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Abstract According to the past researches, a TCP Ve-
gas version is able to achieve higher throughput than TCP
Tahoe and Reno versions, which are widely used in the cur-
rent Internet. However, we need to consider a migration
path for TCP Vegas to be deployed in the Internet. By fo-
cusing on the situation where TCP Reno and Vegas con-
nections share the bottleneck link, we investigate the fair-
ness between two versions. Weconsider drop-tail and RED
(Random Early Detection) as scheduling disciplines at the
router buffer. From the analysis and the simulation results,
we find that the fairness between TCP Reno and Vegas can
not be kept at all with the drop-tail router, and the perfor-
mance of TCP Vegas is much smaller than that of TCP
Reno as opposed to an expectation on TCP Vegas. The
RED algorithm improves the fairness to some degree, but
there still be an inevitable trade-off between fairness and
throughput. It is true that TCP Vegas solely can obtain high
throughput,and it has a good feature of having a backward
compatibility with older versions of TCP. Nevertheless, it
is unlikely that a current version of TCP Vegas penetrates in
the Internet as our results clearly indicate. Accordingly, we
next consider two approaches to improve the fairness. The
first one is to modify the congestion control algorithm of
TCP Vegas, and the other is to modify the RED algorithm
to detect mis-behaved connections and drop more packets
from those connections. We use both of analysis and sim-
ulation experiment for evaluating the fairness, and validate
the effectiveness of the proposed mechanisms.

1 Introduction

TCP (Transmission Control Protocol) is widely used by
many Internet services including HTTP (and World Wide

Web) and FTP (File Transfer Protocol). Even if the net-
work infrastructure may change in the future, it is very
likely that TCP and its applications would be continuously
used. However, TCP Tahoe and Reno versions (and their
variants), which are widely used in the current Internet,
are not perfect in terms of throughput and fairness among
connections, as having been shown in the past literatures.
Therefore, active researches on TCP have been made, and
many improvement mechanisms have been proposed (see,
for example, [1-4] and the references therein). Among
them, a TCP Vegas version [5, 6] is one of the most promis-
ing mechanisms by its high performance. TCP Vegas en-
hances the congestion avoidance algorithm of TCP Reno.
In essence, TCP Vegas dynamically increases/decreases its
sending window size according to observed RTTs (Round
Trip Times) of sending packets, whereas TCP Tahoe/Reno
only continues increasing its window size until packet loss
is detected. The authors in [5] concludes through simula-
tion and implementation experiments that TCP Vegas can
obtain even 40% higher throughput than TCP Reno.

However, we need to consider a migration path when a
new protocol is deployed in the operating network, i.e., the
Internet. It is important to investigate the effect of exist-
ing TCP versions (Tahoe and Reno) on TCP Vegas in the
situation where those different versions of TCP co-exist in
the network. The authors in [7] have pointed out that when
connections of TCP Reno and Vegas share the bottleneck
link, the Vegas connection may suffer from significant un-
fairness. However, the authors have assumed that only a
single TCP Reno connection shares the link with another
TCP Vegas connection.

In this paper, we focus on the situation where multiple
TCP Reno and Vegas connectionsshare the bottleneck link,
and investigate the fairness between two versions of TCP
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to seek the possibility of a future deployment of TCP Ve-
gas. One important point we should take into account is
the underlying network assumed by TCP Vegas. When the
original TCP Vegas was proposed in [5], the authors did
not consider the RED (Random Early Detection) mecha-
nism [8], which is now being introduced in the operating
network. TCP Vegas may or may not be effective even
when the router is equipped with the RED mechanism. We
therefore consider two packet scheduling mechanisms, the
RED router as well as the conventional drop-tail router, in
our study. One of the contributionsin this paper is to derive
analysis results of the throughput of TCP Reno and Vegas
in such a situation to explain why TCP Vegas cannot ob-
tain the good throughput when sharing the link with TCP
Reno. The accuracy of our analysis is validated by compar-
ing with the simulation results. Through the analysis and
simulation results, we will show the fairness between TCP
Reno and Vegas as follows. TCP Vegas receives significant
low and unfair throughputcompared with TCP Reno, when
the router employs the drop-tail router. When the RED al-
gorithm is applied, on the other hand, the fairness can be
improved to some degree, but there still exists an inevitable
trade-off between fairness and throughput. That is, if the
packet dropping probability of RED is set to be large, the
throughput of TCP Vegas can be improved, but the total
throughput is degraded.

We believe that the subject treated in this paper is a good
example for considering the protocol migration from the
existing immature one. It is true that TCP Vegas solely
can obtain higher performance than TCP Reno, and it has a
good feature of having a backward compatibility with the
older versions of TCP. Nevertheless, it is unlikely that a
current version of TCP Vegas penetrates in the Internet as
our results clearly indicate. Accordingly, we next suggest
two possible ways to improve the fairness between TCP
Reno and Vegas. The one is to modify the congestion con-
trol algorithm of TCP Vegas. The key idea is that if the
network congestion is not caused by TCP Vegas connec-
tions, the TCP Vegas connection is permitted to increase its
sending window size and to send more packets into the net-
work, in order to compete equally with TCP Reno connec-
tions. Another way is to modify the RED algorithm for de-
tecting packets from TCP Reno connections. For this pur-
pose, we can utilize the algorithm proposed in [9] to de-
tect mis-behaving flows, which is TCP Reno connections
in the current content. Then throughput of TCP Reno con-
nections can be decreased by intentionally dropping pack-
ets of TCP Reno at the router. We will present the above
two approaches in Sections 5 and 6.

