
Fairness Comparisons between TCP Reno and TCP Vegas for
Future Deployment of TCP Vegas

Kenji Kurata Go Hasegawa Masayuki Murata

�
Department of Informatics and Mathematical Science

Graduate School of Engineering Science, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-6850-6616, Fax: +81-6-6850-6589
E-mail: � k-kurata, murata � @ics.es.osaka-u.ac.jp�

Faculty of Economics, Osaka University
1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Phone: +81-6-6850-5233
E-mail: hasegawa@econ.osaka-u.ac.jp

Abstract TCP Vegas version is expected to achieve higher throughput than TCP Tahoe and Reno
versions, which are currently used in the Internet. However, we need to consider a migration path of
TCP Vegas when it is deployed in the Internet. In this paper, we focus on the situation where multiple
TCP Reno and Vegas connections coexist at the bottleneck router, by which the fairness property is
investigated to seek the possibility of future deployment of TCP Vegas. We consider drop-tail and RED
(Random Early Detection) algorithms as buffering discipline at the router, and evaluate the effect of
RED algorithm on fairness enhancement. From the analysis and the simulation results, we have found
the results that the fairness between TCP Reno and Vegas can not be kept at all with drop-tail router.
Although RED algorithm improves the fairness to some degree, there are inevitable trade-off between
fairness and throughput.

1 Introduction

TCP (Transmission Control Protocol) is widely
used by many Internet services including HTTP
(and World Wide Web) and FTP (File Transfer
Protocol). Thus, even if the network infrastruc-
ture may change in the future Internet, TCP and
its applications would be likely to be continu-
ously used. However, TCP Tahoe and Reno ver-
sions (and their variants), which are widely used
in the current Internet, are not perfect in terms
of throughput and fairness among connections, as
having been shown in the past literatures. There-
fore, active researches on TCP have made great ef-
forts to propose many improvement mechanisms
of TCP (for example, see [1, 2, 3, 4] and the refer-
ences therein).

Among them, TCP Vegas version [5, 6] is con-
sidered to be one of the promising mechanisms
in its high performance. TCP Vegas enhances

the congestion avoidance algorithm of TCP Reno.
More specifically, TCP Vegas dynamically in-
creases/decreases its sending window size accord-
ing to observed RTTs (Round Trip Times) of send-
ing packets, whereas TCP Tahoe/Reno only con-
tinues increasing its window size until packet loss
is detected. For instance, the authors in [5] con-
cludes through simulation and implementation ex-
periments that TCP Vegas can obtain 40% higher
throughput than TCP Reno.

However, we need to consider a migration path
when the new protocol is deployed in the operat-
ing network, i.e., the Internet. That is, it is impor-
tant to investigate the effect of traditional TCP ver-
sions (Tahoe and Reno) on TCP Vegas in the case
where those different versions of TCP co-exist in
the network. The authors in [7] have pointed out
that when connections of TCP Reno version and
Vegas version share the bottleneck router, the Ve-

1

gas connection may suffer from significant unfair-
ness. However, the authors have assumed that
only a single TCP Reno connection shares the link
with another TCP Vegas connection, and no solu-
tion has been provided for fairness enhancement.

In this paper, therefore, we focus on the situa-
tion where multiple TCP Reno and Vegas connec-
tions coexist at the bottleneck router, and investi-
gate the fairness property between two versions of
TCP to seek the possibility of future deployment
of TCP Vegas in the Internet. One important point
is that the RED mechanism [8] is now being intro-
duced while the original Vegas does not assume it.
It may or may not be suitable to the RED mech-
anism. We therefore consider two mechanisms,
drop-tail and RED routers, in our study. One of
the contributions in this paper is to derive analysis
results of the throughput of TCP Reno and Vegas
in such situation. We further present the accuracy
of our analysis by comparing the analysis results
with the simulation results.

