
Analysis and Improvement of Fairness between TCP Reno and Vegas

for Deployment of TCP Vegas to the Internet

Go Hasegawa, Kenji Kurata and Masayuki Murata
Graduate School of Engineering Science, Osaka University

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-850-6616,Fax: +81-6-850-6589

{hasegawa,k-kurata, murata}@ics.es.osaka-u.ac.jp

Abstract

According to the past researches, a TCP Vegas version is able
to achieve higher throughput than TCP Tahoe and Reno versions,
which are widely used in the current Internet. However, we need to
consider a migration path for TCP Vegas to be deployed in the In-
ternet. In this paper, by focusing on the situation where TCP Reno
and Vegas connections share the bottleneck link, we investigate the
fairness between two versions. From the analysis and the simulation
results, we find that the performance of TCP Vegas is much smaller
than that of TCP Reno as opposed to an expectation on TCP Vegas.
The RED algorithm improves the fairness to some degree, but there
still be an inevitable trade-off between fairness and throughput. Ac-
cordingly, we next consider two approaches to improve the fairness.
The first one is to modify the congestion control algorithm of TCP
Vegas, and the other is to modify the RED algorithm to detect mis-
behaved connections and drop more packets from those connections.
We use both of analysis and simulation experiment for evaluating the
fairness, and validate the effectiveness of the proposed mechanisms.

1 Introduction

TCP (Transmission Control Protocol) is widely used by many
Internet services including HTTP (and World Wide Web) and
FTP (File Transfer Protocol). Even if the network infras-
tructure may change in the future, it is very likely that TCP
and its applications would be continuously used. However,
TCP Tahoe and Reno versions (and their variants), which are
widely used in the current Internet, are not perfect in terms of
throughput and fairness among connections, as having been
shown in the past literatures. Therefore, active researches on
TCP have been made, and many improvement mechanisms
have been proposed (see, for example, [1, 2, 3] and the ref-
erences therein). Among them, a TCP Vegas version [4]
is one of the most promising mechanisms by its high per-
formance. TCP Vegas enhances the congestion avoidance
algorithm of TCP Reno. In essence, TCP Vegas dynami-
cally increases/decreases its sending window size according
to observed RTTs (Round Trip Times) of sending packets,
whereas TCP Tahoe/Reno only continues increasing its win-
dow size until packet loss is detected. The authors in [4] con-
cludes through simulation and implementation experiments
that TCP Vegas can obtain even 40% higher throughput than

TCP Reno.
However, we need to consider a migration path when a

new protocol is deployed in the operating network, i.e., the
Internet. It is important to investigate the effect of existing
TCP versions (Tahoe and Reno) on TCP Vegas in the situation
where those different versions of TCP co-exist in the network.
The authors in [5] have pointed out that when connections of
TCP Reno and Vegas share the bottleneck link, the Vegas con-
nection may suffer from significant unfairness. However, the
authors have assumed that only a single TCP Reno connection
shares the link with another TCP Vegas connection.

In this paper, we focus on the situation where multiple TCP
Reno and Vegas connections share the bottleneck link, and
investigate the fairness between two versions of TCP to seek
the possibility of a future deployment of TCP Vegas. One im-
portant point we should take into account is the underlying
network assumed by TCP Vegas. When the original TCP Ve-
gas was proposed in [4], the authors did not consider the RED
(Random Early Detection) mechanism [6], which is now be-
ing introduced in the operating network. TCP Vegas may or
may not be effective even when the router is equipped with the
RED mechanism. We therefore consider two packet schedul-
ing mechanisms, the RED router as well as the conventional
drop-tail router, in our study. One of the contributions in this
paper is to derive analysis results of the throughput of TCP
Reno and Vegas in such a situation to explain why TCP Ve-
gas cannot obtain the good throughput when sharing the link
with TCP Reno. The accuracy of our analysis is validated by
comparing with the simulation results. Through the analy-
sis and simulation results, we will show the fairness between
TCP Reno and Vegas as follows. TCP Vegas receives signif-
icant low and unfair throughput compared with TCP Reno,
when the router employs the drop-tail router. With the RED
algorithm, on the other hand, the fairness can be improved to
some degree, but there still exists an inevitable trade-off be-
tween fairness and throughput. That is, if the packet dropping
probability of RED is set to be large, the throughput of TCP
Vegas can be improved, but the total throughput is degraded.

We believe that the subject treated in this paper is a good
example for considering the protocol migration from the ex-
isting immature one. It is true that TCP Vegas solely can ob-
tain higher performance than TCP Reno, and it has a good
feature of having a backward compatibility with the older ver-
sions of TCP. Nevertheless, it is unlikely that a current version

1

of TCP Vegas penetrates in the Internet as our results clearly
indicate. Accordingly, we next suggest two possible ways to
improve the fairness between TCP Reno and Vegas. The one
is to modify the congestion control algorithm of TCP Vegas.
The key idea is that if the network congestion is not caused
by TCP Vegas connections, the TCP Vegas connection is per-
mitted to increase its sending window size and to send more
packets into the network, in order to compete equally with
TCP Reno connections. Another way is to modify the RED
algorithm for detecting packets from TCP Reno connections.
For this purpose, we can utilize the algorithm proposed in [7]
to detect mis-behaving flows, which is TCP Reno connections
in the current content. Then throughput of TCP Reno con-
nections can be decreased by intentionally dropping packets
of TCP Reno at the router. We will present the above two
approaches in Sections 5 and 6.