The rest of this paper is organized as follows. Section 2
briefly introduces congestion control mechanisms of TCP
Reno and TCP Vegas. We next describe the network model
used in our analysis and simulation experiments in Sec-
tion 3. Section 4 shows the analysis results of fairness be-
tween two versions of TCP, which are validated by the sim-
ulation results. We next show two proposedmechanisms to

improve the fairness. We introduce TCP Vegas+ approach
which enhances the congestion control algorithm of TCP
Vegas in Section 5, and a ZL-RED algorithm which en-
hances the RED algorithm in Section 6. Finally, we con-
clude our paper and present some future works in Section 7.

2 Congestion Control Mechanisms
of TCP

In this section, we summarize the congestioncontrol mech-
anisms of two versions of TCP; TCP Reno and Vegas. For
detailed explanation, refer to [10] for TCP Reno and [5, 6]
for TCP Vegas. An essence of the congestion avoidance
mechanism of TCP is to dynamically control the window
size according to the congestion level of the network. In
what follows, we denote the current window size of the
sender host at time t as cwnd(t).

2.1 TCP Reno

In TCP Reno, the window size is cyclically changed in
a typical situation. The window size continues to be in-
creased until packet loss occurs. TCP Reno has two phases
in increasing its window size; slow start phase and conges-
tion avoidance phase. When an ACK packet is received by
TCP at the sender side at time t+tA [sec], the current win-
dow size cwnd(t+tA) is updated from cwnd(t) as follows
(see, e.g., [10]);

cwnd(t + tA) =


slow start phase :
cwnd(t)+ 1, if cwnd(t) < ssth(t);

congestion avoidance phase :

cwnd(t)+
1

cwnd(t)
, if cwnd(t) ≥ ssth(t);

(1)

where ssth(t) [packets] is a threshold value at which TCP
changes its phase from slow start phase to congestion
avoidance phase. When packet loss is detected by retrans-
mission timeout expiration, cwnd(t) and ssth(t) are up-
dated as [10];

cwnd(t) = 1; ssth(t) =
cwnd(t)

2
(2)

On the other hand, when TCP detects packet loss by a fast
retransmit algorithm [10], it changes cwnd(t) and ssth(t)
as;

ssth(t) =
cwnd(t)

2
; cwnd(t) = ssth(t) (3)

TCP Reno then enters a fast recovery phase [10] if the
packet loss is found by the fast retransmit algorithm. In this
phase, the window size is increased by one packet when
a duplicate ACK packet is received. On the other hand,
cwnd(t) is restored to ssth(t) when the non–duplicate
ACK packet corresponding to the retransmitted packet is
received.
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2.2 TCP Vegas

As described in the previous subsection, in TCP Reno (and
the older version, TCP Tahoe), the window size continues
to be increased until packet loss occurs due to congestion.
When the window size is throttled because of packet loss,
the throughput of the connection would be degraded. It
cannot be avoided because of an essential nature of the con-
gestion control mechanism adopted in TCP Reno; it can
detect network congestion only by packet loss. However,
throttling the window size is not adequate when the TCP
connection itself causes the congestion because of its too
large window size. If the window size is appropriately con-
trolled such that the packet loss does not occur in the net-
work, the throughput degradation due to the throttled win-
dow can be avoided. This is a key idea of TCP Vegas.

TCP Vegas controls its window size by observing RTTs
(Round Trip Time) of packets that the sender host has sent
before. If observed RTTs become large, TCP Vegas recog-
nizes that the network begins to be congested, and throt-
tles the window size. If RTTs become small, on the other
hand, the sender host of TCP Vegas determines that the
network is relieved from the congestion, and increases the
window size again. Hence, the window size in an ideal sit-
uation is expected to be converged to an appropriate value.
More specifically, in congestion avoidance phase, the win-
dow size is updated as;

cwnd(t + tA) =


cwnd(t)+ 1, if diff < α
base rtt

cwnd(t), if α
base rtt ≤ diff ≤ β

base rtt

cwnd(t)− 1, if β
base rtt < diff

(4)

diff =
cwnd(t)
base rtt

− cwnd(t)
rtt

where rtt [sec] is an observed round trip time,
base rtt [sec] is the smallest value of observed RTTs, and
α and β are some constant values.

TCP Vegas has another feature in its congestion control
algorithm; a slow slow start mechanism. The rate of in-
creasing its window size in slow start phase is a half of that
in TCP Tahoe and TCP Reno. Namely, the window size is
incremented at every other time an ACK packet is received.
Note that the congestion control mechanism used by TCP
Vegas (Eq. (4)) indicates that if observed RTTs of the pack-
ets are identical, the window size remains unchanged.

According to [5], TCP Vegas can achieve over 40%
higher throughput than TCP Reno. However, it is not clear
whether TCP Vegas works well with TCP Reno or not. Our
contribution in this paper is that we compare throughput
performances of two versions where those share the bottle-
neck link, in order to discuss the possibility on the deploy-
ment of TCP Vegas in the future Internet.

