improve the document transfer delay when the multiple Web files
are transferred as it expects. However, its effect is limited and an appropriate
choice of TCP is more important in asymmetric networks.

HTTP and TCP:
When we consider the asymmetric network like the ADSL network, it is not manda-
tory to adopt HTTP/1.1 because its effect is not large. On the other hand, TCP
should be chosen carefully because TCP Vegas is sometimes inferior to TCP Tahoe.
It depends on the asymmetric factor of the network and the distribution of trans-
fer documents.
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As future works, we plan to confirm the observations presented in this chapter in
the actual asymmetric network using ADSL networks. We also plan to modify the con-
gestion control algorithm of TCP Vegas to achieve higher throughput than TCP Tahoe
or TCP Reno in all situations.
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Chapter 6

Comparisons of Packet Scheduling

Algorithms for Fair Service among

Connections

In this Chapter, we focus on fair service among connections, and investigate the de-
gree of fairness provided to TCP connections by comparing three packet scheduling
algorithms at the router, through the mathematical analysis approach. The first one
is FIFO (First In First Out, or Drop-Tail), which is widely used in the current Internet
routers because of its simplicity. The second is RED (Random Early Detection) [36],
which drops incoming packets at a certain probability. While the original idea of the
RED algorithm is to avoid consecutive dropping of packets belonging to the same con-
nection, it also has a capability of achieving a fair service among connections by spread-
ing packet losses. The last one is DRR (Deficit Round Robin), which is a more aggres-
sive one in the sense that it actively maintains per-flow queueing for establishing fair
service. For TCP, we consider TCP Reno and TCP Vegas.

In addition to evaluating fairness properties of three algorithms, We propose the en-
hanced version of RED algorithm using the analysis results, where we set each connec-
tion’s packet dropping probability dependently on its input link capacity, to avoid the
unfairness property of the original RED algorithm. Another enhancement method of
RED can be found in [37], where the flow state are maintained for some degree of fair-
ness enhancements. Furthermore, we show that the above method can be used to re-
solve an unfairness problem of the DRR algorithm, which is inevitable due to an inher-
ent unfairness of FIFO discipline.
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6.1 Model Definitions

6.1.1 Packet Scheduling Algorithms

In what follows, we briefly summarize the three packet scheduling algorithms, FIFO,
RED and DRR.

FIFO (First In First Out)

A FIFO algorithm is widely used in the current Internet routers because of its simple im-
plementation. The incoming packets are accepted in order of arrivals. When the buffer
at the router becomes full, arriving packets are dropped. Therefore, packets belonging
to a particular connection can sometimes suffer from bursty packet losses. Then, fast
retransmit implemented in TCP does not work effectively. It is also likely to introduce
bursty transmission of packets [36], which often results in further packet losses.

RED (Random Early Detection)

The problem mentioned above is solved by RED [36]. The RED algorithm is designed to
cooperate with congestion control mechanisms provided in TCP. In RED, the router ob-
serves the avarage queue size (buffer occupancy), and the packets arriving at the router
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are dropped with a certain probability.
It detects incipient congestion by monitoring the average buffer occupancy at the

router, and notifies it of the connections by dropping packets to avoid further conges-
tion. By keeping the average queue size (buffer occupancy) low, buffer overflow can be
avoided even when packets from the connection continuously arrive. That is, the algo-
rithm has no bias against bursty traffic. In RED, the packets arriving at the router are
dropped with a certain probability. By this mechanism, the packet loss does not become
bursty, and the number of lost packets is roughly proportional to the connection’s share
of the link bandwidth through the router. Therefore TCP connections are expected to
effectively reduce the window size according to its bandwidth share.

RED sets the packet dropping probability by a function of average queue size. We
define avg [packets] as the average queue length calculated by using a low pass filter
with an exponential weighted moving average. The parameter avg is compared to two
thresholds: a minimum threshold (thmin [packets]) and maximum threshold (thmax [pack-
ets]). The dropping probability according to the queue size avg is determined in differ-
ent ways as follows;

1. If avg < thmin, then all arriving packets are accepted.

2. If thmin < avg < thmax, then arriving packets are dropped with probability p(x),
which is a function of average queue length, x. A typical function of p(x) is il-
lustrated in Figure 6.1, but a constant dropping probability is usually used in an
actual situation [36].

3. If thmax < avg, then all arriving packets are dropped.

DRR (Deficit Round Robin)

The DRR algorithm [22] is an extension of the round robin algorithm to be suitable to
treat the variable-sized packets. The buffer at the router is logically divided into mul-
tiple queues. The arriving packets of each connection are stored in the pre-assigned
queue by using a hash function, and those are served in a round-robin fashion. See
Figure 6.2. A difference from the pure round robin algorithm is that the packets with
variable length can be allowed to keep the fairness among connections. In DRR, the
bandwidth not used in the round is preserved to be used in the next round if the packet
is too large to be served in the current round.
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Figure 6.3: Network Model

6.1.2 Network Model

Recalling that our main purpose of the current paper is to investigate the fairness aspect
of packet scheduling algorithms, we will use a simple network model as depicted in
Figure 6.3.

There are the number N of connections between N sources (SES1, SES2 , . . ., SESN )
and one destination (DES). N connections share the bottleneck output link of the router.
The capacity of the input link between the sources and the router are defined as bw1,
bw2, . . ., bwN Kbps, and that of the output link between the router and destination is
BW Kbps. We assume bw1 ≤ bw2 ≤ . . . ≤ bwN . By the above model, we intend to
consider the uplink of the access line of the ISP, which is shared by the subscribers with
different capacities. Note that in Section 6.4, we will consider the downlink of the access
line.

