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Abstract Although many research efforts have
been devoted to the network congestion against an in-
crease of network traffic in the Internet, only a few
discussions on the performance improvement of the
endhosts are recently made. In this paper, we pro-
pose a new architecture, which is called Scalable Au-
tomatic Buffer Tuning (SABT), to provide high perfor-
mance and fair service for many TCP connections at
the Internet endhosts. In SABT, the sender host esti-
mates ‘expected’ throughput of the TCP connections
through the simple mathematical equations, and assign
the send socket buffer to them according to the esti-
mated throughput. If the socket buffer is short, the
max-min fairness policy is utilized to allocate the send
socket buffer. Since SABT uses the measurement-
based approach to estimate the throughput, an initial
values of the buffer size cannot be determined. Thus,
an initial buffer size of the connection is determined
by taking account of the characteristics of WWW traf-
fic. We confirm an effectiveness of our proposed algo-
rithm through both of a simulation technique and an ac-
tual experimental system where we implement our al-
gorithm.

1 Introduction

According to a rapid growth of the Internet users, many
research efforts have been devoted to how to avoid and
dissolve the network congestion against an increase of
network traffic. On the other hand, only a few discus-
sions on the performance improvement of the Internet
endhosts are recently made in spite of the projection
that the bottleneck is now being shifted from the net-
work to endhosts. For example, busy WWW (World
Wide Web) servers in the current Internet receive hun-

dreds of requests for document transfer every second at
peak time.

Of course, the improvement of protocol process-
ing on the endhosts is not a new subject. Such an ex-
ample can be found in [1] where the authors propose
the ‘fbuf’ (fast buffer) architecture, which shares the
memory space between the system kernel and the user
process to avoid redundant memory copies during data
exchanges. It is based on an observation that mem-
ory copy is a main cause of the bottleneck at endhosts
in TCP data transfer. However, the past researches in-
cluding the above fbuf do not consider the ‘fair’ treat-
ment of connections, by which we can expect more
performance improvement by the following reasons.
Suppose that a server host is sending TCP data to two
clients of 64Kbps dial-up (say, user A) and 100Mbps
LAN (user B). If the server host assigns an equal size
of the socket buffer to both users, it is likely that the
amount of the assigned buffer is too large for user A,
and too small for user B, because of the difference of
capacities (more strictly, bandwidth-delay products) of
two connections. For an effective buffer usage for both
users, a compromise on buffer usage should be taken
into account.

Another important example that requires ‘fair’
buffer treatment can be found in a busy Internet WWW
server, which accepts a large number of TCP connec-
tions with different bandwidths and round trip times
(RTTs) at the same time. In [2], the authors have
proposed a buffer tuning algorithm called Automatic
Buffer Tuning (ABT), which dynamically adjusts the
send socket buffer size according to the change of the
TCP sending window size of the connection. However,
it does not provide ‘fairness’ among connections be-
cause the throughput of TCP connections is not propor-
tional to the sending window size as shown in [3].
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In this paper, we propose a novel architecture
called Scalable Automatic Buffer Tuning (SABT), to
provide high performance and fair service for many
TCP connections at the sender host. For this purpose,
we first derive ‘expected’ throughput of TCP connec-
tions by an analytic approach. It is characterized by
packet loss rate, RTT and RTO (Retransmission Time
Out) values of the connections, which can easily be
monitored by the sender host. The send socket buffer
is then assigned to each connection according to the
expected throughput, with consideration on a max-min
fairness among connections. We validate the effective-
ness of our proposed mechanism through both of sim-
ulation and implementation experiments.

Another important factor that we should consider
is how to determine an initial buffer size of the connec-
tion. It cannot be determined a priori since the control
parameters such as the packet loss rate, RTT and RTO
are not known at the connection setup time. One pos-
sible approach is to take into account the characteris-
tics of WWW traffic when our algorithm is applied to
the WWW server. Due to recent advancements of re-
searches on Web traffic characterization (see, e.g., [4]),
the initial buffer size can be determined based on those
results such that the server can send the whole doc-
ument in one RTT if the document size is small, by
which response times of the Web document retrieval
can be much improved.