Router
Receiver Host

Sender Hosts

SR 1

SR Nr

SV 1

SV Nv

bw  [Mbps]
BW   [Mbps]

Buffer:  B [packets]

bw  [Mbps]

bw  [Mbps]

bw  [Mbps]

τsx  [sec] τxd  [sec]

τ [sec]

TCP Reno
Hosts

TCP Vegas
Hosts

Figure 1: Network Model

3 Network Model

Figure 1 shows the network model used in this paper. It
consists of Nr sender hosts using TCP Reno (SR1, ...
SRNr ), Nv sender hosts using TCP Vegas (SV1, ... SVNv),
a receiver host, an intermediate router, and links connect-
ing the router and the sender/receiverhosts. The bandwidth
of each link between the sender hosts and the router is
bw [Mbps]. The bandwidth of the bottleneck link between
the router and the receiver host is BW [Mbps] = µ [pack-
ets/sec]. The size of the buffer at the router is B [pack-
ets]. The propagation delay between the sender hosts and
the router and that between the router and the receiver host
are represented by τsx [sec] and τxd[sec], respectively. We
denote the total propagationdelay between the sender hosts
and the receiver host by τ , being equal to τsx + τxd. As
the scheduling discipline at the router buffer, we consider
drop-tail and RED algorithms. We assume that the sender
hosts always have an infinite amount of sending data.

4 Fairness Comparison between
TCP Reno and Vegas

4.1 Analysis

In what follows, we use the network model depicted in Fig-
ure 1, and derive the average throughputof each TCP con-
nection through a mathematical analysis. In the analysis,
we assume that the throughputof each connection becomes
proportional to buffer occupancy at the drop-tail router. It
is also appropriate for the RED router as we will explain
in the below. Note that the validation of our approximate
analysis will be given in Subsection 4.2.
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Figure 2: A Typical Change of Buffer Occupancy at Drop-
tail Router

4.1.1 Case of Drop-Tail Router

In Figure 2, we illustrate a typical change of the total num-
ber of packets queued at the router buffer when the drop-tail
algorithm is utilized. Here, we assume that all TCP Reno
connections behave identically. Since TCP Reno connec-
tions continue to increase their window sizes until packet
loss occurs at the buffer, the change of the window size also
has cycles triggered by packet losses , even when the TCP
Reno connections share the link with TCP Vegas connec-
tions. By assuming that all packet losses can be detected by
the fast retransmit algorithm, it takes one RTT [sec] for the
sender side TCP to detect the packet loss after the packet
loss actually occurs at the route buffer. It corresponds to
the flat part of buffer occupancy shown in Figure 2.

TCP Vegas connections, on the other hand, control their
window sizes according to the observed RTTs of sending
packets. Each of those tries to keep the number of queued
packets in the router buffer between α and β [packets] [4].
As RTTs becomes large, TCP Vegas connections continue
to decrease their window sizes. On the other hand, TCP
Reno connections continue to increase their window sizes
regardless of the increased RTT, which results in that the
window sizes of the TCP Vegas connections are decreased
until those reach within the range from α to β [packets].
See Eq. (4). From the above observation, the total of win-
dow sizes of Nv TCP Vegas connections, Wv [packets], is
obtained as;

Nvα < Wv < Nvβ. (5)

We determine Wv [packets], the average value of Wv, from
Eq. (5) as follows;

Wv = Nv
α + β

2
, (6)

which is a reasonable assumption from its behavior.

TCP Reno connections continue to increase their win-
dow sizes until the router buffer becomes full and eventu-
ally some packets are lost. Accordingly, Wr [packets], the
total of the window sizes of TCP Reno connections when
packet loss occurs at the router buffer, can be obtained as;

Wr = 2τµ + B − Wv. (7)

The number of lost packets during buffer overflow dura-
tion becomes Nr [packets], since from Eq. (1), the win-
dow sizes of TCP Reno connections are increased by
1 [packet/RTT] in the congestion avoidance phase as hav-
ing been explained in Section 2. By assuming that a packet
loss probability for each connection is proportional to its
window size, we can obtain Lr [packets] and Lv [packets],
the numbers of packet losses of TCP Reno and Vegas con-
nections during buffer overflow duration, respectively, as;

Lr = Nr
Wr

Wr + Wv
; Lv = Nr

Wv

Wr + Wv
(8)

Each of TCP Reno connections detecting the packet loss
halves its window size according to the fast retransmit al-
gorithm. Therefore, W ′

r [packets], the total window size
of the TCP Reno connections just after the buffer overflow,
can be determined by Eqs. (1) and (8) as;

W ′
r =

1
2
· Wr

Nr
· Lr +

Wr

Nr
· (Nr − Lr)

=
Wr + 2Wv

2(Wr + Wv)
· Wr (9)

From Eq. (1) (and Figure 2), the following equation holds
for Wr [packets], the average value of the total window
size of TCP Reno connections;

Wr =
1
2
(Wr + W ′

r)
Wr−W ′

r

Nr
+ Wr

Wr−W ′
r

Nr
+ 1

(10)

Accordingly, we obtain Br [packets] and Bv [packets], the
average number of packets at the router buffer for TCP
Reno and Vegas, respectively;

Br = Wr · B

2τµ + B
; Bv = Wv · B

2τµ + B
(11)

We finally have ρr [packets/sec] and ρv [packets/sec],
the average throughput of the connections of two versions
of TCP as;

ρr = µ · Br

Br + Bv
; ρv = µ · Bv

Br + Bv
, (12)

since we have assumed that they become proportional to
the buffer occupancy at the router.