In the following numerical examples throughout the paper, the propagation delay
between SESi and DES, τ , is identically set to be 100 [msec]. The buffer size of the router
is 30 [packets]. A TCP packet size is fixed at 2 [Kbytes]. Every sender is assumed to be
a greedy source, that is, it has infinite packets to transmit. We also assume that in the
case of DRR, the connection can be identified by the router so that the packets from the
connection can be appropriately queued at the per-flow buffer at the router.

Using this network model, we consider the situation where the uplink of the access
line of ISP is shared by the subscribers with different capacities. In this paper, the ef-
fect of the reverse traffic is also considered. in the model where the downlink is shared
by the subscribers. The objective of this investigation is to confirm the applicability
of our discussions and analyses in the above are also applicable to this reverse traffic
model. The similar model is treated in in [86], but we consider RED and DRR as the
packet scheduling algorithm in addition to FIFO algorithm employed in [86]. Further,
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we devote the fairness aspects of packet scheduling algorithms which are not consid-
ered in [86].

6.1.3 Definition of Fairness

We define the fair service by taking account of the input link capacity. Its simplest form
is that the throughput is given in proportion to its input link capacity under the condi-
tion that the output link capacity is smaller than total of the input link capacities. That
is, we say that a good fairness is achieved if the throughput of connection i, ρi, is given as

ρi = BW · bwi∑
j bwj

As an example, suppose that there are three sources (N = 3) with bw1 = 64 [Kbps], bw2 =
128 [Kbps], bw3 = 256 [Kbps]. If the output link capacity of the router BW is 336 [Kbps],
then the perfect fairness is achieved when throughputs of three connections are 48 [Kbps],
96 [Kbps] and 192 [Kbps], respectively.

We note that other definitions of the fairness can be considered. A more natural def-
inition may be the function of subscription fees, which may be determined by (but not
be proportional to) the input link capacity in the ISP model. We will not treat such a
case for simplicity of presentation, but it is not difficult to incorporate it. For example,
the weight factor is allowed to be arbitrary in the DRR case. The RED case can also be
treated in this context by utilizing our analysis presented later.

6.2 Case of TCP Reno

In this Section, we consider TCP Reno to investigate the fairness property of three packet
scheduling algorithms. In addition to the simulation results, we develop the analysis
result for the RED scheduling algorithm. The analysis results supports observations on
the fairness property of the RED algorithm obtained from the simulation results. We
then investigate DRR to demonstrate its effectiveness through simulation experiments.

In what follows, we set four TCP connections which have different capacities of 64,
128, 256 and 512 [Kbps]. The output link capacity is varied from 400 [Kbps] to 960 [Kbps]
to investigate the effect of the output link capacity on fairness. In the simulation results,
we simulated 5,000 [sec] in each experiment to obtain the result, which approximately
corresponds to 300,000 packets generation.
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Figure 6.4: FIFO Case with TCP Reno

6.2.1 FIFO Case

We first show the FIFO case in terms of the average throughput during the simulation
run (Figure 6.4(a)), the relative throughput (Figure 6.4(b)), and packet loss rate (Fig-
ure 6.4(c)) for all connections as a function of the output link capacity. Relative through-
put means the ratio of the average throughput against the input link capacity. When all
connections have identical relative throughput, it is said that the router perfectly pro-
vides fair service among connections in our definition. From Figures 6.4(a) and 6.4(b),
it is clear that fairness cannot be kept at all. In some region where the output link capac-
ity is small, the throughput of the connection with smaller input link capacity is larger
even than that of the connection with larger input link capacity. It can be explained as
follows. In the FIFO algorithm, packet loss occurs independently of the packet arrival
rate as shown in Figure 6.4(c), and the packet loss becomes bursty. Since the connec-
tion with larger input link capacity experiences a higher degree of burstiness of packet
losses, its performance degradation becomes larger.
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Figure 6.5: RED Case with TCP Reno

6.2.2 RED Case

Simulation Results

We next investigate the RED case. Recalling that the buffer size of the router is set to
be 30 [packets], we set thmin = 5 [packets], thmax = 15 [packets] and p = 0.02 in simula-
tion. p shows the packet dropping probability defined in RED, with which incoming
packets are dropped when the avarage queue length is over the threshold thmin. Fig-
ure 6.5 shows simulation results of the RED algorithm in that case. By comparing Fig-
ure 6.5(a) with Figure 6.4(a), it can be observed that the RED algorithm can attain higher
total throughput than that of the FIFO algorithm because RED can avoid bursty packet
losses by dropping arriving packets with probability p, which results in that TCP’s fast
retransmit algorithm works effectively. However, if we focus on the fairness, it is clear
that an improvement is very limited. It is especially true when the output link capac-
ity is small; the throughput of all connections becomes almost identical (Figure 6.5(a)).
Also, the packet loss rates of all connections are almost equal as shown in Figure 6.5(c).
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Of course, this is one of key features that the RED algorithm intends; the number of the
lost packets of each connection can be kept in proportion to its input link capacity by
its mechanism. The problem is that it leads to the unfairness treatment of connections
with different capacities.

The above result is just one example. Also, it is questionable whether simulation
time of 300,000 packets generation is adequate or not for examining the fairness degree.
To examine its generality, we next show the analysis of the RED algorithm. By this, we
will explain why the RED algorithm causes unfairness among connections even when
their packet loss rate are almost equal. Through analysis, it is proven that the unfairness
observed in simulation is inherent in the RED algorithm.