The rest of this paper is organized as follows. Section 2
briefly introduces congestion control mechanisms of TCP
Reno and TCP Vegas. We next describe the network model
used in our analysis and simulation experiments in Section 3.
Section 4 shows the analysis results of fairness between two
versions of TCP, which are validated by the simulation results.
We next show two proposed mechanisms to improve the fair-
ness. We introduce TCP Vegas+ approach which enhances
the congestion control algorithm of TCP Vegas in Section 5,
and a ZL-RED algorithm which enhances the RED algorithm
in Section 6. Finally, we conclude our paper and present some
future works in Section 7.

2 Congestion Control Mechanisms of TCP

In this section, we summarize the congestion control mecha-
nisms of two versions of TCP; TCP Reno and Vegas. For de-
tailed explanation, refer to [8] for TCP Reno and [4] for TCP
Vegas. An essence of the congestion avoidance mechanism
of TCP is to dynamically control the window size according
to the congestion level of the network. Here, we denote the
current window size of the sender host at time t as cwnd(t).

2.1 TCP Reno

In TCP Reno, the window size is cyclically changed in a typi-
cal situation. The window size continues to be increased until
packet loss occurs. TCP Reno has two phases in increasing
its window size; slow start phase and congestion avoidance
phase. When an ACK packet is received by TCP at the sender
side at time t+tA [sec], the current window size cwnd(t+tA)
is updated from cwnd(t) as follows (see, e.g., [8]);

cwnd(t+ tA) =


slow start phase :
cwnd(t)+ 1, if cwnd(t) < ssth(t);

congestion avoidance phase :
cwnd(t)+ 1

cwnd(t)
, if cwnd(t) ≥ ssth(t);

(1)

where ssth(t) [packets] is a threshold value at which TCP
changes its phase from slow start phase to congestion avoid-
ance phase. When packet loss is detected by retransmission

timeout expiration, cwnd(t) and ssth(t) are updated as [8];

cwnd(t) = 1; ssth(t) = cwnd(t)/2 (2)

On the other hand, when TCP detects packet loss by a fast
retransmit algorithm [8], it changes cwnd(t) and ssth(t) as;

ssth(t) = cwnd(t)/2; cwnd(t) = ssth(t) (3)

2.2 TCP Vegas

TCP Vegas controls its window size by observing RTTs
(Round Trip Time) of packets that the sender host has sent
before [4]. If observed RTTs become large, TCP Vegas rec-
ognizes that the network begins to be congested, and throttles
the window size. If RTTs become small, on the other hand,
the sender host of TCP Vegas determines that the network is
relieved from the congestion, and increases the window size
again. Hence, the window size in an ideal situation is ex-
pected to be converged to an appropriate value. That is,

cwnd(t+ tA) =

cwnd(t)+ 1, if diff < α

base rtt

cwnd(t), if α
base rtt

≤ diff ≤ β
base rtt

cwnd(t)− 1, if β
base rtt < diff

(4)

diff = cwnd(t)/base rtt− cwnd(t)/rtt
where rtt [sec] is an observed round trip time, base rtt [sec]
is the smallest value of observed RTTs, and α and β are some
constant values.

3 Network Model

Figure 1 shows the network model used in this paper. It con-
sists of Nr sender hosts using TCP Reno (SR1, ... SRNr),
Nv sender hosts using TCP Vegas (SV1, ... SVNv), a receiver
host, an intermediate router, and links connecting the router
and the sender/receiver hosts. The bandwidth of each link
between the sender hosts and the router is bw [Mbps]. The
bandwidth of the bottleneck link between the router and the
receiver host is BW [Mbps] = µ [packets/sec]. The size of
the buffer at the router is B [packets]. The propagation delay
between the sender hosts and the router and that between the
router and the receiver host are represented by τsx [sec] and
τxd[sec], respectively. We denote the total propagation delay
between the sender hosts and the receiver host by τ , being
equal to τsx + τxd. As the scheduling discipline at the router
buffer, we consider drop-tail and RED algorithms.

4 Fairness Comparison

4.1 Analysis

In what follows, we use the network model depicted in Fig-
ure 1, and derive the average throughput of each TCP con-
nection through a mathematical analysis. In the analysis, we
assume that the throughput of each connection becomes pro-
portional to buffer occupancy at the drop-tail router. It is also

appropriate for the RED router as we will explain in the be-
low. Note that the validation of our approximate analysis will
be given in Subsection 4.2.

4.1.1 Case of Drop-Tail Router

In Figure 2, we illustrate a typical change of the total num-
ber of packets queued at the router buffer when the drop-tail
algorithm is utilized. Here, we assume that all TCP Reno
connections behave identically. Since TCP Reno connections
continue to increase their window sizes until packet loss oc-
curs at the buffer, the change of the window size also has cy-
cles triggered by packet losses , even when the TCP Reno
connections share the link with TCP Vegas connections. By
assuming that all packet losses can be detected by the fast re-
transmit algorithm, it takes one RTT [sec] for the sender side
TCP to detect the packet loss after the packet loss actually oc-
curs at the route buffer. It corresponds to the flat part of buffer
occupancy shown in Figure 2.