4.1.2 Case of RED Router

The RED algorithm drops incoming packets at the preset
probability when the number of packets in the buffer ex-
ceeds a certain threshold value [8]. For simplicity of the
following analysis, it is assumed that all packet losses oc-
cur with probability p by the RED algorithm, and no buffer
overflow takes place.

Even with the RED algorithm, TCP Reno connections
continue to increase their window sizes until packet loss
occurs. Therefore, as in the drop-tail case, the TCP Vegas
connectionscannot open their window sizes and keep them
ranging from α to β. Therefore, the following equations
yield for Wv and Wv;

Nv · α < Wv < Nv · β; Wv = Nv
α + β

2
(13)

Each of TCP Reno connections, on the other hand,
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changes its window size cyclically triggered by packet
losses as in the drop-tail router case. Since all arriving
packets are dropped with probability p by our assumption,
the connection can send 1/p packets in one cycle (between
two events of packet losses) on average. We define the
number of packets transmitted during one cycle as Np, and
is given by

Np = 1/p (14)
Different from the drop-tail router case, we focus on a cer-
tain TCP Reno connection because we assume that all TCP
Reno connections behave identically under the stochastic
packet dropping algorithm employed by RED.

Although the RED algorithm can eliminate the bursty
packet losses, retransmission timeout expiration cannot
be perfectly avoided [11]. Even if timeout expiration
rarely happens, the effect of timeout expiration on through-
put is not negligible. Therefore, we must take into ac-
count throughput degradation caused by timeout expira-
tion. We denote the probability of occurring timeout expi-
ration within the window by pto. By using wr, the average
value of the window size of a certain TCP Reno connection
when packet loss is detected, we determinepto by a follow-
ing simple equation;

pto =
wr∑
i=2

(
wr

i

)
· pi · (1 − p)wr+1−i (15)

In what follows, we distinguish two cases of detecting
packet loss; retransmission timeout expiration (TO case)
and the fast retransmit (FR case), because in each of two
cases, a different algorithm of changing the window size is
used.

In the TO case, that is, if packet loss is detected by re-
transmission timeout expiration, the window size is reset
to 1 [packet]. It is then updated according to the slow
start phase (Eq. (1)) until it reaches wr/2 [packets]. From
Eq. (1), we can determine Tto,1 [sec], the time duration of
the slow start phase, and Ato,1 [packets], the number of
packets transmitted in the slow start phase, by the follow-
ing equations.

Tto,1 = rtt · log2

wr

2
; Ato,1 =

wr

2
− 1 (16)

where rtt [sec] is the mean value of RTTs of sending
packets. Furthermore, we can easily obtain Tto,2 [sec]
and Ato,2 [packets], which are the time duration and the
number of transmitted packets in the following congestion
avoidance phase, respectively, from Eq. (1) as;

Tto,2 = rtt ·
(

wr − wr

2

)
(17)

Ato,2 =
1
2

(
wr +

wr

2

)(
wr − wr

2

)
(18)

These equations hold due to the fact that the window size
is increased by 1 [packet] per RTT [sec] in the congestion
avoidance phase (Eq. (1)).

On the other hand, if the TCP Reno connection detects
the packet loss by the fast retransmit algorithm (FR case),

the window size is halved to wr/2, and the congestion
avoidance phase starts again. That is, time duration and the
number of transmitted packets during the slow start phase
(denoted as Tfr,1 and Afr,1, respectively) are zeros, i.e.,

Tfr,1 = 0; Afr,1 = 0 (19)

Similarly, time duration and the number of transmitted
packets in the congestion avoidance phase (Tfr,2 and
Afr,2) are represented as

Tfr,2 = rtt

(
wr − wr

2

)
(20)

Afr,2 =
1
2

(
wr +

wr

2

)(
wr − wr

2

)
(21)

Consequently, the following equations are satisfied for the
number of transmitted packets and the average window
size during one cycle from Eqs. (16)-(20);

Np = pto(Ato,1 + Ato,2)
+(1 − pto)(Afr,1 + Afr,2) (22)

wr = rtt ·
[
pto

(
Ato,1 + Ato,2

Tto,1 + Tto,2 + rto

)

+ (1 − pto)
(

Afr,1 + Afr,2

Tfr,1 + Tfr,2

)]
(23)

where rto [sec] is the retransmission timeout value of the
connection. Since we can obtain pto and wr by solving
Eqs. (22) and (23), the average value of the total window
size of all TCP Reno connections, Wr, can be easily ob-
tained as follows;

Wr = Nrwr (24)
Finally, ρr and ρv in the RED case can be determined simi-
larly to the drop-tail router case, from Eqs. (11)–(12), (13),
(13) and (24).

4.2 Numerical Examples and Discussions

In this Subsection, we show some numerical examples by
using analysis results presented in the previous Subsection,
which are aimed at discussing the fairness between two ver-
sions of TCP. Simulation results are also provided to assess
the accuracy of our analysis. In what follows, we set τsx

= 0.0015 [sec], τxd = 0.005 [sec], bw = 10 [Mbps] and
BW = 1.5 [Mbps] as network parameters. For the RED
router, we set the threshold values, thmin = 5 [packets]
and thmax = 0.6 ×B [packets].