Analysis

We assume in the following analysis that there are N connections in the network (Fig-
ure 6.3) with the input link capacities of bw1, bw2, ..., bwN [packets/sec], where bw1≤
bw2≤, ..., ≤bwN . We denote the packet dropping probability of the RED algorithm by
p, and the propagation delay between sources and the destination by τ [sec]. We also
assume that the average queue length is always larger than thmin [packets], that is, all
arriving packets are dropped with probability p. For analysis, we focus on TCP’s typ-
ical cycle of the window size as shown in Figure 6.6; the cycle begins at the time when
the previous packet loss occurs, and terminates when the next packet loss occurs. We
consider that the cycle begins at time t = 0 [sec]. We do not take account of the Slow
Start phase since the objective of the RED algorithm is essentially to avoid to fall into
that phase.

time

Window Size

Wmax

Wmax/2
1/RTT

0 T

1cycle

i

i

cwnd (t)i

Wa

Figure 6.6: TCP’s Cyclically Change of the Window Size for Connection i

Since all arriving packets are dropped at the router with probability p by our as-
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sumption, the connection can send 1/p packets in one cycle (between the events of packet
losses). We define the number of packets transmitted during one cycle as Np [packets],
that is,

Np = 1/p (6.1)

During the cycle, the window size of connection i, cwndi(t) [packets], is increased lin-
early since we only consider the congestion avoidance phase. The window size is halved
when packet loss detected by fast retransmit, and therefore cwndi(t) is given as

cwndi(t) =
Wmax

2
+

1

RTTi
· t, 1 ≤ i ≤ N (6.2)

where RTTi [sec] is an average RTT of packets for connection i, and Wmax [packets] is
the value of the window size at the time when packet loss occurs. Then, the following
equation for the total number of the packets in one cycle should be satisfied for connec-
tion i;

∫ Ti

0
cwndi(t)dt = Np, 1 ≤ i ≤ N (6.3)

where Ti is the time duration of the cycle as shown in Figure 6.6. From Equations (6.2)
and (6.3), we can obtain W ′

max [packets], the window size at the time when the next
packet loss occurs, as

W ′
max =

√
Wmax

2 + 2Np (6.4)

From Equations (6.1) and (6.4), we can obtain W max [packets], the average value of Wmax

by equating W ′
max and Wmax. That is,

W max '
√

8

3p
(6.5)

As a result, we derive Wa [packets], the average window size during the cycle as;

Wa =
3

4
Wmax (6.6)

See Figure 6.6. From the equation above, we can see that the change of the window size
does not depend on each connection’s input link capacity, but on the packet dropping
probability of the RED algorithm.
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Figure 6.7: Analysis of the RED Algorithm

For further analysis, we make an assumption that each connection’s window size is
fixed at the average value, Wa. We then derive ρi, the throughput of connection i when
Wa packets of its window are served at the router. To simplify the analysis, we consider
the situation where all connections’ first packets of the windows arrive at the router si-
multaneously as shown in Figure 6.7. In this figure, each square shows the burst of con-

nection i’s Wa packets, and its length represents the time duration
Wa

bwi

[sec]. Since all

connections have different capacities bwi on their links, it takes different time duration
Wa

bwi

for all packets of connection i to arrive at the router as illustrated in Figure 6.7. As

illustrated in this figure, the packet burst of connection i is not served at the same rate,
and it depends on the number of the connections sending their packets simultaneously.
We divide all connections’ packet burst into N “phases” according to the number of
connections which send the packets simultaneously. For example, since the number of
connections which transmitting their packets is i in phase i, the router processes i con-
nections’ packets at the rate of BW [packets/sec]. We denote the number of packets of
connection i belonging to phase j by Wi,j [packets] (1 ≤ i, j ≤ N). Since all packets in
the phase are dealt at the rate in proportion to its input link bandwidth, we determine
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Wi,N for phase N as follows;

WN,N = Wa

Wi,N = WN,N · bwi

bwN
, 1 ≤ i ≤ N.

In the same manner, we can obtain all of Wi,j by solving the following equations;

Wj,j = Wa−
N∑

k=j+1

Wj,k, 1 ≤ j ≤ N − 1

Wi,j = Wj,j · bwi

bwj
, 1 ≤ j ≤ N − 1, 1 ≤ i ≤ j − 1

The rate at which the packets are served at the router in the phase j, Sj [packets/sec],
must depend on the total capacity of the connections of the phase j. Since, in the phase j,
all packets belonging to from connection 1 to connection j are served at the router, Sj

becomes as follows;

Sj =




BW, if
j∑

k=1

bwk > BW

j∑
k=1

bwj, otherwise
(6.7)

Therefore, the throughput of connection i at phase j, Ri,j , can be determined as follows;

Ri,j =
Wi,j

Wi,j∑j

k=1
Wk,j

Sj

=

∑j
k=1 Wk,j

Sj
(6.8)

From Equations (6.7) and (6.8), ρi can be calculated as follows;

ρi =
N∑

k=N+1−i

(
Wi,j

Wa
Ri,j

)
(6.9)

Although the RED algorithm can eliminate the bursty packet losses leading to TCP’s
retransmission timeout expiration, timeout expiration cannot be avoided perfectly [39].
Even if timeout expiration rarely happens, the effect of timeout expiration on through-
put is large. Therefore, we next consider the throughput degradation caused by retrans-
mission timeout expiration. We denote the probability of occurring timeout expiration
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Figure 6.8: Accuracies of Analysis Result in TCP Reno

in the window by Pto. We determine Pto according to the following simple equation;

Pto =
∞∑
i=2

(
Wa

i

)
· pi · (1− p)Wa+1−i (6.10)

