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Abstract

Recently, a new version of the TCP mechanism, called
TCP Vegas, is proposed, and has potential to achieve
better performance than current mechanisms such as
TCP Tahoe and Reno. This paper considers a window-
based flow control mechanism based on a slightly mod-
ified congestion avoidance mechanism of TCP Vegas,
and introduces its mathematical model described by a
nonlinear difference equation. We calculate its fixed
point, and a stability condition of the fixed point is
derived.

1 Introduction

Explosive growth of computer networks has brought
severe congestion problems[l], and reactive flow con-

trol and congestion control is needed to regulate trans-
mission of information from source hosts to destina-
tion hosts. Many mechanisms such as window-baaed
control [2] and rate-based control [3] have been pr~
posed for avoiding congestion, and a feedback con-
figuration is essential to provide efficient data trans-
fer services[4, 5, 6, 7, 8]. It is expected that con-
trol theory gives a new insight in congestion control,
and its applications have been studied. Keshav[4] pr~
posed a stable control scheme using fuzzy logic bssed
estimators. Fendrick[5] formulated delayed feedback
scheme, and analyzed its stability. In ATM network-
s, many control-theoretic approaches have been found
in [9, 10, 11, 12, 13]. Moreover, a game theoret-
ic approach[14, 15] and a hybrid approach combin-
ing a traditional control technique and fuzzy neural
networks[16] are also discussed. However, almost all

control-theoretic approaches have adopted rate-based
congestion control mechanisms.

On the other hand, a window-based flow control mech-
anism called TCP(Transmission Control Protocol) [17]
haa been widely used in current packet-switched net-
works such as TCP/IP networks. There are several
versions of TCP such as Reno, Tahoe, and Vegas, and

performance evaluations of these versions have been

reported[18, 19, 20, 21, 22]. TCP Reno implement-
ed in BSD UNIX uses packet losses in the networks as
feedback information, and controls a window size[17].
Recently, TCP Vegas has been proposed in order to im-
prove performance such as throughput [18, 19, 20], and
37-71% improvement of total throughput and about
1/5-1/2 reduction of the number of retransmitted pack-
ets have been achieved. A major reason for such good
performance is an introduction of a new congestion
avoidance mechanism.

In this paper, we discuss stability of a window-based
flow control based on TCP Vegas. Section 2 introduces
a mathematical model of a network with a window-
based flow control mechanism. Section 3 gives a stabil-
ity condition of a fixed point in the proposed model.

2 Mathematical Model

We consider a network model shown in Fig. 1 where N
source hosts are connected to the corresponding desti-
nation hosts through one router. We introduce a math-
ematical model of the network. Let Wn(k) be a current

window size of the host n(l < n < N) at slot k, and
g(k) the number of packets stored in router’s buffer.
Moreoverj let L and B be the buffer’s capacity and the
bamdwidth of the router, respectively. We assume that
each source host n has always send w.(k) packets at

w,(k)

Source Hosts Destination Hosts

Figure 1: Network model
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each slot, and that the round trip times of all connec-
tions are equal. Then, the dynamics of the buffer is
given by the following nonlinear difference equation:

( )g(k+ 1) = tin max(~ w.(k) – Br(k), O), L (1)
n=l

where r(k) is the round trip time at slot k.

We review a congestion avoidance mechanism of TCP
Vegas briefly. Refer to [19] for more detail. We assume
that each source host knows a round trip tirne(RTT) T
in the case that there is no congestion in the network.
In practice, T is set to be the minimum of all mea-
sured RTT’s. Note that r corresponds to the round-
trip transmission delay when the buffer is empty, that
is, r is equal to the sum of all propagation delays and
processing delays at the router. Then, the throughput
is expected to w. (k)/r if the network is not congested.
On the other hand, in practice, we can obtain the RTT
r(k) at slot k by measuring time delay horn sending a
packet to receiving its ACK packet, and it is given by
the following equation in our mathematical model.

g(k)r(k) =r+= (2)

The current throughput is Wn (k)/r(k), and the error
dn(k) between the expected and the current through-
put is calculated as follows:

wn(k)
dn(k)=*– —

r(k)
(3)

Vegas controls the next window size Wn(k + 1) baaed
on the error dn(k) and given control parameters a and
pas follows:

{

wn(k)+l if dn(k) <a
wn(k+ 1) = wn(k) – 1 else if dn(k) >,6 (4)

wn(k) otherwise

Intuitively, these parameters a and ~ correspond to
having too little and too much extra data in the net-
work, respective y.