4.2.1 Case of Drop-Tail Router

Figure 3 shows the average throughput of TCP Reno and
TCP Vegas connections as a function of the buffer size
B [packets] of the drop-tail router. We consider three cases
for the number of connections of TCP Reno and Vegas (Nr

and Nv); Nr = 5, Nv = 5 for Figure 3(a), Nr = 5,
Nv = 10 for Figure 3(b), and Nr = 10, Nv = 5 for Fig-
ure 3(c). In these figures, we show both of the analysis and
simulation results for validating our analysis presented in
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Subsection 4.1. We can see in these figures that our analy-
sis gives appropriate estimations of throughput, regardless
of the number of connections of two versions of TCP. How-
ever, especially when the router buffer size is very small (<
20 [packets]), however, our analysis under-estimates the
throughput of TCP Reno connections, and over-estimates
that of TCP Vegas connections. It is because the assump-
tion that the window sizes of TCP Vegas connections are
fixed at Wv = (α +β)/2 does not hold for too small buffer
size, while such a very small buffer size is not realistic.

An important observation obtained from Figure 3 is
that TCP Vegas connections suffer from significantly low
throughput, compared with TCP Reno connections. It is
due to the differenceof buffer occupancy at the router. TCP
Reno connections can increase their window sizes until the
buffer becomes full and packet loss occurs. On the other
hand, TCP Vegas connections does not inflate the window
size larger than β, as have been described in Subsection 4.1.
This observation can be confirmed by our analysis in the
previous subsection. From Eqs. (7) and (10), the average
window size of TCP Reno connections becomes large as
the router buffer size B [packets] is increased. Since the
increase of the window size of each TCP Reno connection
can directly lead to the throughput improvement, as can be
seen from Eqs. (11) through (12). On the other hand, the
window size of TCP Vegas connections remain unchanged
regardless of the router buffer size (see Eq. (6)). Therefore,
buffer occupancy of TCP Vegas connections is decreased
as the router buffer size is set to be large. That is, the larger
the router buffer size becomes, the worse the fairness be-
tween TCP Reno and TCP Vegas connections becomes.

In this subsection, we have considered the drop-tail
router. The mechanism of the RED router can inhibit the
bursty losses of packets from the same connection to im-
prove the fairness among connections. Such a mechanism
is also useful in our case, which will be examined in the
next subsection.

4.2.2 Case of RED Router

We next show the case of the RED router in Figure 4. In
this case, the packet dropping probability, p, is set to be
1/30. Analysis results in the figure are not affected by the
router buffer size. It is because we have assumed that in our
analysis, the packet dropping probability is constant, and
that all packet drops are caused by stochastic dropping of
the RED algorithm, not by the buffer overflow of packets.
The differences between analysis and simulation results be-
come apparent when the buffer size is small because in that
region, throughput degradation caused by buffer overflow
cannot be negligible. However, such a small buffer size is
not realistic in the operating network and our analysis re-
sults can well illustrate how different the throughput per-
formance of two versions of TCP are.

We can observe from Figure 4 that the fairness between
two versions of TCP is greatly improved when compared

with the case of drop-tail router, while the total throughputs
of all connections are almost identical for the large buffer
size. It can be explained as follows. With the RED algo-
rithm, TCP Reno connectionsdoes not inflate their window
sizes until the router buffer becomes fully–utilized, since
packet loss occurs before the buffer becomes full due to
an essential nature of the RED algorithm. It results in the
decrease of buffer occupancy of TCP Reno connections,
leading to throughput degradation of TCP Reno connec-
tions. It also contributes the throughput improvement of
TCP Vegas connections. The observation can be confirmed
by our analysis. In contrast with the drop-tail router case,
the window size of TCP Reno is independent on the router
buffer size, since the total number of packets transmitted
between two events of packet losses is only dependent on
the packet dropping probability of the RED algorithm p as
shown in Eq. (14). Therefore, throughput values of two
versions are not changed even when the router buffer size
becomes large.

From the above discussion, one may expect that if the
packet dropping probability is further increased, the fair-
ness can be improved because the average window sizes
of TCP Reno connections gets smaller. This observation
can be partly confirmed by Figure 5, where we increase the
packet droppingprobability to 1/10 (from 1/30 in the previ-
ous case). We can see the fairness enhancementby compar-
ing with the previous results in Figure 4. It can be verified
by Eq. (14), i.e., the number of packets that the sender host
can transmit in one cycle is decreased as p becomes large.
It causes the decrease of the average window size of TCP
Reno connections, because it inflates its window size until
the packet loss is detected. Then, buffer occupancy of TCP
Reno connections is decreased, and that of TCP Vegas con-
nections is increased, since the window size of TCP Vegas
is not affected by p. Hence, the fairness between the two
versions of TCP can be improved.

As one can naturally imagine, however, we cannot avoid
the degradation of the total throughput if the packet drop-
ping probability of RED algorithm is set too high for fur-
ther fairness improvement. Figure 6 shows simulation re-
sults for the throughput of TCP Reno and Vegas connec-
tions and the total throughput, by changing p (the packet
dropping probability of the RED algorithm). In obtaining
this figure, we fix the other parameters; Nr = 5, Nv = 5, and
B = 100 [packets]. We can see from the figure that when
the packet dropping probability becomes large (> 0.01),
the fairness between two versions of TCP can be much im-
proved, but the total throughput degrades. In other words,
there exists an inevitable trade-off between fairness and
throughput in the RED algorithm. Furthermore, it would
be difficult to choose an appropriate value of p in the oper-
ating network since it must be affected by the active num-
bers of connections of two TCP versions.