TCP Vegas connections, on the other hand, control their
window sizes according to the observed RTTs of sending
packets. Each of those tries to keep the number of queued
packets in the router buffer between α and β [packets] [3].
As RTTs becomes large, TCP Vegas connections continue to
decrease their window sizes. On the other hand, TCP Reno
connections continue to increase their window sizes regard-
less of the increased RTT, which results in that the window
sizes of the TCP Vegas connections are decreased until those
reach within the range from α to β [packets]. See Eq. (4).
From the above observation, the total of window sizes of Nv

TCP Vegas connections,Wv [packets], is obtained as;

Nvα < Wv < Nvβ. (5)

We determine Wv [packets], the average value of Wv, from
Eq. (5) as follows;

Wv = Nv
α + β

2
, (6)

which is a reasonable assumption from its behavior.
TCP Reno connections continue to increase their window

sizes until the router buffer becomes full and eventually some
packets are lost. Accordingly,Wr [packets], the total of the
window sizes of TCP Reno connections when packet loss oc-
curs at the router buffer, can be obtained as;

Wr = 2τµ+B −Wv. (7)

The number of lost packets during buffer overflow duration
becomes Nr [packets], since from Eq. (1), the window sizes
of TCP Reno connections are increased by 1 [packet/RTT] in
the congestion avoidance phase as having been explained in
Section 2. By assuming that a packet loss probability for each
connection is proportional to its window size, we can obtain
Lr [packets] and Lv [packets], the numbers of packet losses
of TCP Reno and Vegas connections during buffer overflow
duration, respectively, as;

Lr = Nr
Wr

Wr +Wv
; Lv = Nr

Wv

Wr +Wv
(8)

Each of TCP Reno connections detecting the packet loss
halves its window size according to the fast retransmit algo-
rithm. Therefore, W ′

r [packets], the total window size of the
TCP Reno connections just after the buffer overflow, can be
determined by Eqs. (1) and (8) as;

W ′
r =

1
2
· Wr

Nr
·Lr +

Wr

Nr
· (Nr − Lr)

=
Wr + 2Wv

2(Wr +Wv)
·Wr (9)

From Eq. (1) (and Figure 2), the following equation holds for
Wr [packets], the average value of the total window size of
TCP Reno connections;

Wr =
1
2
(Wr +W ′

r)
Wr−W ′

r

Nr
+Wr

Wr−W ′
r

Nr
+ 1

(10)

Accordingly, we obtain Br [packets] and Bv [packets], the
average number of packets at the router buffer for TCP Reno
and Vegas, respectively;

Br =Wr · B

2τµ+B
; Bv =Wv · B

2τµ+B
(11)

We finally have ρr [packets/sec] and ρv [packets/sec], the
average throughputof the connections of two versions of TCP
as;

ρr = µ · Br

Br +Bv
; ρv = µ · Bv

Br +Bv
, (12)

since we have assumed that they become proportional to the
buffer occupancy at the router.

4.1.2 Case of RED Router

The RED algorithm drops incoming packets at the preset
probability when the number of packets in the buffer exceeds
a certain threshold value [6]. For simplicity of the following
analysis, it is assumed that all packet losses occur with prob-
ability p by the RED algorithm, and no buffer overflow takes
place.

Even with the RED algorithm, TCP Reno connections con-
tinue to increase their window sizes until packet loss occurs.
Therefore, as in the drop-tail case, the TCP Vegas connections
cannot open their window sizes and keep them ranging from
α to β. Therefore, the following equations yield for Wv and
Wv;

Nv · α < Wv < Nv · β; Wv = Nv
α + β

2
(13)

Each of TCP Reno connections, on the other hand, changes
its window size cyclically triggered by packet losses as in the
drop-tail router case. Since all arriving packets are dropped
with probability p by our assumption, the connection can
send 1/p packets in one cycle (between two events of packet
losses) on average. We define the number of packets trans-
mitted during one cycle as Np, and is given by

Np = 1/p (14)

Different from the drop-tail router case, we focus on a certain
TCP Reno connection because we assume that all TCP Reno
connections behave identically under the stochastic packet
dropping algorithm employed by RED.

Although the RED algorithm can eliminate the bursty
packet losses, retransmission timeout expiration cannot be
perfectly avoided [9]. Even if timeout expiration rarely hap-
pens, the effect of timeout expiration on throughput is not
negligible. Therefore, we must take into account through-
put degradation caused by timeout expiration. We denote the
probability of occurring timeout expiration within the window
by pto. By using wr, the average value of the window size of
a certain TCP Reno connection when packet loss is detected,
we determine pto by a following simple equation;

pto =
wr∑
i=2

(
wr

i

)
· pi · (1 − p)wr+1−i (15)

In what follows, we distinguish two cases of detecting packet
loss; retransmission timeout expiration (TO case) and the fast
retransmit (FR case), because in each of two cases, a different
algorithm of changing the window size is used.

In the TO case, that is, if packet loss is detected by re-
transmission timeout expiration, the window size is reset to
1 [packet]. It is then updated according to the slow start phase
(Eq. (1)) until it reaches wr/2 [packets]. From Eq. (1), we
can determine Tto,1 [sec], the time duration of the slow start
phase, and Ato,1 [packets], the number of packets transmitted
in the slow start phase, by the following equations.

Tto,1 = rtt · log2(wr/2); Ato,1 = (wr/2) − 1 (16)

where rtt [sec] is the mean value of RTTs of sending packets.
Furthermore, we can easily obtain Tto,2 [sec] andAto,2 [pack-
ets], which are the time duration and the number of transmit-
ted packets in the following congestion avoidance phase, re-
spectively, from Eq. (1) as;

Tto,2 = rtt · (wr − wr/2) (17)

Ato,2 =
1
2

(wr + wr/2) (wr − wr/2) (18)

These equations hold due to the fact that the window size is
increased by 1 [packet] per RTT [sec] in the congestion avoid-
ance phase (Eq. (1)).