Through the analysis and simulation results,
we evaluate the essential fairness property be-
tween TCP Reno and Vegas as follows. TCP Ve-
gas receives significant unfair throughput com-
pared with TCP Reno, when the router employs
the drop-tail router. When the RED algorithm
is applied, the fairness can be improved to some
degree, but there exists an inevitable trade-off
between fairness and throughput. That is, if
the packet dropping probability of RED becomes
large, fairness between TCP Reno and Vegas is
improved, but the total throughput is degraded at
the same time.

The rest of this paper is organized as follows.
Section 2 briefly introduces the congestion control
mechanisms of TCP Reno and TCP Vegas. We
next describe the network model used in our anal-
ysis and simulation experiments in Section 3. Sec-
tion 4 shows the analysis results of fairness be-
tween the two versions of TCP, which are vali-
dated by the simulation results in Section 5. Fi-
nally, we conclude our presentation and present
some future works in Section 6.

2 Congestion Control Mecha-
nisms of TCP

In this paper, we consider two versions of TCP;
TCP Reno and Vegas versions. For detailed ex-
planation, refer to [9] for TCP Reno and [5, 6] for
TCP Vegas.

TCP
adopts a window-based flow control, which con-
trols the number of on-the-fly packets in the net-
work. The source terminal is allowed to send the
number of packets given by its window size. The
current window size of the source terminal is often
denoted by cwnd. The window size is updated at
the receipt of ACK (ACKnowledgement) packet.
The key idea of the congestion avoidance mecha-
nism of TCP is to dynamically control the window
size according to severity of the congestion in the
network. In what follows, we denote the current
window size at time � by ���	��

����� .

2.1 TCP Reno

In TCP Reno, the window size is cyclically
changed. The window size continues to be in-
creased until packet loss occurs. TCP Reno has
two phases in increasing its window size; Slow
Start Phase and Congestion Avoidance Phase.
When an ACK packet is received by TCP at the
server side at time ������� [sec], ���	��

���	������� is
updated from ���	��

����� as follows (see, e.g., [9]);

���	��

�����������

�
����� �"!#�%$'&)(�$�*,+�&.-0/�12�
���	��

�3�����5476 8 9:���	��

���;�=<?>@>A�;BDC
��E��.F�G)/H-�$'8 �.FJI=KD�)82L�&.F�MH/N*=+�&.-0/�12�
���	��

�3����� 4

���	��

���;� 6O8 9:���	��

���;�=P?>@>A�;BDC
(1)

where >@>A�;B [packets] is the threshold value at
which TCP changes its phase from Slow Start
Phase to Congestion Avoidance Phase. When
packet loss is detected by retransmission timeout
expiration [9], ���	��

���;� and >@>A�7B are updated as;

���	��

���;� � 4 (2)

>@>A�;B � ���	��

�3���Q (3)

On the other hand, When TCP detects packet
loss by fast retransmit algorithm [9], it changes

2

���	��

����� and >@>A�7B as follows;

>@>A�;B � ���	��

���;�Q (4)

���	��

����� � >@>A�;B (5)

TCP Reno then enters Fast Recovery Phase [9] if
the packet loss is found by fast retransmit algo-
rithm. In this phase, the window size is increased
by one packet when a duplicate ACK packet is re-
ceived, and ���	��
D�3��� is restored to >@>A�7B when the
non–duplicate ACK packet corresponding to the
retransmitted packet is received.

2.2 TCP Vegas

In TCP Reno (and the older version Tahoe), the
window size continues to be increased until packet
loss occurs due to congestion. Then, when the
window size is throttled because of packet loss,
the throughput of the connection may degrade.
However, it cannot be avoided because of an es-
sential nature of the congestion control mecha-
nism adopted in TCP Reno. That is, it can de-
tect network congestion only by packet loss. How-
ever, throttling the window size is not adequate
when the TCP connection itself causes the conges-
tion because of its too large window size. If the
window size is appropriately controlled such that
the packet loss does not occur in the network, the
throughput degradation due to the throttled win-
dow can be avoided. This is the reason that TCP
Vegas was introduced.