This paper is organized as follows. In Section 2,
we first introduce the ABT algorithm briefly for refer-
ence purpose, and propose our SABT algorithm. We
evaluate the effectiveness of our proposed algorithm
through simulation experiments in Section 3, followed
by implementation experiments in Section 4. Finally,
we present some concluding remarks in Section 5.

2 Automatic Tuning of Send Socket
Buffer

As explained in the previous section, when the sender
host accepts multiple TCP connections simultaneously,
the send socket buffer size of the sender host must
be assigned to the connections, by taking care of dif-
ferences of the connections’ characteristics. In this
section, we first introduce related researches on the
buffer tuning, and point out several problems in Sub-
section 2.1. We next present our proposed algorithm,
called Scalable Automatic Buffer Tuning in Subsec-
tion 2.2.

2.1 Related Work; Automatic Buffer Tuning

In [2], the authors have proposed an “Automatic Buffer
Tuning” mechanism (referred to as ABT in this paper),
where the assigned buffer size of each TCP connec-
tion is determined according to the current window size
of the connection. That is, when the window size be-
comes large, the sender host tries to assign more buffer
to the connection. On the other hand, as the window
size becomes small, it decreases the assigned buffer
size.

When the total required buffer size of all TCP con-
nections becomes larger than the send socket buffer
size prepared at the sender host, the send socket buffer
is assigned to each connection according to a max-
min fairness policy. More specifically, the sender host
first assigns the buffer equally to all TCP connections.
Then, if there exists connections which do not require
large buffer, the excess buffer is re-assigned to connec-
tions which requires larger buffer. Through this mech-
anism, it is expected to provide dynamic and fair buffer
assignment by considering differences of TCP connec-
tions.

However, ABT has several problems. It assigns the
send socket buffer to each TCP connection according
to its current window size at regular intervals. There-
fore, when sender TCP changes its window size sud-
denly due to, e.g., packet loss, the assigned buffer size
sometimes gets smaller than that the connection actu-
ally requires. It might be solved by setting the update
interval to a smaller value. In that case, however, the
assigned buffer size is changed too frequently, which
causes the system instability. Furthermore, as the net-
work bandwidth becomes larger, the oscillation of the
window size also becomes large, leading to a large os-
cillation of the assigned buffer size.

Another problem exists in the max-min sharing
policy adopted in ABT. Suppose that three TCP con-
nections (connections 1, 2 and 3) are active, and the
required buffer sizes calculated from the window size
of each connection are 20 [KBytes], 200 [KBytes], and
800 [KBytes], respectively. If the total size of the send
socket buffer is 300 [KBytes], the sender host first as-
signs 100 [KBytes] to each connection. Since connec-
tion 1 does not require such a large buffer, the sender
re-assigns the excess buffer of 80 [KBytes] of connec-
tion 1 equally to connections 2 and 3. As a result,
the assigned buffer sizes of connections 2 and 3 be-
come 140 [KBytes]. However, it must be better to as-
sign the excess buffer proportionally to the required
buffer size of connections 2 and 3. In this case, the as-
signed buffers become 116 [KBytes] for connection 2
and 164 [KBytes] for connection 3 by a proportional
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re-assignment. This assignment is more effective be-
cause the throughput improvement of connection 3 be-
comes larger. The remaining problem is to estimate
how much buffer each TCP connection actually re-
quires. ABT cannot re-assign the excess buffer propor-
tionally because it determines the buffer size only by
the current window size of the connection.

2.2 Proposed Method; Scalable Automatic
Buffer Tuning

Our proposed method called a “Scalable Automatic
Buffer Tuning” (SABT) includes the following two
mechanisms; the stable and fair buffer assignment and
the improved transfer time for small files.