On the other hand, if the TCP Reno connection detects the
packet loss by the fast retransmit algorithm (FR case), the
window size is halved to wr/2, and the congestion avoidance
phase starts again. That is, time duration and the number of
transmitted packets during the slow start phase (denoted as
Tfr,1 and Afr,1 , respectively) are zeros, i.e.,

Tfr,1 = 0; Afr,1 = 0 (19)

Similarly, time duration and the number of transmitted pack-
ets in the congestion avoidance phase (Tfr,2 and Afr,2) are
represented as

Tfr,2 = rtt (wr − wr/2) (20)

Afr,2 =
1
2

(wr + wr/2) (wr − wr/2) (21)

Consequently, the following equations are satisfied for the
number of transmitted packets and the average window size
during one cycle from Eqs. (16)-(21);

Np = pto(Ato,1 +Ato,2)
+(1 − pto)(Afr,1 + Afr,2) (22)

wr = rtt · pto

(
Ato,1 + Ato,2

Tto,1 + Tto,2 + rto

)

+rtt · (1 − pto)
(
Afr,1 + Afr,2

Tfr,1 + Tfr,2

)
(23)

where rto [sec] is the retransmission timeout value of the con-
nection. Since we can obtain pto and wr by solving Eqs. (22)
and (23), the average value of the total window size of all TCP
Reno connections,Wr, can be easily obtained as follows;

Wr = Nrwr (24)

Finally, ρr and ρv in the RED case can be determined sim-
ilarly to the drop-tail router case, from Eqs. (11)–(12), (13),
(13) and (24).

4.2 Numerical Examples and Discussions

In this Subsection, we show some numerical examples by
using analysis results presented in the previous Subsection,
which are aimed at discussing the fairness between two ver-
sions of TCP. Simulation results are also provided to assess
the accuracy of our analysis. In what follows, we set τsx

= 0.0015 [sec], τxd = 0.005 [sec], bw = 10 [Mbps] and
BW = 1.5 [Mbps] as network parameters. For the RED
router, we set the threshold values, thmin = 5 [packets] and
thmax = 0.6×B [packets].

4.2.1 Case of Drop-Tail Router

Figure 4 shows the average throughput of TCP Reno and TCP
Vegas connections as a function of the buffer size B [pack-
ets] of the drop-tail router. We consider three cases for the
number of connections of TCP Reno and Vegas (Nr andNv);
Nr = 5, Nv = 5 for Figure 4(a), Nr = 5, Nv = 10 for
Figure 4(b), and Nr = 10, Nv = 5 for Figure 4(c). In these
figures, we show both of the analysis and simulation results
for validating our analysis presented in Subsection 4.1. We
can see in these figures that our analysis gives appropriate es-
timations of throughput, regardless of the number of connec-
tions of two versions of TCP. However, especially when the
router buffer size is very small (< 20 [packets]), however, our
analysis under-estimates the throughputof TCP Reno connec-
tions, and over-estimates that of TCP Vegas connections. It is
because the assumption that the window sizes of TCP Vegas
connections are fixed at Wv = (α + β)/2 does not hold for
too small buffer size, while such a very small buffer size is
not realistic.

An important observation obtained from Figure 4 is that
TCP Vegas connectionssuffer from significantly low through-
put, compared with TCP Reno connections. It is due to the
difference of buffer occupancy at the router. TCP Reno con-
nections can increase their window sizes until the buffer be-
comes full and packet loss occurs. On the other hand, TCP

Vegas connections does not inflate the window size larger
than β, as have been described in Subsection 4.1. This ob-
servation can be confirmed by our analysis in the previous
subsection. From Eqs. (7) and (10), the average window size
of TCP Reno connections becomes large as the router buffer
size B [packets] is increased. Since the increase of the win-
dow size of each TCP Reno connection can directly lead to
the throughput improvement, as can be seen from Eqs. (11)
through (12). On the other hand, the window size of TCP
Vegas connections remain unchanged regardless of the router
buffer size (see Eq. (6)). Therefore, buffer occupancy of TCP
Vegas connections is decreased as the router buffer size is
set to be large. That is, the larger the router buffer size be-
comes, the worse the fairness between TCP Reno and TCP
Vegas connections becomes.

In this subsection, we have considered the drop-tail router.
The mechanism of the RED router can inhibit the bursty
losses of packets from the same connection to improve the
fairness among connections. Such a mechanism is also useful
in our case, which will be examined in the next subsection.

4.2.2 Case of RED Router

We next show the case of the RED router in Figure 5. In
this case, the packet dropping probability, p, is set to be 1/30.
Analysis results in the figure are not affected by the router
buffer size. It is because we have assumed that in our anal-
ysis, the packet dropping probability is constant, and that all
packet drops are caused by stochastic dropping of the RED
algorithm, not by the buffer overflow of packets. The dif-
ferences between analysis and simulation results become ap-
parent when the buffer size is small because in that region,
throughput degradation caused by buffer overflow cannot be
negligible. However, such a small buffer size is not realistic
in the operating network and our analysis results can well il-
lustrate how different the throughputperformance of two ver-
sions of TCP are.

We can observe from Figure 5 that the fairness between
two versions of TCP is greatly improved when compared with
the case of drop-tail router, while the total throughputs of all
connections are almost identical for the large buffer size. It
can be explained as follows. With the RED algorithm, TCP
Reno connections does not inflate their window sizes until the
router buffer becomes fully–utilized, since packet loss occurs
before the buffer becomes full due to an essential nature of the
RED algorithm. It results in the decrease of buffer occupancy
of TCP Reno connections, leading to throughput degradation
of TCP Reno connections. It also contributes the throughput
improvement of TCP Vegas connections. The observation can
be confirmed by our analysis. In contrast with the drop-tail
router case, the window size of TCP Reno is independent on
the router buffer size, since the total number of packets trans-
mitted between two events of packet losses is only dependent
on the packet dropping probability of the RED algorithm p
as shown in Eq. (14). Therefore, throughput values of two
versions are not changed even when the router buffer size be-
comes large.