TCP Vegas employs another mechanism, in
which it controls its window size by observing
RTTs (Round Trip Time) of packets that the con-
nection has sent before. If observed RTTs be-
come large, TCP Vegas recognizes that the net-
work begins to be congested, and throttles the win-
dow size. If RTTs become small, on the other
hand, TCP Vegas determines that the network is
relieved from the congestion, and increases the
window size again. Then, the window size in an
ideal situation becomes converged to the appropri-
ate value. More specifically, in Congestion Avoid-
ance Phase, the window size is updated as;

���	��

���R������� �
���	��

�����S�?4H6T8 9U
WVYX3XZ< [\^]�_a` bdc3c
���	��

�����A6 8 9 [\^]�_d` bec�cNf
WVYX3X f g\^]�_a` bec�c
���	��

�����Uhi476j8 9 g\^]�_d` bec�c <k
WVYX3X

(6)

Router
Receiver Host

Sender Hosts
SR 1

SR Nr

SV 1

SV Nv

b
l

w [
m
Mbps]

BW [
m
Mbps]

Buffer: B [
m
packets]

b
l

w [
m
Mbps]

b
l

w [
m
Mbps]

b
l

w [
m
Mbps]

τn so x [
m
sec] τn xp d [

m
sec]

τ [
m
sec]

T
q

CP Reno
Hosts

T
q

CP Vegas
Hosts

Figure 1: Network Model

HVYX3X � ���	��

�����r;s >@t u@��� h ���	��

�3���
u@���

(7)

where uv��� [sec] is an observed round trip time,r;s >@t uv��� [sec] is the smallest value of observed
RTTs, and w and x are some constant values.

TCP Vegas has an another feature in its conges-
tion control algorithm. That is slow Slow Start
mechanism. The rate of increasing its window
size in Slow Start Phase is a half of that in TCP
Tahoe and TCP Reno. Namely, the window size is
incremented at every other time an ACK packet is
received. Note that Equation (6) used in TCP Ve-
gas indicates that if observed RTTs of the packets
are identical, the window size remains unchanged.

According to [5], TCP Vegas can achieve over
40% higher throughput than TCP Reno, which
has been confirmed through simulation and im-
plementation experiments. However, it has not
been validated whether TCP Vegas could work
well with TCP Reno or not. One of the things we
want to do in this paper is to investigate that, that
is, the fairness between the two versions of TCP
when they co-exist in the network. We believe that
it is very important to deploy TCP Vegas to the fu-
ture Internet.

3 Network Model

Figure 1 shows the network model used in this pa-
per. It consists of y b sender hosts using TCP Reno
(SR z , ... SR{�|), y~} sender hosts using TCP Ve-
gas (SV z , ... SV{S�), a receiver host, a intermedi-
ate router and links that connect the router and the

3

B
uf

fe
r

O
cc

up
an

cy
 [p

ac
ke

ts
] B

Time [sec]
�

TCP Reno’s
�
Packet

TCP Vegas’
�
Packet

RTT

1 Cycle

Figure 2: The Typical Change of Total Buffer Oc-
cupancy at the Drop-tail Router

sender/receiver hosts. The bandwidth of each link
between sender hosts and the router is

r � [Mbps].
The bandwidth of the bottleneck link between
the router and the receiver host is ��� [Mbps]
= � [packets/sec]. The size of the buffer in the
router is � [packets], and the propagation delay
between sender hosts and the router, and that be-
tween the router and the receiver host are � _d� [sec]
and � �A� [sec], respectively. We denote the total
propagation delay between the sender hosts and
the receiver host by � , which equals � _d� ��� �A� . As
the buffering discipline at the router, we use drop-
tail and RED (Random Early Detection) [8] algo-
rithms. We further assume that the sender hosts
have infinite amount of sending data.

4 Analysis

In what follows, we use the network model de-
picted in Figure 1, and derive average through-
put of each TCP connection through mathemati-
cal analysis. In the analysis, we assume that the
throughput of each connection becomes propor-
tional to buffer occupancy at the router. This as-
sumption is appropriate for the drop-tail router,
and for the RED router where the additional func-
tion is attached to the drop-tail router.