In this paper, we have considered two versions of TCP.
The one is TCP Reno; an existing and widely used proto-
col. The other is TCP Vegas; the newly proposed protocol
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(a) Nr = 5, Nv = 5.
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Figure 3: Case of Drop-Tail Router

which gives higher throughput than TCP Reno as having
been demonstrated in the original paper of TCP Vegas [6].
TCP Vegas also has an excellent feature of the backward
compatibility to the older versions of TCP including TCP
Reno. However, when two versions of TCP share the bot-
tleneck link, the performance of TCP Vegas is much de-
graded, which was not originally expected. For the new
protocol to be deployed in the operating network, its migra-
tion path should be taken into account. In this sense, TCP
Vegas does not seem to be successful.

However, there are several approaches to overcome the
above problem. One possible solution is to improve the
congestion control algorithm of TCP Vegas itself to be able
to compete equally with TCP Reno. For this, the win-
dow of TCP Vegas should be increased more aggressively
as TCP Reno does. Another approach is to modify the
RED algorithm at the router so that the router can detect
mis-behaving connections, which correspond to TCP Reno
connections in the current context. Then the router elimi-
nates the unfairness by intentionally dropping more pack-
ets from the mis-behaving connections than well-behaving
connections. In next two sections, we investigate those ap-
proaches in turn.

5 Modification to TCP Vegas

As described in the previous section, one reason of the un-
fairness between TCP Reno and Vegas is due to the differ-
ence of their congestion control algorithms. An aggressive
increase of window sizes in TCP Reno much affects the
performance of TCP Vegas controlling their window sizes
moderately. Therefore, we modify TCP Vegas so that it
has an ability to compete the link at least equally with TCP
Reno connections, while preserving the merit of TCP Ve-
gas of the stability of the window size. In this section, we
propose an approach, called TCP Vegas+, and show some
simulation results to verify its effectiveness.

5.1 Algorithm

In TCP Vegas+, we only change the updating algorithm for
the window size in the original TCP Vegas, and remains
unchanged for other functions, which include the detection
algorithm of packet loss, and the slow slow start mecha-
nism (Section 2). TCP Vegas+ normally behaves identi-
cally with TCP Vegas, but it enters the other mode to in-
crease its window size more aggressively when it perceives
to have competing connectionsof TCP Reno. More specif-
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Figure 4: Case of RED Router: p = 1/30

ically, TCP Vegas+ has two modes for updating its window
size;

Moderate Mode: In the moderate mode, the
TCP Vegas+ sender behaves identically to
the original TCP Vegas, i.e., the window
size is updated according to Eq. (4).

Aggressive Mode: In the aggressive mode, the
TCP Vegas+ sender host behaves identi-
cally to TCP Reno. That is, it updates the
window size according to Eq. (1). This
mode is for TCP Vegas+ connections to
keep fair throughput against TCP Reno
connections.

Most important is to switch between the above two modes.
For this purpose, we introduce new variables count and
countmax. First, count is updated according to the follow-
ing algorithm.

1. On every receipt of an ACK packet, the sender ob-
serves its window size and the RTT value. If RTT is
larger than the previous value while the window size
is not increased, the sender increments count by 1.

2. On the other hand, if RTT becomes smaller, the sender
decrements count by 1.

3. If packet loss is detected by a fast retransmit algo-
rithm, count is halved.

4. If packet loss is detected by a retransmission timeout
expiration, count is reset to 0.

TCP Vegas+ then changes its mode according to the count
value;

Moderate Mode → Aggressive Mode: If
count reaches a certain threshold value
countmax, the sender changes its mode
from the moderate mode to the aggressive
mode.

Aggressive Mode → Moderate Mode: If
count becomes 0, it goes back to the
moderate mode.

A rational behind the above algorithm is as follows; if the
RTT value becomes larger whereas the window size is un-
changed, it can be considered that the increase of RTT is
not caused by the TCP Vegas+ connection itself, but by
other TCP Reno connections, which increases its window
size more aggressively than the TCP Vegas+ connection.
Then the TCP Vegas+ connection should increase its win-
dow size more aggressively to compete equally with the
other connections. When packet loss is detected, on the
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Figure 5: Case of RED Router: p = 1/10
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Figure 6: Throughput vs. Packet Dropping Probability of RED Algorithm

other hand, the TCP Vegas+ should change its mode from
the aggressive mode to the moderate mode. It is because
the packet loss indicates the network congestion occur-
rence, and the congestion may be caused by the aggressive
increase of the window size of itself.

5.2 Simulation Results and Discussions

We first show the time–dependent behaviors of the win-
dow size in Figures 7(a) and 7(b) where TCP Vegas and
Vegas+ are applied, respectively. We used the network
model depicted in Figure 1, and set Nr = 5, Nv = 1,
and B = 100 [packets]. The five TCP Reno connections
sends data from 250 [sec] to 500 [sec], and from 750 [sec]

9



to 1000 [sec] of the simulation time. The drop-tail router
is assumed in this experiment. For the parameter of TCP
Vegas+, we set countmax = 8. Instantaneous throughput
value of two cases are shown in Figure 8.