From the above discussion, one may expect that if the
packet dropping probability is further increased, the fairness

can be improved because the average window sizes of TCP
Reno connections gets smaller. This observation can be partly
confirmed by Figure 6, where we increase the packet dropping
probability to 1/10 (from 1/30 in the previous case). We can
see the fairness enhancement by comparing with the previous
results in Figure 5. It can be verified by Eq. (14), i.e., the
number of packets that the sender host can transmit in one cy-
cle is decreased as p becomes large. It causes the decrease of
the average window size of TCP Reno connections, because it
inflates its window size until the packet loss is detected. Then,
buffer occupancy of TCP Reno connections is decreased, and
that of TCP Vegas connections is increased, since the window
size of TCP Vegas is not affected by p. Hence, the fairness
between the two versions of TCP can be improved.

As one can naturally imagine, however, we cannot avoid
the degradation of the total throughput if the packet dropping
probability of RED algorithm is set too high for further fair-
ness improvement. Figure 3 shows simulation results for the
throughput of TCP Reno and Vegas connections and the total
throughput, by changing p (the packet droppingprobability of
the RED algorithm). In obtaining this figure, we fix the other
parameters; Nr = 5, Nv = 5, and B = 100 [packets]. We can
see from the figure that when the packet dropping probabil-
ity becomes large (> 0.01), the fairness between two versions
of TCP can be much improved, but the total throughput de-
grades. In other words, there exists an inevitable trade-off
between fairness and throughput in the RED algorithm. Fur-
thermore, it would be difficult to choose an appropriate value
of p in the operating network since it must be affected by the
active numbers of connections of two TCP versions.

In this paper, we have considered two versions of TCP. The
one is TCP Reno; an existing and widely used protocol. The
other is TCP Vegas; the newly proposed protocol which gives
higher throughput than TCP Reno as having been demon-
strated in the original paper of TCP Vegas [4]. TCP Vegas
also has an excellent feature of the backward compatibility
to the older versions of TCP including TCP Reno. However,
when two versions of TCP share the bottleneck link, the per-
formance of TCP Vegas is much degraded, which was not
originally expected. For the new protocol to be deployed in
the operating network, its migration path should be taken into
account. In this sense, TCP Vegas does not seem to be suc-
cessful.

However, there are several approaches to overcome the
above problem. One possible solution is to improve the con-
gestion control algorithm of TCP Vegas itself to be able to
compete equally with TCP Reno. For this, the window of
TCP Vegas should be increased more aggressively as TCP
Reno does. Another approach is to modify the RED algorithm
at the router so that the router can detect mis-behaving con-
nections, which correspond to TCP Reno connections in the
current context. Then the router eliminates the unfairness by
intentionally dropping more packets from the mis-behaving
connections than well-behaving connections. In next two sec-
tions, we investigate those approaches in turn.

5 Modification to TCP Vegas

As described in the previous section, one reason of the un-
fairness between TCP Reno and Vegas is due to the differ-
ence of their congestion control algorithms. An aggressive
increase of window sizes in TCP Reno much affects the per-
formance of TCP Vegas controlling their window sizes mod-
erately. Therefore, we modify TCP Vegas so that it has an
ability to compete the link at least equally with TCP Reno
connections, while preserving the merit of TCP Vegas of the
stability of the window size. In this section, we propose an
approach, called TCP Vegas+, and show some simulation re-
sults to verify its effectiveness.

5.1 Algorithm

In TCP Vegas+, we only change the updating algorithm for
the window size in the original TCP Vegas, and remains un-
changed for other functions, which include the detection algo-
rithm of packet loss, and the slow slow start mechanism (Sec-
tion 2). TCP Vegas+ normally behaves identically with TCP
Vegas, but it enters the other mode to increase its window size
more aggressively when it perceives to have competing con-
nections of TCP Reno. More specifically, TCP Vegas+ has
two modes for updating its window size;

Moderate Mode: In the moderate mode, the TCP
Vegas+ sender behaves identically to the orig-
inal TCP Vegas, i.e., the window size is up-
dated according to Eq. (4).

Aggressive Mode: In the aggressive mode, the
TCP Vegas+ sender host behaves identically
to TCP Reno. That is, it updates the window
size according to Eq. (1). This mode is for
TCP Vegas+ connections to keep fair through-
put against TCP Reno connections.

Most important is to switch between the above two modes.
For this purpose, we introduce new variables count and
countmax. First, count is updated according to the follow-
ing algorithm.

1. On every receipt of an ACK packet, the sender observes
its window size and the RTT value. If RTT is larger
than the previous value while the window size is not in-
creased, the sender increments count by 1.

2. On the other hand, if RTT becomes smaller, the sender
decrements count by 1.

3. If packet loss is detected by a fast retransmit algorithm,
count is halved.

4. If packet loss is detected by a retransmission timeout ex-
piration, count is reset to 0.

TCP Vegas+ then changes its mode according to the count
value;

Moderate Mode → Aggressive Mode: If count
reaches a certain threshold value countmax,
the sender changes its mode from the moder-
ate mode to the aggressive mode.

Aggressive Mode → Moderate Mode: If count
becomes 0, it goes back to the moderate mode.

A rational behind the above algorithm is as follows; if the
RTT value becomes larger whereas the window size is un-
changed, it can be considered that the increase of RTT is not
caused by the TCP Vegas+ connection itself, but by other TCP
Reno connections, which increases its window size more ag-
gressively than the TCP Vegas+ connection. Then the TCP
Vegas+ connection should increase its window size more ag-
gressively to compete equally with the other connections.
When packet loss is detected, on the other hand, the TCP Ve-
gas+ should change its mode from the aggressive mode to the
moderate mode. It is because the packet loss indicates the
network congestion occurrence, and the congestion may be
caused by the aggressive increase of the window size of it-
self.