4.1 Case of Drop-tail Router

Figure 2, we model the typical change of the to-
tal number of packets in the router buffer if we
use drop-tail algorithm. Since TCP Reno connec-
tions continue to increase their window sizes until
packet loss occurs at the buffer, the change of the
window size also has cycles in the this case, where
the TCP Reno connections co-exist with the TCP
Vegas connection in the bottleneck touter. Fur-
thermore, if we assume that all packet losses can
be detected by Fast Retransmit algorithm [9], It
takes 1 RTT (Round Trip Time) [sec] for sender
side TCP to detect the packet loss until the packet
loss really occurs at the route buffer. This is de-
picted the flat part of the change of the window
size in Figure 2.

TCP Vegas connections, on the other hand, con-
trol their window size according to the observed
RTTs of sending packets. In more detail, they
try to keep the number of buffered packets in the
router buffer from w to x [packets] [4]. If RTTs
continue to become larger, TCP Vegas connec-
tions continue to decrease their window size. In
this case, since TCP Reno connections continue
increasing their window size regardless the in-
crease of RTT, the RTTs for TCP Vegas connec-
tions also become larger. This results that the win-
dow sizes of the TCP Vegas connections decrease
to reach within the range from w to x [packets], in
accordance with Eq. (6). Therefore, � } [packets],
the total window size of the TCP Vegas connec-
tions, is obtained as follows;

y�}���w <?��}�< y�}��Hx (8)

As the reasonable assumption,
we determine ��} [packets], the average value of
��} , from Eq. (8) as follows;

��} � y~}�� w���xQ (9)

On the other hand, TCP Reno connections con-
tinue increasing their window size until the router
buffer becomes full. Accordingly, � b [packets],
the total window size of the TCP Reno connec-
tions when packet loss occurs at the router buffer,
can be calculated;

� b � Q ���Z����h���} (10)

The number of packet losses in one buffer over-
flow becomes y b [packets], since from Eq. (1),

4

the window sizes of TCP Reno connections are in-
creased� by 1 [packet/RTT], according to the Con-
gestion Avoidance Phase explained in Section 2.
When we assume that packet loss probability for
each connection is proportional to its window
size, we can obtain � b [packets] and ��� [pack-
ets], which are the number of packet losses of
TCP Reno and Vegas connections in the one buffer
overflow, as follows;

� b � y b � � b
� b ����} (11)

�S} � y b � ��}
� b ����} (12)

The TCP Reno connections which detect the
packet loss halve their window sizes accord-
ing to the fast retransmit algorithm. Therefore,
���b [packets], the total window size of the TCP
Reno connections just after the buffer overflow,
can be calculated from Eq. (1) and (11);

� �b � 4Q � � b
y b �)� b (13)

� � b
y b �D�ay b h�� b �

� � b � Q �Z}Q �a� b ����}W� ��� b (14)

From Figure 2 and
Eq. (1), we can derive � b [packets], which is the
average value of the total window size of the TCP
Reno connections;

� b � z� �a� b �����b �H� |�� ���|{ | ��� b
� | � � �|{�| �54 (15)

Accordingly, we can obtain � b [packets] and
��} [packets], the average number of packets at the
router buffer of each version of TCP, as follows;

� b � � b � �Q ���Z��� (16)

��} � ��}�� �Q ������� (17)

Finally, we can calcu-
late b [packets/sec], ¡} [packets/sec], the average
throughput of the connections of the two versions
of TCP, since we have assumed that they become
proportional to the buffer occupancy at the router.

The result is as follows;

 b � �¢� � b
� b ����} (18)

 ¡} � �¢� � }
� b ����} (19)

4.2 Case of RED Router

RED algorithm drops incoming packets at the pre-
set probability when the number of packets in the
buffer exceeds a certain threshold value [8]. For
simplicity of the following analysis, it is assumed
that all packet loss are occurred at the probability£ by the RED algorithm, and no buffer overflow
takes place.