As can be observed from Figure 7(a), the window size
of the original TCP Vegas remains almost unchanged even
when the TCP Reno connections starts packet transmis-
sion. Therefore, the throughput is degraded when TCP
Reno connections exists because buffer occupancy at the
router becomes very low. See Figure 8(a). In the case of
TCP Vegas+, on the other hand, the TCP Vegas+ connec-
tion can increase its window size up to almost equal val-
ues with the TCP Reno connections when the TCP Reno
connections join the network (Figure 7(b)). Furthermore,
when the TCP Reno connections do not exist (from 0 [sec]
to 250 [sec] and from 500 [sec] to 750 [sec] of the sim-
ulation time), the window size is stable as in the case of
TCP Vegas. This is just a behavior of TCP Vegas+ that we
want to realize. Consequently, rather good fairness can be
achieved in terms of throughput as shown in Figure 8(b).

We next present several results on fairness correspond-
ing to the results presented in Section 4. We set τsx =
0.0015 [sec], τxd = 0.005 [sec], bw = 10 [Mbps] and
BW = 1.5 [Mbps]. Countmax for the TCP Vegas+ pa-
rameter is unchanged to be 8. Figure 9 shows simulation
results; Figure 9(a) for Nr = 5 and Nv = 5, Figure 9(b)
for Nr = 5 and Nv = 10, and Figure 9(c) for Nr = 10 and
Nv = 5. In these figures, we also show results of the orig-
inal TCP Vegas case. Those are same as Figure 3 in Sec-
tion 4. These figures show that the fairness between two
versions of TCP is significantly improved especially when
the buffer size is comparatively large. It can also be ob-
served that fairness improvement can be achieved regard-
less of the number of connections of TCP Reno and Ve-
gas+.

When we set countmax = 5, the fairness is also better
than that of the original TCP Vegas, but slightly degraded
compared with the case of countmax = 8. The results are
shown in Figure 10. One reason is that by using a smaller
value of countmax, TCP Vegas+ connections unnecessar-
ily change its mode more frequently from the moderate
mode to the aggressive mode. In the current simulation set-
ting, the most appropriate value was countmax = 8, but it
might be different in other cases. Its appropriate choice is
left to be a future research topic.

6 Modification to the Scheduling Al-
gorithms at the Router

In this section, we consider another way to improve fair-
ness between TCP Reno and Vegas, by modifying the RED
algorithm at the router. Our proposed algorithm, called ZL-
RED (Zombie Listed RED), is based on the mechanism
proposed in [9], and a function of dropping incoming pack-
ets is added to improve the fairness.

6.1 ZL-RED Algorithm

In Section 4, we have shown that the original RED can im-
prove the fairness to some degree, but there is an inevitable
trade-off between fairness and throughput. The main rea-
son was that RED drops incoming packets from different
connections with same probability, regardless of the char-
acteristics of the connections. Then, as we set the packet
dropping probability to a higher value, throughput values
of the TCP Reno and Vegas connection become lower, and
the total throughput gets smaller while we can obtain bet-
ter fairness. Therefore, for further fairness improvement
without throughputdegradation, we need two mechanisms;
the one is how to detect TCP Reno connections, and the
other is how to drop more packets from TCP Reno connec-
tions. Our mechanism is inspired by SREDproposed in [9],
where the way to find a mis-behavingflow are described. In
our context, it corresponds to TCP Reno connections, and
we need additional mechanisms as will be described below.

6.1.1 How to Detect Mis-behaving Connections

Several methods have already been proposed to identify
mis-behaving connections, and to provide fair service at
the router [12-14]. However, most of them use per-flow
information to determine the mis-behaving connections,
and such methods have an essential problem; inscalabil-
ity against the number of accommodated connections. Ac-
cordingly the authors in [9] have introduced an algorithm
which does not use any per-flow information for detecting
mis-behaving connections. Since our method is based on
SRED, we briefly summarize the SRED algorithm first.

Instead of per-flow information, SRED maintains a
fixed-size table called a zombie list. Each entry of the
zombie list contains information on incoming packets (i.e.,
source/destination addresses and possibly port numbers), a
timestamp and a counter. The zombie list is initialized to
be empty. When the packet arrives at the router, the router
adds a new entry for the packet. If the zombie list is full on
packet arrival, the router randomly selects one entry from
the zombie list. If information of the selected entry is iden-
tical to that of the arriving packet (the authors in [9] call
it hit.), the router increments the counter of the entry by
1. Otherwise, the router replaces the selected entry by the
information of the arrived packet with a certain probabil-
ity. By this algorithm, mis-behaving connections can be
detected as follows. Suppose that a certain connection is
mis-behaving, that is, a connection sends more packets to
the router than other connections. Then, the zombie list
tends to contain more entries of the mis-behaving connec-
tions. Therefore, when the packets from the mis-behaving
connection arrives at the router, the packet hits in the zom-
bie list more frequently, because the probability that the
randomly selected entry coincides with the arriving packet
becomes larger. Furthermore, the counter value of the en-
try of the mis-behaving connections also becomes larger.
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Figure 7: Changes of Window Size
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Figure 8: Changes of Instantaneous Throughput

By these two mechanisms, the router can identify the mis-
behaving connections.

6.1.2 How to Drop More Packets from Mis-behaving
Connections

To keep fairness between mis-behaving connections and
well-behaving connections, the router should intention-
ally drop packets from the mis-behaving connections with
higher probability. The authors in [9] have proposed
the mechanism to detect mis-behaving connections us-
ing the zombie list, but have not shown any method to
improve fairness between mis-behaving connections and
well-behaving connectionsby using the zombie list. In this
subsection, we propose one possible way to realize it. We
will refer to it as ZL-RED (Zombie Listed RED).