5.2 Simulation Results and Discussions

We first show the time–dependent behaviors of the window
size in Figures 7(a) and 7(b) where TCP Vegas and Vegas+ are
applied, respectively. We used the network model depicted in
Figure 1, and set Nr = 5, Nv = 1, and B = 100 [packets].
The five TCP Reno connections sends data from 250 [sec] to
500 [sec], and from 750 [sec] to 1000 [sec] of the simulation
time. The drop-tail router is assumed in this experiment. For
the parameter of TCP Vegas+, we set countmax = 8. Instan-
taneous throughput value of two cases are shown in Figure 8.

As can be observed from Figure 7(a), the window size of
the original TCP Vegas remains almost unchanged even when
the TCP Reno connections starts packet transmission. There-
fore, the throughput is degraded when TCP Reno connections
exists because buffer occupancy at the router becomes very
low. See Figure 8(a). In the case of TCP Vegas+, on the
other hand, the TCP Vegas+ connection can increase its win-
dow size up to almost equal values with the TCP Reno con-
nections when the TCP Reno connections join the network
(Figure 7(b)). Furthermore, when the TCP Reno connections
do not exist (from 0 [sec] to 250 [sec] and from 500 [sec] to
750 [sec] of the simulation time), the window size is stable
as in the case of TCP Vegas. This is just a behavior of TCP
Vegas+ that we want to realize. Consequently, rather good
fairness can be achieved in terms of throughput as shown in
Figure 8(b).

We next present several results on fairness correspondingto
the results presented in Section 4. We set τsx = 0.0015 [sec],
τxd = 0.005 [sec], bw = 10 [Mbps] and BW = 1.5 [Mbps].
Countmax for the TCP Vegas+ parameter is unchanged to be
8. Figure 9 shows simulation results; Figure 9(a) forNr = 5
and Nv = 5, Figure 9(b) for Nr = 5 and Nv = 10, and Fig-
ure 9(c) for Nr = 10 and Nv = 5. In these figures, we also
show results of the original TCP Vegas case. Those are same
as Figure 4 in Section 4. These figures show that the fair-
ness between two versions of TCP is significantly improved
especially when the buffer size is comparatively large. It can
also be observed that fairness improvement can be achieved
regardless of the number of connections of TCP Reno and
Vegas+.

6 Modification to the Scheduling Algo-
rithms at the Router

In this section, we consider another way to improve fairness
between TCP Reno and Vegas, by modifying the RED algo-
rithm at the router. Our proposed algorithm, called ZL-RED
(Zombie Listed RED), is based on the mechanism proposed
in [7], and a function of dropping incoming packets is added
to improve the fairness.

6.1 ZL-RED Algorithm

In Section 4, we have shown that the original RED can im-
prove the fairness to some degree, but there is an inevitable
trade-off between fairness and throughput. The main reason
was that RED drops incoming packets from different connec-
tions with same probability, regardless of the characteristics
of the connections. Then, as we set the packet dropping prob-
ability to a higher value, throughput values of the TCP Reno
and Vegas connection become lower, and the total throughput
gets smaller while we can obtain better fairness. Therefore,
for further fairness improvement without throughput degra-
dation, we need two mechanisms; the one is how to detect
TCP Reno connections, and the other is how to drop more
packets from TCP Reno connections. Our mechanism is in-
spired by SRED proposed in [7], where the way to find a mis-
behaving flow are described. In our context, it corresponds to
TCP Reno connections, and we need additional mechanisms
as will be described below.

6.1.1 How to Detect Mis-behaving Connections

Several methods have already been proposed to identify mis-
behaving connections, and to provide fair service at the
router [10, 11, 12]. However, most of them use per-flow infor-
mation to determine the mis-behaving connections, and such
methods have an essential problem; inscalability against the
number of accommodated connections. Accordingly the au-
thors in [7] have introduced an algorithm which does not use
any per-flow information for detecting mis-behaving connec-
tions. Since our method is based on SRED, we briefly sum-
marize the SRED algorithm first.

Instead of per-flow information, SRED maintains a fixed-
size table called a zombie list. Each entry of the zom-
bie list contains information on incoming packets (i.e.,
source/destination addresses and possibly port numbers), a
timestamp and a counter. The zombie list is initialized to
be empty. When the packet arrives at the router, the router
adds a new entry for the packet. If the zombie list is full on
packet arrival, the router randomly selects one entry from the
zombie list. If information of the selected entry is identical
to that of the arriving packet (the authors in [7] call it hit.),
the router increments the counter of the entry by 1. Other-
wise, the router replaces the selected entry by the information
of the arrived packet with a certain probability. By this algo-
rithm, mis-behaving connections can be detected as follows.
Suppose that a certain connection is mis-behaving, that is, a
connection sends more packets to the router than other con-
nections. Then, the zombie list tends to contain more entries

of the mis-behaving connections. Therefore, when the pack-
ets from the mis-behaving connection arrives at the router,
the packet hits in the zombie list more frequently, because the
probability that the randomly selected entry coincides with
the arriving packet becomes larger. Furthermore, the counter
value of the entry of the mis-behaving connections also be-
comes larger. By these two mechanisms, the router can iden-
tify the mis-behaving connections.