Even with the RED algorithm, the TCP Reno
connections continue increasing their window
sizes until packet loss occurs. Therefore, as in the
drop-tail case, the TCP Vegas connections can not
open their window sizes and keep them ranging
from w to x . Therefore, the following equations
are satisfied for � } and � } ;

y�}���w < ��}¤<�y�}��Hx (20)

��} � y~}�� w���xQ (21)

TCP Reno connections, on the other hand,
change their window size cyclically triggered by
packet losses, as in the drop-tail router case. Since
all arriving packets are dropped at the router with
probability £ by our assumption, the connection
can send 4H¥ £ packets in one cycle (between the
events of packet losses) on the average. We de-
fine the number of packets transmitted during one
cycle as y�¦ , that is, y�¦ � 47¥ £ . Different
from the previous Subsection of drop-tail router
case, we focus on a certain TCP Reno connec-
tion because we assume that all TCP Reno connec-
tions behave identically under the RED’s stochas-
tic packet dropping algorithm.

Although the RED algorithm can eliminate the
bursty packet losses leading to TCP’s retransmis-
sion timeout expiration, timeout expiration can-
not be avoided perfectly [10]. Even if timeout
expiration rarely happens, the effect of timeout
expiration on throughput is large. Therefore, we
consider the throughput degradation caused by re-
transmission timeout expiration. We denote the
probability of occurring timeout expiration in the

5

window by £ c3§ . As we denote the average value of
the window¨ size of a certain TCP Reno connection
when packet loss is detected by � b , we can deter-
mine £ c3§ according to the following simple equa-
tion;

£ c�§ � © |
ª¬«)�

� b
V � £ ª �D�04:h £ � © |�� ª

(22)

In what follows, we distinguish two methods of
detecting packet loss; retransmission timeout ex-
piration (TO case) and fast retransmit (FR case),
because the two cases have the different algo-
rithms of changing the window size.

If retransmission timeout expiration occurs (TO
case), the window size is reset to 1 [packet] and
it is updated according to the Slow Start Phase
(Eq. (1)), until it reaches � b ¥ Q

[packets]. From
Eq. (1), we can derive ­ c�§�® z [sec], which is the time
duration of the Slow Start Phase, and ¯ c3§�® z [pack-
ets], which is the number of packets transmitted in
the Slow Start Phase. That is,

­ c�§�® z � u@���,�.� �.G � � bQ (23)

¯ c3§�® z � � bQ hi4 (24)

where u@��� [sec] is the mean value of RTT of send-
ing packets. Furthermore, we can easily obtain
­ c3§�® � [sec] and ¯ c�§�® � [packets], which are the time
duration and the number of transmitted packets in
the following Congestion Avoidance Phase from
Eq. (1).

­ c�§�® � � u@���,� � b h � bQ (25)

¯ c�§�® � � 4Q � b � � bQ � b h � bQ (26)

These equations are determined from that the win-
dow size is increased by 1 [packet] per RTT [sec]
in the Congestion Avoidance Phase (Eq. (1)).

On the other hand, if the TCP Reno connec-
tion detects the packet loss by Fast Retransmit al-
gorithm (FR case), The window size is halved to
� b ¥ Q

, and the Congestion Avoidance Phase starts
again. That is, the time durations and the num-
ber of transmitted packets in the Slow Start Phase
(­S° b±® z and ¯�° b±® z) and the Congestion Avoidance
Phase (­S° b±® � and ¯�° b±® �) can be derived as follows;

­�° b±® z � ² (27)

¯�° b±® z � ² (28)

­ ° b±® � � uv����� � b h � bQ (29)

¯ ° b±® � � 4Q � b � � bQ � b h � bQ (30)

Consequently, the following equations are satis-
fied for the number of transmitted packets in one
cycle, and � b from Eqs.(23)-(30);

4£ � £ c3§ �a¯ c�§�® z���¯ c3§�® � �
�³��4�h £ c3§ �'��¯�° b�® z
��¯�° b±® � � (31)

� b � u@���,� £ c3§ ¯ c3§�® z���¯ c3§�® �
­ c3§�® z���­ c3§�® � ��u@�;´

��u@���,�D�04:h £ c3§ � ¯�° b±® z���¯�° b±® �
­�° b±® z���­�° b�® � (32)

where uv�;´ [sec] is the retransmission timeout value
of the connection. Since we can obtain £ c3§ and � b
by solving Eqs. (31) and (32), the total window
size of all TCP Reno connections, � b , can be eas-
ily obtained as follows;

� b � y b � � b (33)

Finally, b and ¡} in the RED case can be de-
termined as similarly to the drop-tail router case,
from Eqs.(16)-(18), (20), and (33).