We assume that RTOi [sec], the timeout duration for retransmission, becomes twice
RTTi for connection i. RTTi can be calculated by considering the effect of the other
connections’ traffic;

RTTi = 2τ +

∑
k 6=i

Wa

BW
+

Wa

ρi
(6.11)

From these results, we finally have ρ′
i, the throughput of connection i, by considering

the effect of TCP’s retransmission timeouts;

ρ′
i = (1− Pto) · ρi + Pto ·

Wa

ρi

Wa

ρi
+ RTOi

ρi

=
ρi ·Wa + (1− Pto) · ρ2

i · RTOi

Wa + ρiRTOi

(6.12)

Equation (6.12) is obtained as follows. The first term (1−Pto)·ρi represents the through-

put without retransmission timeout, and the second term
Wa
ρi

Wa
ρi

+RTOi
ρi is that with re-

transmission timeout. By Equation (6.12), we can obtain the each connection’sTCP through-
put under RED algorithm with taking account of the throughput degradation caused
by TCP retransmission timeouts.

Figure 6.8 shows the throughput results from our analysisas a function of the output
link capacity. In the figure, points represent the simulation results (which correspond
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to Figure 6.5(a)), and the lines show analysis results. We can observe from this figure
that our analysis can give good agreements with simulation results, and that the un-
fairness property of the RED algorithm in the case of small output link capacity can be
observed. This unfairness can be explained from the analysis result as follows. When
the output link bandwidth becomes small, the rate at which the packets are served at
the router of phase j becomes BW in almost all the phases. It is clearly shown in Equa-
tion (6.7). That is, packets arriving at the router are served at rate BW , which results in
that the throughput of all connections become equivalent. Furthermore, the connection
whose input link bandwidth is larger can suffer from throughput degradation caused
by TCP retransmission timeouts. This is also the reason why the throughput of the con-
nection with the 512 [Kbyte/sec] input link bandwidth is largely degraded, which can
be explained by Equation (6.12).

We next consider the enhancement to the RED algorithm (called enhanced RED) to
avoid this unfairness by setting p dependently on each connection’s input link capacity,
according to the analysis results. We set pi, which is the packet dropping probability
of connection i, such that each connection’s throughput becomes proportional to the
its input link capacity. The appropriate values pi’s are calculated for all connections as
follows.

1. Initialize pi’s.

2. Calculate ρi from the current pi according to the analysis results. See Equation (6.12).

3. If ρi is proportional to the input link capacity, set pi to the current value.

4. If not, compare ρi with the ideal value, and adjust pi of the connection having the
largest difference between ρi and the ideal value. That is,

• If ρi is larger than the ideal value, change pi to a pi.

• If ρi is smaller than the ideal value, change pi to b pi.

The typical values of control parameters a and b are 1.1 and 0.9.

In the enhanced RED algorithm, we calculate the pi’s for all connections from the con-
nections’ input link capacities according to this algorithm, and set pi as the packet drop-
ping probability at the RED router in advance of starting to send the packets.

Figure 6.9 shows the simulation results on the relative throughput of the enhanced
RED algorithm. Compared with Figure 6.5(b), it is clear that our enhanced version of
RED algorithm gives further better fairness than the original RED algorithm. In simu-
lation, however, we set the control parameter values of a and b intuitively. It is a future
research topic to seek an appropriate method to determine those parameters.
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Figure 6.9: Effect of Enhanced RED

6.2.3 DRR Case

As explained in Subsection 6.1.1, the router buffer is logicallydivided into several queues
in DRR and each connection is assigned its own queue. We first consider the case where
the large buffer is equipped with the router so that every connection is given a sufficient
amount of buffer. In our model depicted Figure 6.10, four DRR queues are formed in the
router, and DRR parameters are set such that each DRR queue is served in proportion
to the input link capacity of the assigned connection.

Figure 6.12(a) shows the simulation results of relative throughput. Different from
the FIFO (Figure 6.4) and RED (Figure 6.5) algorithms, the DRR algorithm provides
very good fairness among connections even when the output link capacity is small.
When the output link is large, on the other hand, the degree of the fairness is slightly
degraded. It is because TCP’s retransmission timeouts tends to frequently occur due
to bursty packet loss at the queue since the FIFO discipline is used in each DRR queue.
Then, the retransmission timeout degrades the performance more seriously. Thus the
degree of performance degradation depends on the bandwidth-delay product of the
connection. Furthermore, in the DRR algorithm, the capacity not used by a certain queue
due to connection’s retransmission timeout can be used by other connections. It in-
creases the total throughput, but it is likely to lead to the unfairness among connections.
This is why fairness is degraded in the case of the large output link.

While the DRR algorithm assigns the DRR queues to each connection, several con-
nections should be assigned to one DRR queue as the number of connections grows. It
is because the number of DRR queues which can be prepared must be limited by the
router buffer size and processing overhead. However, the performance of the DRR al-
gorithm in such a case has not been known. For investigating such an insufficient buffer
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Figure 6.11: DRR Model for Insufficient Buffer Case

case, we assume that there are two queues and four connections, and each connection is
assigned to the queue as shown in Figure 6.11. The 64 Kbps and 128 Kbps connections
are assigned to one queue (queue 1 in the figure) and the 256 Kbps and 512 Kbps con-
nections to another queue (queue 2). Each queue is assumed to be served in proportion
to the total capacity of the assigned connections.