6.1.2 How to Drop More Packets from Mis-behaving
Connections

To keep fairness between mis-behaving connectionsand well-
behaving connections, the router should intentionally drop
packets from the mis-behaving connections with higher prob-
ability. The authors in [7] have proposed the mechanism to
detect mis-behaving connections using the zombie list, but
have not shown any method to improve fairness between mis-
behaving connections and well-behaving connections by us-
ing the zombie list. In this subsection, we propose one possi-
ble way, ZL-RED (Zombie Listed RED), to realize it,

In ZL-RED, packet dropping is performed in two steps. At
the first step, an incoming packet is dropped with probability
p1. Its determination follows the algorithm presented in [7];

p′ =




0 if qlen < thmin

pmin if thmin ≤ qlen < thmax

pmax if thmax ≤ qlen

(25)

p1 = p′ (1 +Hit(t)/P (t)) , (26)

where qlen is the number of packets in the router buffer when
the packet arrives at the router, and pmin, pmax, thmin [pack-
ets] and thmax [packets] are some constant values. P (t) is the
probability with which the incoming packet hits. According
to [7], 1/P(t) becomes the average number of active con-
nections at the router, if the packet arriving rates of the all
connections are equal. Further, Hit(t) is defined as;

Hit(t) =
{

1, if the incoming packet hits
0, otherwise

(27)

In the second step, the router drops the packet with proba-
bility p2 when the packet is not dropped in the first step. The
probability p2 is determined by the following equation.

p2 =

{
hitdrop

1+P (t)
, ifHit(t) = 1 and qlenP (t) ≥ 2.0

0, otherwise
(28)

where hitdrop is a control parameter of the ZL-RED algo-
rithm. It affects the packet dropping probability of mis-
behaving connections; if we set hitdrop to a larger value,
packets from mis-behaving connections are more frequently
dropped than those from well-behaving connections.

6.2 Simulation Results and Discussions

In this subsection, we present an effectiveness of our ZL-RED
algorithm through several simulation results. Figure 10 shows

throughput and packet loss rate of TCP Reno and Vegas con-
nections as a function of the buffer size at the router. We set
the ZL-RED parameters as follows; pmin = 1/50, pmax =
1/10, thmin = 5 [packets], and thmax = 0.6B [packets]
where B [packets] is the buffer size at the router. The size of
the zombie list is set to be 1000 [entries]. Further, in obtain-
ing Figure 10, we set hitdrop to 0.8. The results are shown
in Figure 10. We can see from this figure that the fairness be-
tween TCP Reno and Vegas becomes better than case of RED
(Figure 5 and 6). It means that our ZL-RED can effectively
drop packets from mis-behaving connections, i.e., TCP Reno
connections here. It is because in the first step of ZL-RED,
the packet dropping probability is increased if an incoming
packet often hits as shown in Eq. (26). That is, the packet
loss rate of TCP Reno connections becomes higher than that
of TCP Vegas connections due to its aggressive window size
increase. It is shown in Figures 10(b), 10(d), and 10(f). Note
that since the original RED algorithm drops incoming packets
with a constant probability, the packet loss rate of TCP Reno
and Vegas connections becomes identical.

However, the ZL-RED algorithm proposed in this section
cannot eliminate the unfairness between TCP Reno and TCP
Vegas perfectly as shown in Figure 10 while the fairness is
much better than the original RED algorithm. Further fair-
ness improvement using ZL-RED should be a future research
topic.

7 Conclusion

In this paper, we have investigated the fairness between TCP
Reno and Vegas in the case where the TCP connections of the
two versions share the bottleneck link. We have observed the
following results through the mathematical analysis and the
simulation experiments; TCP Vegas suffers from serious per-
formance degradation with drop-tail routers, because of the
difference of buffer occupancy at the router. RED routers can
improve the fairness to some degree, but there exists an in-
evitable trade-off between fairness and throughput.

We have then proposed two approaches to improve the fair-
ness. The first one is TCP Vegas+, which enhances the con-
gestion control algorithm of the original TCP Vegas so that
TCP Vegas can compete equally with TCP Reno. The second
proposal is the ZL-RED algorithm, which detects the mis-
behaving connections at the router buffer, and tries to inten-
tionally drops more arriving packets from the mis-behaving
(i.e. TCP Reno) connections than that from well-behaving
(TCP Vegas) connections. We have confirmed the effective-
ness of the proposed mechanisms through the simulation ex-
periments. Then, which is better? ZL-RED is a natural exten-
sion of the existing algorithm eliminating the mis-behaving
flows. However, since our motivation is to achieve fairness
between TCP Vegas and Reno, an extension to TCP Vegas
seems to be more adequate. The problem is that since both
approaches require the appropriate parameter choice, we can-
not decide it at this moment, and we need more researches on
the subject.

Acknowledgement

This work was partly supported by Research for the Fu-
ture Program of JSPS under the Project “Integrated Net-
work Architecture for Advanced Multimedia Application
Systems,” Special Coordination Funds for promoting Science
and Technology of the Science and Technology Agency of the
Japanese Government, TelecommunicationAdvancement Or-
ganization of Japan under the Project “Global Experimental
Networks for InformationSociety Project,” a Grant-in-Aid for
Scientific Research (A) (2) 11305030 from The Ministry of
Education, Science, Sports and Culture of Japan, and financial
support on “Research on transport-layer protocol for the fu-
ture high-speed network,” from the Telecommunications Ad-
vancement Foundation.

References
[1] Michel Perloff and Kurt Reiss, “Improvements to TCP perfor-

mance,” Communications of ACM, vol. 38, no. 2, pp. 90–100,
February 1995.

[2] Matthew Mathis and Jamshid Mahdavi, “Forward acknowl-
edgment: Refining TCP congestion control,” ACM SIGCOMM
Computer Communication Review, vol. 26, no. 4, pp. 281–291,
October 1996.

[3] Go Hasegawa, Masayuki Murata, and Hideo Miyahara, “Fair-
ness and stability of the congestion control mechanism of
TCP,” in Proceedings of IEEE INFOCOM’99, March 1999,
pp. 1329–1336.