5 Numerical Examples and
Discussions

We next show some numerical examples of the
analysis results, which is validated by comparing
them with simulation results. Furthermore, we
present some discussions on the fairness between
the two versions of TCP, using the numerical re-
sults.

In what follows, we use the network model de-
picted in Figure 1, and set � _a� = 0.0015 [sec],
� �A� = 0.005 [sec],

r � = 10 [Mbps] and ��� =
1.5 [Mbps]. For the RED router, we set the thresh-
old values: �;B¡µ ªY¶ = 5 [packets] and �;B¡µ]�� =
0.6 � B [packets].

5.1 Case of Drop-Tail Router

Figure 3 shows the average throughput of the
TCP Reno connections and the TCP Vegas con-
nections, as a function of the router buffer size

6

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·2·¼·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë2Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í¼× Ø�Ù

ÚdÛ2Ô2Ü Ý�Ø�Ð Ø�Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô2× Ð á¼Û2Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô¼× Ð á2Û2Þ ãdÍ¼ä2Ô2ØÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þ ãdÍ¼ä2Ô2Ø

(a) åçæ = 5, åçè = 5.

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô2× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(b) åçæ = 5, åçè = 10.

·º2·
é ·ê2·
ë2·¹ ·2·¹ º2·¹ìé ·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í2ÎíÏdÐ Ñ�Í;Ò Ó2Ô¼Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏeÐ â;Ë2Ü Ô¼× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(c) åRæ = 10, åçè = 5.

Figure 3: Case of Drop-Tail Router

� [packets] in drop-tail router case. We consider
three cases of the number of connections of TCP
Reno and Vegas (y b and y }); Figure 3(a) for y b
= 5, y } = 5, Figure 3(b) for y b =5, y } = 10, and
Figure 3(c) for y b = 10 y } = 5. In these figures,
we show both of the analysis results and the sim-
ulation results for validating our analysis in Sec-
tion 4. We can say from these figures that our anal-
ysis gives appropriate estimations of throughput,
regardless of the number of connections of the two
versions of TCP. However, especially when the
router buffer size is very small (< 20 [packets]),
the analysis results under-estimate the throughput
of the TCP Reno connections, and over-estimate
that of TCP Vegas connections. This is because
the assumption in the analysis, that the window
sizes of TCP Vegas connections are fixed at ��} =
�aw��îxN�0¥ Q

, can not be satisfied when the buffer size
is too small.

The another important observation obtained
from these figures is that the TCP Vegas con-
nections suffer from significantly low throughput,
compared with the TCP Reno connections. This
is because of the difference of buffer occupancy
at the router. The TCP Reno connections can in-
crease their window sizes until the buffer becomes
full and packet loss occurs. On the other hand, the
TCP Vegas connections can not inflate their win-
dow size larger than x , as have pointed out in the
Section 4. That is, the larger the router buffer size
becomes, the worse the fairness between the TCP
Reno connections and the TCP Vegas connections
becomes.

In short, this serious unfairness is caused by the
difference of the congestion control algorithm of
the two versions of TCP, and the drop-tail algo-

rithm at the router buffer. We conclude that the
drop-tail router can not provide fairness between
TCP Reno and TCP Vegas connections when they
share the bottleneck router in the network.