We show the simulation results in the insufficient buffer case in Figure 6.12(b) for the
relative throughput. The buffer sizes of two queues are equivalently set to be 30 Kbytes.
The lines labeled “total-1”and “total-2” indicate total throughput of two queues, queue 1
and queue 2. Although each queue is served in proportion to the total capacity of the as-
signed connections, the two connections assigned to the same queue show unfair through-
put. This is because we assumed that the arriving packets are served according to a sim-
ple FIFO discipline within the DRR queue. As described in Subsection 6.2.1, the FIFO
algorithm cannot keep fairness among connection at all.

In this Subsection, we have observed that the DRR algorithm gives much better fair-
ness than FIFO and RED algorithms, but its fairness property is sometimes lost as each
connection has different capacity or when multiple connectionsare assigned to one DRR
queue. We henceforth consider to improve the fairness property of the DRR algorithm
in the next Subsection.
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Figure 6.12: DRR Case with TCP Reno
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Figure 6.13: DRR+ Case with TCP Reno

6.2.4 DRR+ Case

In the previous Subsection, we have shown that the DRR algorithm has some unfairness
property. The main reason was that each DRR queue serves packets by the FIFO disci-
pline. In this Subsection, we show some simulation results of DRR+, where the RED al-
gorithm is applied to each DRR queue to prevent unfairness. In simulation, we consider
both sufficient/insufficient buffer case. Note that, in the insufficient buffer case, we ap-
ply the enhanced RED algorithm to two DRR queues depicted in Figure 6.11. That is, in
each queue, we set the assigned connections’ packet dropping probabilities according
to the enhanced RED algorithm in Subsection 6.2.2.

Figure 6.13 shows the simulation results on the relative throughput. Our proposed
method keeps good fairness in the sufficient buffer case (Figure 6.13(a)). Furthermore,
when Figure 6.13(b) is compared with Figure 6.12(b), the fairness is significantly im-
proved even in the insufficient buffer case. This results show that our enhanced RED
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mechanism can be applied to the DRR+ queue, as well as in RED algorithm.
Since this improvement due to introducing RED algorithm corresponds to that with-

out the DRR algorithm (Subsection 6.2.2), the fairness of DRR+ is not so good as the
output link capacity becomes small as explained in Subsection 6.2.2. We may have to
consider a more effective method to keep fairness as one of the future works. As ex-
plained in the analysis of Subsection 6.2.2, the unfairness property of the RED algorithm
is caused by the equal packet drop probability independently on the input link capac-
ity of the connections. Therefore, we can set packet dropping probability of RED algo-
rithm dependently on the connection’s input link capacity to improve the fairness of
the DRR+ algorithm.

6.3 Case of TCP Vegas

In this Section, we change the version of TCP to TCP Vegas to investigate the fairness
property of three packet scheduling algorithms. TCP vegas conjectures the available
bandwidth for the connection, and therefore its principle is likely to be well fit to the
DRR algorithm. On the other hand, the RED algorithm does not help improve the fair-
ness when TCP Vegas is employed since each connection’s window size is not dom-
inated by the packet dropping probability of the RED algorithm, but by the essential
algorithm of TCP Vegas. The purpose of this Section is to confirm the above observa-
tions.

6.3.1 FIFO Case

Figure 6.14 plots simulation results of the FIFO case using TCP Vegas. Note that we
omit the graph showing the number of packet loss since no packet loss was observed
at the FIFO buffer. Compared with the TCP Reno case (Figure 6.4), it is clear that TCP
vegas provides less fairness than TCP Reno. Especially, the connection with has smaller
input link bandwidth achieve almost 100% throughput (Figure 6.14(b)). This unfairness
property is caused by the essential characteristic of TCP Vegas. In TCP Vegas, no packet
loss occurs at the router buffer if the network is stable, because the window size of all
connection converges to certain values (Figure 6.14(d)). In Figure 6.14(d), it is noticeable
that the converged window size is independent on each connection’s input link band-
width because base rtt of each connection is almost equal. In the current simulation set-
ting, the converged window size is enough large for connections having smaller input
link bandwidth to utilize its bandwidth-delay product, but it is too small for connections
with larger input link bandwidth. Therefore, while the result depends on the network
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Figure 6.14: FIFO Case with TCP Vegas

environment, TCP Vegas sometimes fails to achieve fairness among connections due to
the essential nature of its congestion control mechanism.

6.3.2 RED Case

We next show the simulation results of the RED case in Figure 6.14. As in the case of
TCP Reno (Subsection 6.2.2), the fairness is slightly improved when compared with the
FIFO case (Figure 6.14(b)). However, there still be significant unfairness among connec-
tions. This can be explained by the throughput analysis presented in the below. In the
following analysis, we use the same notations as those introduced in Subsection 6.2.2.

At the moment, we consider the situation where no packet loss occurs at the router,
and each connection’s window size converges to a certain value. The packet dropping
of the RED will be considered later.

Let li [packets] be the number of connection i’s packets in the router buffer, and L =
l1+ · · ·+ lN. Assume that each connection’s throughput ρi [packets/sec] is proportional
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Figure 6.15: RED case with TCP Vegas

to the avarage number of its packets in the router buffer. This assumption is reasonable
when the FIFO discipline is applied at the router buffer. Then, the following equation
with respect to ρi is satisfied;

ρi = min (bwi, (li/L)BW ) (6.13)

According to the algorithm of TCP Vegas (Equation (1.4)), we obtain;

α

base rtti
<

Wi

base rtti
− Wi

rtti
<

β

base rtti
(6.14)

base rtti = 2τ + 1/BW (6.15)

rtti = 2τ + li/ρi (6.16)