2.2.1 Stable and Fair Buffer Assignment Mecha-
nism

One of undesirable features of ABT is the instability of
the buffer assignment. It is because ABT only observes
the current window size of the connection, which oscil-
lates largely due to the congestion control mechanism
of TCP. In the proposed method, on the other hand, the
sender host first estimates an ‘expected’ throughput of
each TCP connection from three parameters, and deter-
mines the required buffer size of the connection from
the estimated throughput, not from the current window
size of TCP.

The estimation method of TCP throughput is based
on the analysis result of the previous work [5]. In [5],
the average throughput of the TCP connection is de-
rived for the model, where multiple connections with
different input link bandwidths share the bottleneck
router employing the RED algorithm [6]. The follow-
ing parameters are used to derive the average through-
put;

• p: packet dropping probability of the RED algo-
rithm

• rtt: average value of RTT (Round Trip Time) of
the TCP connection

• rto: average value of the retransmission timer of
the TCP connection

In the analysis, an average window size of the TCP
connection is first calculated from the above three pa-
rameters. The average throughput is then obtained
by considering the performance degradation caused by
TCP’s retransmission timeout expiration. The analy-
sis in [5] is easily applied to our case, by viewing the
packet dropping probability of the RED algorithm as
the observed packet loss rate.

The parameter set (p, rtt, and rto) can be obtained
by the sender host as follows. Rtt and rto can be di-
rectly obtained from the sender TCP. The packet loss

rate p can also be estimated from the number of suc-
cessfully transmitted packets, and the number of lost
packets detected at the sender host via acknowledge-
ment packets. A possible cause of the estimation er-
ror on p is related to the stochastic nature of the packet
losses since the analysis in [5] assumes the random
packet loss. Thus, we need the validation for the case
where the packet losses occur at the drop-tail router,
since in that case, the packets tends to be dropped in the
bursty nature [6]. We will present results on this aspect
in Section 3.

We denote the estimated throughput of connec-
tion i by ρi. From ρi, we determine Bi, the required
buffer size of connection i, as;

Bi = ρi × rtti (1)

where rtti is RTT of connection i. By this mechanism,
it is expected to provide stable assignment of the send
socket buffer to TCP connections, if the parameter set
(p, rtt, and rto) used in estimation is stable. In ABT,
on the other hand, the assignment is instable even when
three parameters are stable, since the window size os-
cillates more significantly regardless of the stability of
the parameters.

As in ABT, our SABT also adopts the max-min
fairness policy for re-assigning the excess buffer. Dif-
ferently from the ABT algorithm, however, SABT
employs the proportional re-assignment policy as ex-
plained in the previous subsection. That is, when the
excess buffer is re-assigned to connections which need
more buffer, the buffer is re-assigned to connections in
proportion to the required buffer size calculated from
the analysis. Note that ABT re-assigns the excess
buffer equally, since it has no means to know the ex-
pected throughput of the connections.

2.2.2 Improved Transfer Time for Small Files

In the proposed method, the sender estimates the
throughput of each TCP connection from observed pa-
rameters associated with that connection. Therefore, if
the size of transmitted data is small, it is impossible to
obtain the accurate and reliable estimation. Especially
when the proposed mechanism is applied to the WWW
server, this problem becomes an obstacle since the Web
documents are comparatively small. Note that it is re-
ported in [4] that the average size of Web documents at
the several Web servers is under 10 [KBytes].

Therefore, an initial setting of the send socket
buffer size becomes important. In the proposed mech-
anism, if a certain TCP connection is going to transmit
a small file, the sender host excludes it from the fair
buffer assignment described above. Instead, the sender
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sets both of the initial window size and the send socket
buffer size of the connection to the size of transmitted
file itself. By this modification, it is expected that TCP
connection transfers the file in one RTT.