5.2 Case of RED Router

Figure 4 shows the result of the case where RED
algorithm is adopted at the router buffer. We first
set £ , the packet dropping probability, to 1/30. In
the figure, we can see that the analysis results are
not effected by the router buffer size. This is be-
cause we have assumed in our analysis that the
packet dropping probability is constant, and that
all packet drops are caused by the stochastic drop-
ping of RED algorithm, not by the buffer over-
flow. On the other hand, we can also find from
this figure that the simulation results are affected
by the buffer size, especially when the buffer size
is small. This is because the packet loss occurs
by buffer overflow, as well as by the stochastic
packet dropping of the RED algorithm. Taking
this observations into consideration, we can again
say that our analysis results can approximate the
throughputs of the connections of the two versions
of TCP with the appropriate accuracy, especially
when the buffer size is large.

We further present some discussions from these
figures that the fairness between the two versions
of TCP greatly improves, compared with the case
of drop-tail router. This can be explained as fol-
lows. With the RED algorithm, the TCP Reno
connections can not inflate their window sizes un-
til the router buffer becomes fully-utilized, since
packet loss occurs before the buffer becomes full,
which is caused by RED algorithm. That results in

7

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·2·¼·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë2Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í¼× Ø�Ù

ÚdÛ2Ô2Ü Ý�Ø�Ð Ø�Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô2× Ð á¼Û2Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô¼× Ð á2Û2Þ ãdÍ¼ä2Ô2ØÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þ ãdÍ¼ä2Ô2Ø

(a) åçæ = 5, åçè = 5.

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô2× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(b) åçæ = 5, åçè = 10.

·º2·
é ·ê2·
ë2·¹ ·2·¹ º2·¹ìé ·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í2ÎíÏdÐ Ñ�Í;Ò Ó2Ô¼Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏeÐ â;Ë2Ü Ô¼× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(c) åRæ = 10, åçè = 5.

Figure 4: Case of RED Router: £ � zï�ð

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·2·¼·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë2Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í¼× Ø�Ù

ÚdÛ2Ô2Ü Ý�Ø�Ð Ø�Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô2× Ð á¼Û2Þàß¬Í¼Û2áÏdÐ â;Ë¼Ü Ô¼× Ð á2Û2Þ ãdÍ¼ä2Ô2ØÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þ ãdÍ¼ä2Ô2Ø

(a) åçæ = 5, åçè = 5.

·¸2·
¹ ·2·¹ ¸2·º2·2·º2¸2·»2·2·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í¼Î^ÏdÐ Ñ�Í;Ò Ó¼Ô2Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô2× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(b) åçæ = 5, åçè = 10.

·º2·
é ·ê2·
ë2·¹ ·2·¹ º2·¹ìé ·

¹ · ¹ ·2· ¹ ·¼·2·
½¾ ¿ÀÁ
Â¾ ÃÁ
ÄÅÆÇ ÃÈ
É

Ê Ë¼Ì Ì Í2ÎíÏdÐ Ñ�Í;Ò Ó2Ô¼Õ�Ö�Í2× Ø�Ù

ÚdÛ2Ô¼Ü Ý�Ø�Ð Ø�Þàß^Í2Û2áÏdÐ â;Ë2Ü Ô¼× Ð á2Û2Þàß^Í2Û2áÏeÐ â;Ë2Ü Ô¼× Ð á2Û¼Þ ãdÍ2ä2Ô¼ØÚdÛ¼Ô2Ü Ý�Ø�Ð Ø�Þ ãdÍ2ä2Ô¼Ø

(c) åRæ = 10, åçè = 5.

Figure 5: Case of RED Router: £ � zz ð

the deterioration of buffer occupancy of the TCP
Reno connections, that decreases the difference of
the throughput of the TCP Reno and Vegas con-
nections.

From the above discussion, we may expect that
if the packet dropping probability is further in-
creased, the fairness can be further improved be-
cause the window sizes of the TCP Reno con-
nections becomes still smaller. This observation
can be confirmed by Figure 5, where we increase
the packet dropping probability to 1/10. We can
see the further fairness enhancement by compar-
ing this figure with Figure 4.