Wi = 2τρi + li = rtti · ρi (6.17)
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where rtti [sec] and Wi [packets] are the RTT and the window size of the connection i,
respectively. base rtti [sec] corresponds to base rtt of connection i, which is the mini-
mum value of RTTs of the connection. By substituting Equations (6.15)-(6.17) into Equa-
tion (6.14), we obtain the following equation;

α + ρi/BW < li < β + ρi/BW (6.18)

From Equation (6.18), L (=l1 + · · ·+ lN ) can be calculated as follows;

Nα +
N∑

j=1

ρi

BW
< l1 + · · ·+ lN < Nβ +

N∑
j=1

ρi

BW

Nα +
N∑

j=1

ρi

BW
< L < Nβ +

N∑
j=1

ρi

BW
(6.19)

Recalling that bw1 ≤ bw2 ≤ . . . ≤ bwN , Equation (6.13) yields

ρi =


 bwi 1 ≤ i ≤ M

(li/L)BW M + 1 ≤ i ≤ N
(6.20)

Then, from Equations (6.18)-(6.20), we obtain ρi for M + 1 ≤ i ≤ N as follows;

ρi =
li

L−
M∑

j=1

li


BW −

M∑
j=1

ρi


 , M + 1 ≤ i ≤ N (6.21)

Therefore, Wi, which is the converged window size of connection i, can be obtained by
substituting Equation (6.18) and (6.21) to Equation (6.17).

In the above derivation, however, we do not take account of random packet losses
adopted in the RED algorithm. We next consider the effect of throughput degradation
caused by probabilistic packet loss of the RED algorithm. Although each connection’s
window size is controlled to be converged to a certain value in TCP Vegas, it is some-
times decreased by packet loss by the RED algorithm. We assume that the packet loss
can be detected by the fast retransmit algorithm. Then, if the packet loss occurs after
the window size reaches Wi, the window size is halved to Wi/2. That is, if Wi/2 < 2τρi,
the throughput is degraded until the window size reaches 2τρi. In Figure 6.16, we de-
fine “one cycle” to be the time duration between two packet losses caused by RED. One
cycle is divided into three phases; phase 1, phase 2, and phase 3 as in Figure 6.16. In
phase 1, the window size is increasing according to the TCP Vegas’ algorithm, but the
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Figure 6.16: Throughput Degradation with RED Packet Loss

window size is less than 2τρi. That is, the throughput is degraded by the packet loss
during phase 1. In phase 2, the window size continues to increase as in phase 1, but the
window size is larger than 2τρi and there is no throughput degradation. In phase 3, the
window size reaches the converged value, which is obtained from Equation (6.17). It
remains unchanged until the packet loss occurs at the end of this phase.

Let Ti [sec] and Ai [packets] be the time duration of phase i, and the number of trans-
mitted packets in phase i, respectively. Furthermore, we introduce ρi,j [packets/sec] as
the avarage throughput of connection i during phase j.

In phase 1 and phase 2, the ratio of window size increasing is 1/rtti [packets/sec]
because the window size is increased according to TCP Vegas’ congestion avoidance
algorithm formulated by Equation (1.4). Therefore, ρi,1 is;

ρi,1 =

(
Wi

2
+ 2τρi

2

)/(
2τ +

1

ρi

)
(6.22)

Because there is no throughput degradation in phase 2 and phase 3, ρi,2 and ρi,3 are iden-
tical to ρi, i.e.,

ρi,2 = ρi,3 = ρi (6.23)

Since the increased rate of window size is 1/rtti [packets/sec], T1 and T2 can be calcu-
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lated as follows;

T1 =
(
2τρi − Wi

2

)
· rtti (6.24)

T2 = (Wi− 2τρi) · rtti (6.25)

A1 and A2 can also be calculated as follows;

A1 =
1

2

(
2τρi +

Wi

2

) (
2τρi − Wi

2

)
(6.26)

A2 =
1

2
(Wi + 2τρi) (Wi − 2τρi) (6.27)

In phase 3, the window size is converged to Wi, and packet loss occurs at the router
caused by the RED algorithm at the end of this phase. Since the avarage number of
transmitted packets during 1 cycle is (1/p), A3 and T3 can be obtained as;

A3 = 1/p− A1 − A2 (6.28)

T3 = (A3/Wi) · rtti (6.29)

Finally, we can obtain ρ̂i, the throughput of connection i from Equations (6.22)-(6.25),
(6.29) as follows;

ρ̂i =
T1ρi,1 + T2ρi,2 + T3ρi,3

T1 + T2 + T3

(6.30)

Figure 6.17 shows the result of the analysis as a function of the output link capacity.
Compare with Figure 6.8. Our analysis again gives good agreements with simulation
results, and it confirms the unfairness property of TCP Vegas when applied to the RED
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Figure 6.18: DRR case with TCP Vegas

algorithm. In TCP Reno (Subsection 6.2.2), we could improve the fairness by setting p

(the packet dropping probability) dependently on each connection’s input link capacity
according to the analysis results. In TCP Vegas, however, we cannot apply it because
the converged window size is independent on p as shown in Equation (6.17). That is,
we cannot control each connection’s throughput by p. Therefore, if we want to remove
the unfairness property in the RED algorithm with TCP Vegas, we may have to give
some modifications to the algorithm of TCP Vegas itself. Otherwise, we need to use the
DRR algorithm as will be presented in the next Subsection.