In our setting, if the file size is smaller than
8 [KBytes], the sender host excludes it from the fair as-
signment, since 80 % of WWW documents is smaller
than 8 [Kbytes] according to [4]. Then, we can expect
that the transfer time of small WWW documents can
be improved , and SABT provides stable and accurate
assignment of the send socket buffer to the remaining
connections transmitting larger files.

3 Simulation Results

In this section, we present some simulation results us-
ing the network simulator ns [7]. We compare the fol-
lowing three algorithms in order to validate the effec-
tiveness of our proposed mechanism.
EQ: All of active TCP connections are assigned equal

sizes of the send socket buffer.
ABT: The send socket buffer size is assigned accord-

ing to the automatic buffer tuning algorithm de-
scribed in Subsection 2.1.

SABT: The sender host assigns the send socket buffer
in accordance with the scalable automatic buffer
tuning algorithm described in Subsection 2.2.

In three algorithms, the buffer re-assignment is per-
formed at every second.

In the simulation experiment, we conducted two
cases for packet loss occurrence. In the first case,
packet loss takes place with a constant rate assuming
that the router is equipped with the RED algorithm. It
means that the packet loss takes place randomly with
given probability. Such an assumption is validated
by [3]. However, it is true that random packet dropping
is a rather ideal case to our SABT since our method
largely relies on adequate estimation of the packet loss
rate in determining the throughput of TCP connections.
Hence, we also consider the case of the drop-tail router
where packet loss occurs by the buffer overflow at
the router. In this case, we can never expect random
packet loss, and it tends to occur in a bursty fashion.
In this section, we only show results of the drop-tail
router case due to space limitation. The effectiveness
of the SABT algorithm is more apparent in the constant
packet loss case, due to the reason above.

Figure 1 depicts the network model used for sim-
ulation experiments. The model consists of a sender
host, 7 receiver hosts, 6 routers, and links interconnect-
ing routers and sender/receiver hosts. 7 TCP connec-
tions are established at the sender host (connections 1
through 7). As shown in the figure, connection 1 oc-

Sender Host

Receiver Hosts

Buffer Size:
B [packets]

1.5 [Mbps]
100 [msec]

1.5 [Mbps]
100 [msec]

1.5 [Mbps]
100 [msec]

155 [Mbps]
1 [msec]

155 [Mbps]
1 [msec]

155 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

10 [Mbps]
1 [msec]

Router1

Router2

Router3

Figure 1: Network Model for Simulation Experiment

cupies router 1, connection 2 and 3 share router 2, and
the rest of connections 4 through 7 share router 3. The
capacities of links between routers are identically set to
be 1.5 [Mbps], and those of links between routers and
the sender host, and between routers and the receiver
hosts are set to be 155 [Mbps] and 10 [Mbps], respec-
tively. Further, propagation delays of links between
routers, and that between routers and sender/receiver
hosts are 100 [msec] and 1 [msec], respectively. In
this simulation experiment, connection i starts send-
ing packets at time t = (i − 1) × 500 [sec]. The
simulation ends at 5,000 [sec]. Therefore, when seven
connections join the network, the ideal throughput be-
comes 1.5 [Mbps] for connection 1, 0.56 [Mbps] for
connections 2 and 3, and 0.375 [Mbps] for connec-
tions 4 through 7.

Figure 2 shows the results for the throughput and
assigned buffer size as a function of time. We set the
send socket buffer size B = 350 [packets]. As shown
in Figures 2(a) and 2(b), connections sharing router 3
(connections 4 through 7) receive unfair throughput
values in the EQ case, in spite of the fact that conditions
of four connections are completely identical. Perhaps,
it is due to an accidental unfairness of the TCP conges-
tion control algorithm, which is well known in the liter-
ature. See, e.g., [8]. Figures 2(c) and 2(d) clearly show
that ABT cannot provide a stable buffer assignment. It
is because ABT assigns the buffer to each TCP connec-
tion according to the current window size of the con-
nection, which oscillates dynamically due to an inher-
ent nature of the TCP window mechanism. Therefore,
the assigned buffer sizes of connections which do not
need large buffer (connection 2 through 7 in the current
case) are often inflated, leading to the temporary de-
crease of the buffer assigned to connections which need
large buffer (connection 1). As a result, the throughput
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Figure 2: Comparative Results of Simulation Experiment: B = 350 [packets]

of connection 1 is often degraded. On the other hand,
our proposed SABT keeps stable and fair buffer assign-
ment as shown in Figure 2(e), leading to fair treatment
in terms of throughput (Figure 2(f)).