In ZL-RED, packet dropping is performed in two steps.
At the first step, an incoming packet is dropped with proba-
bility p1. Its determination follows the algorithm presented

in [9];

p′ =




0 if qlen < thmin

pmin if thmin ≤ qlen < thmax

pmax if thmax ≤ qlen

(25)

p1 = p′
(

1 +
Hit(t)
P (t)

)
, (26)

where qlen is the number of packets in the router buffer
when the packet arrives at the router, and pmin, pmax,
thmin [packets] and thmax [packets] are some constant
values. P (t) is the probability with which the incoming
packet hits. According to [9], 1/P (t) becomes the aver-
age number of active connectionsat the router, if the packet
arriving rates of the all connections are equal. Further,
Hit(t) is defined as;

Hit(t) =
{

1, if the incoming packet hits
0, otherwise

(27)

In the second step, the router drops the packet with prob-
ability p2 when the packet is not dropped in the first step.
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Figure 9: Fairness Evaluation between TCP Reno and Vegas+: countmax = 8

The probability p2 is determined by the following equation.

p2 =

{
hitdrop

1+P (t)
, if Hit(t) = 1 and qlenP (t) ≥ 2.0

0, otherwise
(28)

where hitdrop is a control parameter of the ZL-RED al-
gorithm. It affects the packet dropping probability of
mis-behaving connections; if we set hitdrop to a larger
value, packets from mis-behaving connections are more
frequently dropped than those from well-behaving connec-
tions.

6.2 Simulation Results and Discussions

In this subsection, we present an effectiveness of our ZL-
RED algorithm through several simulation results. Fig-
ure 11 shows throughput and packet loss rate of TCP Reno
and Vegas connections as a function of the buffer size at the
router. We set the ZL-RED parameters as follows; pmin =
1/50, pmax = 1/10, thmin = 5 [packets], and thmax =
0.6B [packets] where B [packets] is the buffer size at the
router. The size of the zombie list is set to be 1000 [en-
tries]. Further, in obtaining Figure 11, we set hitdrop = 0,
that is, we use only the first step of packet dropping algo-
rithm of ZL-RED mentioned above. We can see from Fig-

ures 11(a), 11(c), and 11(e) that the fairness between TCP
Reno and Vegas is slightly improved by the ZL-RED algo-
rithm. It is because in the first step of ZL-RED, the packet
dropping probability is increased if an incoming packet of-
ten hits as shown in Eq. (26). That is, the packet loss rate
of TCP Reno connections becomes higher than that of TCP
Vegas connections due to its aggressive window size in-
crease. It is shown in Figures 11(b), 11(d), and 11(f). For
only reference purpose, we also show the packet loss rate
of TCP Reno and Vegas connections when using the orig-
inal RED algorithm with p = 1/30 in Figure 12. Since
the original RED algorithm drops incoming packets with a
constant probability, the packet loss rate of TCP Reno and
Vegas connections becomes identical.

We next change hitdrop to 0.8 so that the second step
of our algorithm is activated. The other parameters re-
mains unchanged. The results are shown in Figure 13.
Overall tendency is kept same, but the fairness between
TCP Reno and Vegas becomes better than the previous case
of hitdrop = 0 (Figure 11). It means that the second
step of ZL-RED can effectively drop packets from mis-
behaving connections, i.e., TCP Reno connections here.
However, the ZL-RED algorithm proposed in this section

12
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Figure 10: Fairness Evaluation between TCP Reno and Vegas+: countmax = 5

cannot eliminate the unfairness between TCP Reno and
TCP Vegas perfectly as shown in Figures 11 and 13 while
the fairness is much better than the originalRED algorithm.
Further fairness improvement using ZL-RED should be a
future research topic.

7 Conclusion

In this paper, we have investigated the fairness between
TCP Reno and Vegas in the case where the TCP connec-
tions of the two versions share the bottleneck link. We have
observed the following results through the mathematical
analysis and the simulation experiments; TCP Vegas suf-
fers from serious performance degradation with drop-tail
routers, because of the difference of buffer occupancy at
the router. RED routers can improve the fairness to some
degree, but there exists an inevitable trade-offbetween fair-
ness and throughput.

We have then proposed two approaches to improve the
fairness. The first one is TCP Vegas+, which enhances the
congestion control algorithm of the original TCP Vegas so
that TCP Vegas can compete equally with TCP Reno. The
second proposal is the ZL-RED algorithm, which detects

the mis-behaving connections at the router buffer, and tries
to intentionally drops more arriving packets from the mis-
behaving (i.e. TCP Reno) connections than that from well-
behaving (TCP Vegas) connections. We have confirmed
the effectiveness of the proposed mechanisms through the
simulation experiments. Then, which is better? ZL-RED
is a natural extension of the existing algorithm eliminat-
ing the mis-behaving flows. However, since our motiva-
tion is to achieve fairness between TCP Vegas and Reno,
an extension to TCP Vegas seems to be more adequate. The
problem is that since both approaches require the appropri-
ate parameter choice, we cannot decide it at this moment,
and we need more researches on the subject.
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(b) Packet Loss Rate: Nr = 5, Nv = 5
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(c) Throughput: Nr = 5, Nv = 10
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(d) Packet Loss Rate: Nr = 5, Nv = 10
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(e) Throughput: Nr = 10, Nv = 5
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(f) Packet Loss Rate: Nr = 10, Nv = 5

Figure 13: Fairness Evaluation under ZL-RED Algorithm: hitdrop = 0.8
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