6.3.3 DRR Case

Figure 6.18 shows the case of DRR. It can be observed from the figure that fairness among
connections is fairly good (Figure 6.18), and better than TCP Reno case (Figure 6.12(a)).
With TCP Reno, some connections could not utilize all amount of bandwidth assigned
by the DRR mechanism due to packet loss. With TCP Vegas, on the other hand, no
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packet loss occurs at the router buffer, and then each connection can completely utilize
the bandwidth assigned by the DRR mechanism. However, as the number of connec-
tions becomes large, the scalability problem is introduced as having been explained in
Subsection 6.2.3. In Subsection 6.2.4, we have succeeded to avoid the unfairness by ap-
plying the RED mechanism to each DRR queue. In the current case, however, we cannot
apply it because of the essential incompatibility of TCP Vegas to the RED algorithm as
explained in Subsection 6.3.2. We need further investigation on this problem.

6.4 Effect of Reverse Traffic

In this section, we investigate the effect of the reverse traffic. That is, the downlink of
the access line of the ISP is shared by the subscribers with different capacities as op-
posed to the previous case where the uplink of the access line is shared. The purpose
of this section to confirm the applicability of the discussion and analysis described in
Section 6.2 to the reverse traffic. We use the network model depicted in Figure 6.19,
where the number of connection is 4. The input link bandwidth is BW [packets/sec],
and the output link bandwidth of connection i is bwi [packets/sec]. As in Section 6.2,
we consider FIFO, RED and DRR algorithms at the bottleneck queue. In this section,
we use TCP Reno version, and compare the results with those presented in Section 6.2
to investigate the effect of the traffic direction.

6.4.1 FIFO Case

Figure 6.20 shows the simulation results of the FIFO case. The fairness characteristic
is very similar to the previous case shown in Figure 6.4. The network model shown in
Figure 6.19 has the same bottleneck point as in Figure 6.3, which is shared by four con-
nections having the different link bandwidths. Therefore, the characteristics of packet
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Figure 6.20: FIFO Case with Reverse Traffic

loss at the bottleneck queue becomes similar in the case of Subsection 6.2.1.

6.4.2 RED Case

The simulation results are shown in Figure 6.21, where the RED algorithm is applied at
the bottleneck queue. The figure clearly exhibits that the RED algorithm can not pro-
vide fairness, which is a same tendency with the previous case in Section 6.2.2 (Fig-
ure 6.5).

In Section 6.2.2, we have derived the throughput of each connection with TCP Reno
and the RED algorithm using the network model depicted in Figure 6.3 through anal-
ysis approach. Since the network model in this subsection 6.19 has the same bottle-
neck point, the analysis in Section 6.2.2 can also be applied to the network model of re-
verse traffic. This applicability can be proved by comparing Figure 6.21 with Figure 6.5,
which shows the similar characteristics in terms of the fairness.

To explain the applicability of our analysis results more clearly, we also tested the
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Figure 6.21: RED Case with Reverse Traffic

Enhanced RED algorithm that we described in Subsection 6.2.2. To improve the fairness
of the RED router, we set the packet dropping probability of each connection according
to the algorithm in Subsection 6.2.2. The simulation result is depicted in Figure 6.22.
The fairness improvement is fairly good (Figure 6.22(b)), which indicates the robustness
of our proposed algorithm.

6.4.3 DRR Case

Figure 6.23 shows the simulation results of the DRR case. As is the case of FIFO and
RED, the results again shows the similar tendency with the previous case in Section 6.2.3
(Figure 6.12). This also shows that the model depicted in Figure 6.19 can be dealt in the
same way as that in Figure 6.3.
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Figure 6.22: Enhanced RED case with Reverse traffic

6.5 Conclusion

In this Chapter, we have evaluated the performance of the router packet scheduling al-
gorithms for fair service among connections through the simulation and analysis. We
have obtained the following results on TCP Reno version; the FIFO algorithm cannot
keep fairness among connections at all. The RED algorithm can improve fairness to
some degree, but it fails to keep fairness in the different capacity case. The DRR algo-
rithm offers better fairness than the FIFO algorithm and the RED algorithm, but its fair-
ness property is lost when each connection has different capacity and/or when multiple
connections are assigned to one DRR queue. Accordingly, we have proposed the DRR+
algorithm, where the RED algorithm is applied to each DRR queue to prevent unfair-
ness, and show that it can improve fairness among connections in the different capacity
case. We have also investigated the effect of TCP Vegas, which is expected to get higher
throughput than TCP Reno, and have made clear through the simulation and analysis
results that TCP Vegas cannot help improving the fairness among connections in FIFO
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Figure 6.23: DRR Case with Reverse Traffic

and RED cases.
TCP Vegas has a good feature to attain the better performance than TCP Reno, as

discussed in Section 6.3, it fails to keep the good fairness among the connections with
different input (and output) line capacities. For TCP Vegas to be introduced in the fu-
ture Internet where the RED algorithm is widely deployed, the algorithm of TCP Vegas
should be modified in order to improve the fairness among connections, which is a fu-
ture research topic.
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Chapter 7

Conclusion

TCP is very traditional transport-layer protocol which was first designed in early 1970s,
and many efforts of researchers, developments and standardization have been exten-
sively devoted to the TCP technology. TCP is now one of the most popular protocols
in the current Internet, and it is used by many of popular Internet services including
WWW using HTTP, file transfer service using FTP and e-mail transfer service using
SMTP. Therefore, even if network infrastructure may significantly change in the future
Internet, TCP and its applications would be continuously used. This observations have
made many researchers study actively about TCP, and many papers have been pub-
lished in the literature.

One of the most important issues regarding TCP is its congestion control mecha-
nisms, and most of past researches focused on it. However, there remains many big
problems which have not been solved yet; Can TCP be applied to the future high-speed
network without any changes? If no, how it should be changed to adapt to the next-
generation Internet? Is a new transport-layer protocol necessary?