Even when the buffer size is smaller, SABT keeps
its effectiveness. Results are shown in Figure 3, where
we decrease the buffer size B to 200 [KBytes]. Fig-
ures 3(b) and 3(d) show that EQ and ABT mechanisms
cannot provide fairness among connections. In par-
ticular, throughput of connection 1 is significantly de-
graded in those cases, and connections connected to
router 3 receive different throughput values. It is be-
cause in assigning the buffer, the EQ method does not
take care of the connections’ characteristics at all. See
Figure 3(a). It is also true for the ABT mechanism
(Figure 3(c)). It is mainly due to the oscillation of the
assigned buffer to each connection as shown in Fig-
ures 3(c). From the figure, it is also verified that ABT’s
re-assignment algorithm, which equally re-assigns the
excess buffer to connections, does not work well. On
the other hand, in the SABT algorithm, throughput of
connection 1 is kept to be a high value, and much better
fairness can be achieved (Figures 3(e) and 3(f)). Note
that a slight difference of the throughput values of con-
nections 2 and 3 (and connections 4 through 7) is due to

an estimation error of the required buffer sizes. In the
case of the drop-tail router, the parameters (p, rtt, and
rto) observed for the throughput estimation changes
more largely than the constant packet loss rate case be-
cause of the bursty nature of packet losses, leading to
the difference of the assigned buffer size.

4 Implementation Experiments

In this section, we present the results obtained by our
experimental system. We implemented EQ, ABT and
SABT mechanisms on Intel Pentium-III 700 [MHz] PC
running FreeBSD 2.2.8, and the two machines are di-
rectly connected. Through the experiments, we focus
on the following three subjects;

1. fair buffer assignment among different connec-
tions

2. scalability against the number of connections
3. improvement of transfer time for small files

4.1 Experiment 1: Fair Buffer Assignment
among Different Connections

We first evaluate the fairness property of three buffer
assignment algorithms. In this experiment, we con-
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Figure 3: Comparative Results of Simulation Experiment: B = 200 [packets]
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Figure 4: Network Environment for Experiment 1

sider the situation where three TCP connections are es-
tablished at the sender host through the 622 [Mbps]
MAPOS (Multiple Access Protocol
Over SONET/SDH) [9] link. Three connections have
different packet loss rates; 0.005 for connection 1, 0.01
for connection 2, and 0.02 for connection 3, as shown
in Figure 4. In the experiment, packets are inten-
tionally dropped at the receiver host. Note that with
those packet loss rates, three connections can achieve
throughput values of about 55, 90, and 220 [Mbps],
respectively, if an enough amount of the send socket
buffer is assigned to each of connections.

Figure 5 compares the throughput values of three
connections and total throughput. The horizontal axis
is the total size of the send socket buffer. In the EQ case
(Figure 5(a)), three connections can achieve their max-
imum throughputs when the total buffer size is larger
than 240 [KBytes], while ABT and SABT need only

about 200 [KBytes] and 170 [KBytes], respectively. It
is due to the same reason explained in Section 3. Con-
nections 2 and 3 do not need as much buffer size as con-
nection 1 does, but the EQ algorithm cannot re-allocate
the excess buffer of connections 2 and 3 to connec-
tion 1. On the contrary, ABT and SABT algorithms
work adequately for the buffer assignment.