[4] Lawrence S. Brakmo, Sean W.O’Malley, and Larry L. Peter-
son, “TCP Vegas: New techniques for congestion detection
and avoidance,” in Proceedings of ACM SIGCOMM’94, Octo-
ber 1994, pp. 24–35.

[5] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and Jean
Walrand, “Analysis and comparison of TCP reno and vegas,”
in Proceedings of IEEE INFOCOM’99, March 1999.

[6] Sally Floyd and Van Jacobson, “Random early detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions on
Networking, vol. 1, no. 4, pp. 397–413, August 1993.

[7] Teunis J. Ott, T. V. Lakshman, and Larry Wong, “SRED: Sta-
bilized RED,” in Proceedings of IEEE INFOCOM’99, March
1999.

[8] W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Proto-
cols, Addison-Wesley, Reading, Massachusetts, 1994.

[9] K. Fall and S. Floyd, “Simulation-basedcomparisons of Tahoe,
Reno, and SACK TCP,” ACM SIGCOMM Computer Commu-
nication Review, vol. 26, no. 2, pp. 5–21, July 1996.

[10] D. Lin and R. Morris, “Dynamics of random early detec-
tion,” in Proceedings of ACM SIGCOMM’97, October 1997,
pp. 127–137.

[11] I. Stoica, S. Schenker, and H. Zhang, “Core-stateless fair
queueing: Achieving approximately bandwidth allocations in
high speed networks,” in Proceedings of ACM SIGCOMM’98,
September 1998, pp. 118–130.

[12] M. Shreedhar and George Varghese, “Efficient fair queuing
using deficit round robin,” IEEE/ACM Transactions on Net-
working, vol. 4, no. 3, pp. 375–385, June 1996.

Router
Receiver Host

Sender Hosts

SR 1

SR Nr

SV 1

SV Nv

bw [Mbps]
BW [Mbps]

Buffer: B [packets]

bw [Mbps]

bw [Mbps]

bw [Mbps]

τsx [sec] τxd [sec]

τ [sec]

TCP Reno
Hosts

TCP Vegas
Hosts

Figure 1: Network Model
B

uf
fe

r
O

cc
up

an
cy

 [p
ac

ke
ts

] B

Time [sec]

TCP Reno’s
Packet

TCP Vegas’
Packet

RTT

1 Cycle

Figure 2: A Typical Change of Buffer Oc-
cupancy at Drop-tail Router

0

50

100

150

200

250

300

1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t [

K
bp

s]

Packet Dropping Probability p

TCP Reno

TCP Vegas

Total

Figure 3: Throughputvs. Packet Dropping
Probability of RED Algorithm

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5, Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 4: Case of Drop-Tail Router

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5,Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 5: Case of RED Router: p = 1/30

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(a) Nr = 5, Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(b) Nr = 5, Nv = 10.

0

20

40

60

80

100

120

140

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Analysis-Reno
Simulation-Reno

Simulation-Vegas
Analysis-Vegas

(c) Nr = 10, Nv = 5.

Figure 6: Case of RED Router: p = 1/10

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 9001000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

TCP Vegas
TCP Reno

(a) TCP Vegas

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 9001000

W
in

do
w

 S
iz

e
[p

ac
ke

ts
]

Time [sec]

TCP Vegas+
TCP Reno

(b) TCP Vegas+

Figure 7: Changes of Window Size

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 9001000

T
hr

ou
hg

pu
t [

K
bp

s]

Time [sec]

TCP Vegas

TCP Reno

(a) TCP Vegas

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600 700 800 9001000

T
hr

ou
hg

pu
t [

K
bp

s]

Time [sec]

TCP Vegas+

TCP Reno

(b) TCP Vegas+

Figure 8: Changes of Instantaneous Throughput

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno with Original Vegas

Original Vegas

Reno with Vegas+

Vegas+

(a) Nr = 5, Nv = 5.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno with Original Vegas

Original Vegas
Reno with Vegas+

Vegas+

(b) Nr = 5, Nv = 10.

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno with Original Vegas

Original Vegas
Reno with Vegas+

Vegas+

(c) Nr = 10, Nv = 5.

Figure 9: Fairness Evaluation between TCP Reno and Vegas+: countmax = 8

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno (RED)

Vegas (RED)

Reno (ZL-RED)

Vegas (ZL-RED)

(a) Throughput: Nr = 5, Nv = 5

0

0.05

0.1

0.15

0.2

10 100 1000

P
ac

ke
t L

os
s

R
at

e

Buffer Size [packets]

Reno (ZL-RED)

Vegas (ZL-RED)

(b) Packet Loss Rate: Nr = 5, Nv = 5

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno (RED)

Vegas (RED)

Reno (ZL-RED)

Vegas (ZL-RED)

(c) Throughput: Nr = 5, Nv = 10

0

0.05

0.1

0.15

0.2

10 100 1000

P
ac

ke
t L

os
s

R
at

e

Buffer Size [packets]

Reno (ZL-RED)

Vegas (ZL-RED)

(d) Packet Loss Rate: Nr = 5, Nv = 10

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

Reno (RED)

Vegas (RED)

Reno (ZL-RED)

Vegas (ZL-RED)

(e) Throughput: Nr = 10, Nv = 5

0

0.05

0.1

0.15

0.2

10 100 1000

P
ac

ke
t L

os
s

R
at

e

Buffer Size [packets]

Reno (ZL-RED)

Vegas (ZL-RED)

(f) Packet Loss Rate: Nr = 10, Nv = 5

Figure 10: Fairness Evaluation under ZL-RED Algorithm: hitdrop = 0.8