From Eq. (4), Vegaa does not change the window size
if dn(k) lies in the interval [cr, P], which sometimes
causes unfairness among the connections[22]. So, in our
analysis, in order to improve the fairness, we introduce
a new control parameter -y, and set ~ = a = ~, and
Eq. (4) is modified as follows:

w.(k) = max(wn(k) + 6(Y – d.(k)), O) (5)

where d is a control parameter in order to determine
the change rate of the window size per each RTT. So
it is regarded as a feedback gain.
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3 Stability Analysis

For simplicity, we assume that all the initial window
sizes of all hosts are equal, and all hosts change their
window sizes according to Eq. (5). Then the queue

length g(k + 1) of the buffer in the router at slot k + 1
is given by

g(k + 1) = min(max(Nw(k) – Br(k), O), L) (6)

where

w(k) s wn(k) l<n<N

Moreover, by Eq. (3), the error d(k) = dn(k)(l < n s
N) is given by

(7)

We use the following approximation.

Then, using Eqs. (5), (6), and (7), a fixed point
(w*, g*, d*) of the considered network is given as fol-
lows :

w* =
()r-

* = yNr

}

(8)
:.=7

The linearized equation around the fixed point is given
by

~(k + 1) = Az(k) (9)

where

x(k) =
[

w(k) – w* 1q(k) – q* ‘

A=
[

1“++* –+
N 1

Using a stability test such as Jury’s test[23], it is eas-
ily shown that the fixed point is locally exponentially

stable if and only if the following inequalities hold.

6>0 (lo)

J(B – TN)

(B+ 7N)T
+2>0 (11)

(12)

Thus, we have the following conclusion.

● If the number N of connections is greater than
3B/y, then the upper bound of the control pa-
rameter J is given by Eq. (11). So, as N increas-
es, the upper bound decreases monotonically, and
converges to 2r. Therefore, in this case, the net-
work is always stable if J is set to be 2r.



4 Conclusion
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This paper derived a stability condition of a window-
based flow control mechanism based on a slightly mod-
ified congestion avoidance mechanism of TCP Vegas.
In the case that the number of connections is small, a
control parameter can be set to be larger as the num-
ber of connections increases while the reverse feature
occurs in the case that the number is large.

It is a future work to extend our analysis to more re-
alistic networks. For example, both TCP and UDP
traffic coexist in real TCP/IP networks, and interfer-
ence between different types of traffic should be taken
into consideration.
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Figure 2: Stability region in the J-N plane

● If N is less than 3B/7, then the upper bound is
given by Eq. (12). So the upper bound increases
linearly as N increases. Since 8 is bounded by r
at N = O, the network is always stable if J is set
to be T.

Shown in Fig. 2 is a stability region where B =
20[packets/ms], ~ = l[ms], and -y = 3. Note that
B = 20 corresponds to 163.8 [Mbit/s] if the packet
length is equal to 1 [Kbyte]. In this figure, the dot-
ted and solid lines correspond to Eqs. (11) and (12),
respectively. When the number N of connections are

less than 20, J can be taken larger as N increases. But
when it is greater than 20, J should be smaller as N
increases. It is shown that the network is always st a-
ble for any N > 0 if d is less than one. Moreover,
since the dotted line converges to IS= 2, for sufficient-
ly large number of connections, we take J less than 2
for the network to be stable. Equation (5) is regarded
as static feedback with feedback gain d from the con-
trol theoretical point of view. So, in general, if J is set
to be larger, that is, we use high gain feedback, then
transient behaviors of the network will be better while
stability will be worse. Figure 2 shows such a tendency.

Shown in Figs. 3 and 4 are behaviors of the window size
and the queue length for N = 10 when the network are
stable and unstable, respectively. When the net work
is stable, both the window size and the queue length
converge to the fixed point given by Eq. (8). However,
when it is unstable, they oscillate with large amplitude,
which implies that transmission delay of packets be-
comes very large. Moreover, the buffer becomes empty
periodically, which implies that the throughput of the
network degrades. Thus, it is concluded that 8 has to

be selected such that the network is stable.
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Figure 3: Stable behavior(d = 2.4)
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Figure 4: Unstable behavior(J = 2.6)
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