We look at results of around 120 [KBytes] of the
total buffer size in the figure. By comparing ABT
and SABT algorithms, it is clear that SABT can pro-
vide much higher throughput for connection 1. The
difference is due to re-assignment methods of excess
buffer to connections. In the ABT algorithm, the ex-
cess buffer of connection 3 is re-assigned to connec-
tions 1 and 2 equally. Then, only connection 3 is as-
signed a sufficient size of the buffer while connec-
tions 1 and 2 need more buffer. On the other hand,
SABT re-assigns the excess buffer in proportion to the
required buffer size of connections 1 and 2. Accord-
ingly, SABT gives more buffer to connection 1 than
connection 2 because the required buffer size of con-
nection 1 is larger than that of connection 2. Conse-
quently, connection 1 can achieve higher throughput
at expense of small throughput degradation of connec-
tion 2. As a result, the total throughput of SABT is
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Figure 5: Fairness among Three Connections
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Figure 6: Changes of Assigned Buffer Sizes

highest among three algorithms regardless of the total
buffer size as shown in Figure 5.

We next a present time–dependent behavior of the
buffer size assigned to each of three connections in
Figure 6. In this experiment, connections 1, 2, and 3
start packet transmission at time 0 [sec], 10 [sec], and
20 [sec], respectively. Here, we set the total buffer size
to be 256 [KBytes]. In ABT (Figure 6(a)), the assigned
buffer sizes are heavily oscillated because the ABT al-
gorithm adapts the buffer assignment according to the
window size. Another and more important reason is
that when retransmission timeout expiration occurs at a
certain connection, that connection resets the window
size to 1 [packet] according to the TCP retransmission
mechanism. Then, the assigned buffer size of that con-
nection becomes very low. Once the assigned buffer
gets small, the connection cannot inflate its window
size during a while because of the throttled buffer size.
It is the reason why the assigned buffer size is kept low
in the ABT algorithm. On the other hand, SABT can
provide the stable and fair buffer assignment as shown
in Figure 6(b). It brings high throughput to each TCP
connection as having been shown in Figure 5(c).

4.2 Experiment 2: Scalability against the
Number of Connections

We next turn our attention to the scalability of the
buffer assignment algorithms against the number of
connections. Figure 7 depicts the experimental setting
for this purpose. One TCP connection is established
using the MAPOS link (which is referred to as MA-
POS connection below). The several numbers of TCP
connections are simultaneously established through the
Ethernet link (Ethernet connections). By this experi-
ment, we investigate the effect of the number of Eth-
ernet connections on the performance of the MAPOS
connection.

Figure 8 shows the throughput values of the MA-
POS connection dependent on the number of Ether-
net connections. In addition to the result of EQ, ABT
and SABT algorithms, we also present the results for
the cases where the constant size (16 [KBytes] or
64 [KBytes]) of the send socket buffer is assigned to
each TCP connection. Such a constant assignment is
a default mechanism of the current TCP/IP implemen-
tation in major operating systems. Results are plot-
ted in the figure with labels “16KB” and “64KB.” In
this figure, we set the total of the send socket buffer

7
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Figure 7: Network Environment for Experiment 2
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Number of Ethernet Connections

to 256 [KBytes]. Therefore, if we assign the constant
buffer size of 64 [Kbytes] to each TCP connection, the
sender allows up to four connections at the same time.

We can make several important observations from
this figure. First, we can see that the constant assign-
ment algorithm, which is widely employed in the cur-
rent OS, has drawbacks. If 16 [KBytes] send socket
buffer is assigned to each TCP connection, the MAPOS
connection suffers from very low throughput because it
is too small for the 622 [Mbps] MAPOS link. When
each connection is given 64 [KBytes] buffer size, on
the other hand, the throughput of the MAPOS connec-
tion becomes considerably high as shown in Figure 8.
However, the number of connections which can be si-
multaneously established is severely limited.