As we can naturally guess, however, if the
packet dropping probability of RED algorithm is
set too high for further fairness improvement, we
can not avoid the degradation of the total through-
put. Figure 6 shows the simulation results of the
throughput of the TCP Reno connections , that of
the TCP Vegas connections, and the total through-
put at the router, as a function of £ , the packet
dropping probability of RED algorithm. We set

ñ
ò;ñ

ó�ñ;ñ
ó�ò;ñ
ô7ñ;ñ
ô7ò;ñ
õ7ñ;ñ

ó�ö;÷�ñ;ò ñ)ø ñ;ñ;ñ)ó ñ)ø ñ;ñ)ó ñ)ø ñ)ó ñ)øùó
úû üý
þÿû �
þ��
�� �
��

Packet Dropping Probability p

�	��

� ö����

�	��
�� ö������

� �������

Figure 6: Throughput vs. Packet Dropping Prob-
ability of RED algorithm

y b = 5, y�} = 5, and � = 100 [packets] to ob-
tain this figure. We can see from the figure that
when the packet dropping probability becomes too
large (� 0.01), the fairness between the two ver-
sions of TCP improves, while the total through-
put degrades. In other words, there is an inevitable

8

trade-off between fairness and throughput in the
RED� algorithm, therefore it is difficult to set £ to
appropriate value.

6 Conclusion

In this paper, we have investigated the fairness
between TCP Reno and Vegas, when the TCP
connections of the two versions share the bottle-
neck link. We have derived the following results
through the mathematical analysis and the simula-
tion experiments; TCP Vegas suffers from serious
performance degradation with drop-tail routers,
because of the difference of buffer occupancy of
the router buffer. RED routers can improve the
fairness to some degree, but we have also revealed
that there exists an inevitable trade-off between
fairness and throughput.

As the future works, we plan to propose the
two kinds of modification for further fairness en-
hancement. The first one is to improve the conges-
tion control algorithm of TCP Vegas to compete
equally with TCP Reno. The second is to modify
the RED algorithm at the router buffer so that the
router can detect mis-behaving flows, which cor-
respond to TCP Reno connections in this research,
and eliminate the unfairness by intentionally drop-
ping more packets from the mis-behaving flows
than well-behaved flows.

References

[1] Z. Wang and J. Crowcroft, “Eliminating peri-
odic packet losses in 4.3–Tahoe BSD TCP con-
gestion control,” ACM Computer Communica-
tion Review, vol. 22, pp. 9–16, April 1992.

[2] M. Perloff and K. Reiss, “Improvements to TCP
performance,” Communications of ACM, vol. 38,
pp. 90–100, February 1995.

[3] M. Mathis and J. Mahdavi, “Forward acknowl-
edgment: Refining TCP congestion control,”
ACM SIGCOMM Computer Communication Re-
view, vol. 26, pp. 281–291, October 1996.

[4] G. Hasegawa, M. Murata, and H. Miyahara,
“Fairness and stability of the congestion control
mechanism of TCP,” in Proceedings of IEEE IN-
FOCOM’99, pp. 1329–1336, March 1999.

[5] L. S. Brakmo, S. W.O’Malley, and L. L. Peterson,
“TCP Vegas: New techniques for congestion de-
tection and avoidance,” in Proceedings of ACM
SIGCOMM’94, pp. 24–35, October 1994.

[6] L. S. Brakmo and L. L. Peterson, “TCP Vegas:
End to end congestion avoidance on a global In-
ternet,” IEEE Jounal on Selected Areas in Com-
munications, vol. 13, pp. 1465–1480, October
1995.

[7] J. Mo, R. J. La, V. Anantharam, and J. Wal-
rand, “Analysis and comparison of TCP reno and
vegas,” in Proceedings of IEEE INFOCOM’99,
March 1999.

[8] S. Floyd and V. Jacobson, “Random early de-
tection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, vol. 1,
pp. 397–413, August 1993.

[9] W. R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols. Reading, Massachusetts: Addison-
Wesley, 1994.

[10] K. Fall and S. Floyd, “Simulation-based compar-
isons of Tahoe, Reno, and SACK TCP,” ACM
SIGCOMM Computer Communication Review,
vol. 26, pp. 5–21, July 1996.

9