Furthermore, the evolution of network technologies have derived new demands from
the Internet users. That is, we now need to provide more complicated network services
than simple best-effort services which is provided in the current Internet. Those ser-
vices it to provide fair services among connections, or provide differentiated services to
each connection. Therefore, it is important to investigate whether those new services
can be served with existing TCP/IP technology. Consequently, many active researchers
have focused on applicabilities of TCP to the future high-speed network, but most of
past studies have concentrated only on high speed data transfer using TCP. As well as
effectiveness, however, stability and fairness are also important issues for future com-
mercial usage of the Internet.

In this thesis, we have first focused on evaluating the essential characteristics of TCP,
and have investigated the nature of congestion control mechanisms of TCP through
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mathematical analysis approach. In Chapter 2, we have considered simple network
model where two connections share the bottleneck link, and have analyzed their behav-
ior to evaluate TCP’s essential property in terms of fairness and stability of congestion
control mechanisms. We have obtained the results that TCP Tahoe and TCP reno, which
are used in the current Internet, lack stability of their window sizes, and that TCP Vegas
sometimes fails to keep fairness among connections. From there results, we have pro-
posed the enhanced version of TCP Vegas, which has better stability than TCP Tahoe
and Reno, and better fairness than the original TCP Vegas.

Next, in Chapter 3, we have looked at the TCP’s mis-retransmission problem, and an-
alyze the reason mis-retransmission occurs and the degree of performance degradation
through mathematical approach. We have found that TCP’s mis-retransmission may
occur both in the current best-effort Internet, and in the future networks where a fixed
amount of bandwidth is assigned to a TCP connection. We have also derived the results
that the performance degradation caused by mis-retransmission cannot be ignored, and
TCP can avoid it with the minimum change of its congestion control algorithm we have
proposed.

We have next investigated TCP’s applicabilityto the future high-speed network, and
future new Internet services. First, in Chapter 4, we have focused at the performance
of TCP over ATM networks for data transmission, since we have wanted to evaluate
interaction between the congestion control mechanisms of TCP, and ATM’s rate control
mechanisms. We have considered TCP over plain UBR service class, TCP over UBR
with EPD, and TCP over ABR service class. We have found that TCP and ATM can be
co-exist without large problems, if ABR service class is selected at ATM layer, and its
rate control parameters are appropriately regulated.

Second, in Chapter 5, we have also investigated the performance of TCP under asym-

metric networks, which provides asymmetric bandwidth for upstream and downstream
by new-emerging network services at access network, including ADSL and cable mo-
dem technology. The main concern was to make clear the effect of the network asymme-
try on TCP performance, and we have obtained the results that large degree of network
asymmetry may degrade TCP performance significantly, and it affects also on HTTP
performance.

Finally, we have focused on realizing fair service among connection at the router
buffer, and have compared three packet scheduling algorithm, in terms of fairness among
each TCP connection. We have selected FIFO, RED, and DRR algorithms as scheduling
discipline, and investigated their ability through mathematical analysis approach. One
of the obtained results is that RED can provide fairness among connections, if we set
packet dropping probability of each connection according to the analysis results. Even
in DRR algorithm, fairness property may sometimes degrades because FIFO discipline
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is used at each round robin queue of DRR. However, we have found that RED algorithm
is also useful to avoid unfairness in DRR. That is, we can improve fairness among con-
nections at the router buffer without any changes of TCP.

From all results of this thesis, we believe that TCP can survive any dramatical changes
of the Internet infrastructure, and that any kind of new services in the advanced Internet
can be accommodated by TCP technology. We don’t have to replace TCP with a quite
new transport-layer protocol.
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Abbreviation List

AAL ATM Adaptation Layer
ABR Available Bit Rate
ACK Acknowledgement
ACR Allowed Cell Rate
ADSL Asymmetric Digital Subscriber Line
AIR Additive Increase Rate
AIRF Additive Increase Rate Factor
ATM Asynchronous Transfer Mode
BSD Berkeley Software Distribution
CAC Call Admission Control
CATV Cable Television
CBQ Class-based Queueing
CBR Constant Bit Rate
CWND Congestion Window
DES Destination End System
DRR Deficit Round Robin
EFCI Explicit Forward Congestion Indication
EPD Early Packet Discard(ing)
EPD/A EPD with per-VC Accounting
ER Explicit Rate
FDDI Fiber-Optic Digital Device Interface
FIFO First In First Out
FRED Fair Random Early Drop
FTP File Transfer Protocol
HTTP Hyper Text Transfer Protocol
ICR Initial Cell Rate
IP Internet Protocol
ISDN Integrated Services Digital Network
ISP Internet Service Provider
LAN Local Area Network
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MCR Minimum Cell Rate)
MPEG Motion Picture Expert Group
PCR Peak Cell Rate
QoS Quality of Service
RDF Rate Decrease Factor
RDFF RDF Factor
RED Random Early Detection
RFC Request For Comments
RIF Rate Increase Factor
RM Resource Management
RTO Retransmission Timeout
RTT Round Trip Time
SES Source End System
SMTP Simple Mail Transfer Protocol
SW Switch
TCP Transmission Control Mechanism
TDF Timeout Decrease Factor
TOF Time Out Factor
UBR Unspecified Bit Rate
USD User Share Differentiation
VBR Variable Bit Rate
VC Virtual Connection
WAN Wide Area Network
WDM Wavelength Division Multiplexing
WRR Weighted Round Robin
WWW World Wide Web
XDF Xrm Decrease Factor
XTP Xpress Transport Protocol
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