In the EQ algorithm, when the number of Ether-
net connections exceeds four, the throughput of the
MAPOS connection is suddenly decreased to about
11 [Mbps]. It is because the EQ algorithm does not
distinguish the MAPOS connection and Ethernet con-
nections, and assigns an equal size of the send socket
buffer to all connections. Therefore, as the number of
Ethernet connections is increased, the assigned buffer
size to the MAPOS connection is decreased, leading to
throughput degradation of the MAPOS connection.

When we employ the ABT or SABT algorithm, the
throughput degradation of the MAPOS connection can
be limited even when the number of Ethernet connec-
tions is increased. However, when the number of Eth-
ernet connections is beyond twelve, throughput values
of ABT and SABT algorithms becomes distinguish-
able as shown in Figure 8. It is again caused by the
instability of the assigned buffer size and by the poor
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Figure 9: Network Environment for Experiment 3
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re-assignment algorithm of ABT, as having been ex-
plained in the previous subsection. Even in the SABT
algorithm, the throughput of the MAPOS connection is
slightly degraded by the larger number of Ethernet con-
nections. It is because the total of the required buffer
size of Ethernet connections is increased, Even though
the required buffer of Ethernet connections is small.
Then, the buffer assigned to the MAPOS connection
is decreased because the excess buffer becomes small.
However, the degree of the throughput degradation of
the MAPOS connection can be limited in the SABT al-
gorithm.

4.3 Experiment 3: Improvement of Transfer
Time of Small Files

We last evaluate the effectiveness of our algorithm to
improve transfer times of small files, which was ex-
plained in Subsection 2.2.2. The experimental en-
vironment is depicted in Figure 9. We implement
the SABT algorithm on the Web server host, running
apache WWW server version 1.3.3 [10]. On the client
host, we use Webstone [11], a benchmark tool to au-
tomatically send the document transfer requests to the
server host and to obtain the several statistics including
the document transfer time. We set the distribution of
requested document size according to the results in [4],
which is drawn by analyzing the log at the Web site.
Then, the client randomly chooses the size of the re-
quested document according to the prescribed proba-
bility distribution. The propagation delay between the
server and client hosts is about 0.8 [msec].

Figure 10 shows the average response time of the
document transfer requests against the document size.
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Here, the response time is defined as the time dura-
tion from when the client transmits the document trans-
fer request to the time when the client receives the re-
quested document. In the figure, we plot the results
of the SABT algorithm and the original mechanism.
By the original mechanism, we mean that no buffer as-
signment policy is utilized and a constant value of the
buffer size (16 [KBytes]) is assigned to the connection.
We can see from the figure that when the document
size is smaller than 8 [KBytes], the response time of
SABT becomes smaller than the original mechanism
as expected. That is, the SABT algorithm sets the ini-
tial window size and the buffer size of the connection
to be the size of the requested document if the docu-
ment size is smaller than 8 [KBytes]. Then, such con-
nections can transfer the file in one RTT, leading to an
improvement of the transfer time. Therefore, we can
expect that as the propagation delay between the server
and the client hosts becomes large, the effect on reduc-
tion of the document transfer time also gets large. Also,
Figure 10 clearly shows that SABT algorithm can re-
duce transmission time of small files, without any in-
crease of transmission times of large files.

5 Conclusion

In this paper, we have proposed SABT (Scalable Auto-
matic Buffer Tuning), a novel architecture for assign-
ing the send socket buffer of the busy Internet server
to TCP connections with different characteristics. In
SABT, the “expected” throughput of each TCP con-
nection is derived from three parameters, which can be
easily estimated at the sender host. The sender host
then assigns the buffer to the connections according to
the estimated throughput, taking care of the max-min
fairness among active TCP connections. Further, we
have proposed how to determine the initial buffer size
and the initial window size of TCP connections, ac-
cording to the typical distribution of the WWW doc-
ument size. We have confirmed the effectiveness of
SABT algorithm through both of simulation and im-
plementation experiments, and have shown that SABT
can assign the send socket buffer to each TCP connec-
tion in a fair and effective way than ABT (Automatic
Buffer Tuning) and other algorithms.
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