Fairness Comparisons between TCP Reno and TCP Vegas
for Future Deployment of TCP Vegas

Kenji Kurataf GoHasegawai Masayuki Murataf

TDepartment of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Phone: +81-6-6850-6616, Fax: +81-6-6850-6589
E-mail: {k-kurata, murata} @ics.es.osaka-u.ac.jp

TFaculty of Economics, Osaka University
1-7, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
Phone: +81-6-6850-5233
E-mail: hasegawa@econ.osaka-u.ac.jp

Abstract TCP Vegasversionis expected to achieve higher throughput than TCP Tahoe
and Reno versions, which are currently used in the Internet. However, we need to consider
amigration path of TCP Vegas when it is deployed in the Internet. In this paper, we focus
on the situation where multiple TCP Reno and Vegas connections coexist at the bottleneck
router, by which the fairness property isinvestigated to seek the possibility of future deploy-
ment of TCP Vegas. We consider drop-tail and RED (Random Early Detection) algorithms
as buffering discipline at the router, and evaluate the effect of RED algorithm on fairness en-
hancement. From the analysis and the simulation results, we have found the results that the
fairness between TCP Reno and Vegas can not be kept at all with drop-tail router. Although
RED algorithm improves the fairness to some degree, there are inevitable trade-off between
fairness and throughput.

1 Introduction

TCP (Transmission Control Protocol) is widely used by many Internet services including
HTTP (and World Wide Web) and FTP (File Transfer Protocol). Thus, evenif the network in-
frastructure may change in the future Internet, TCP and its applications would be likely to be
continuously used. However, TCP Tahoe and Reno versions (and their variants), which are
widely used in the current Internet, are not perfect in terms of throughput and fairnessamong
connections, as having been shown in the past literatures. Therefore, active researches on
TCP have made great efforts to propose many improvement mechanisms of TCP (for exam-
ple, see [1-4] and the references therein).

Among them, TCP Vegas version [5, 6] is considered to be one of the promising mecha-
nismsin its high performance. TCP Vegas enhances the congestion avoidance a gorithm of
TCP Reno. More specifically, TCP Vegas dynamically increases/decreases its sending win-
dow size according to observed RTTs (Round Trip Times) of sending packets, whereas TCP
Tahoe/Reno only continues increasing its window size until packet loss is detected. For in-
stance, the authorsin [5] concludes through simulation and implementation experiments that
TCP Vegas can obtain 40% higher throughput than TCP Reno.

However, we need to consider a migration path when the new protocol is deployed in
the operating network, i.e., the Internet. That is, it is important to investigate the effect of
traditional TCP versions (Tahoe and Reno) on TCP Vegas in the case where those different
versions of TCP co-exist in the network. The authorsin [7] have pointed out that when con-
nections of TCP Reno version and Vegas version share the bottleneck router, the Vegas con-
nection may suffer from significant unfairness. However, the authors have assumed that only
asingle TCP Reno connection sharesthe link with another TCP Vegas connection, and no so-
[ution has been provided for fairness enhancement.

In this paper, therefore, we focus on the situation where multiple TCP Reno and Vegas

connections coexist at the bottleneck router, and investigate the fairness property between
two versionsof TCP to seek the possibility of future deployment of TCP Vegasin the Internet.
Oneimportant point isthat the RED mechanism [8] isnow beingintroduced whiletheoriginal
Vegas does not assumeit. 1t may or may not be suitable to the RED mechanism. Wetherefore
consider two mechanisms, drop-tail and RED routers, in our study. One of the contributions
in this paper isto derive analysis results of the throughput of TCP Reno and Vegas in such
situation. We further present the accuracy of our analysis by comparing the analysis results
with the simulation results.

Through the analysis and simulation results, we evaluate the essential fairness property
between TCP Reno and Vegas as follows. TCP Vegas receives significant unfair throughput
compared with TCP Reno, when the router employs the drop-tail router. When the RED al-
gorithmisapplied, thefairness can beimproved to some degree, but there existsan inevitable
trade-off between fairnessand throughput. That is, if the packet dropping probability of RED
becomes large, fairness between TCP Reno and Vegas isimproved, but the total throughput
is degraded at the same time.

Therest of this paper is organized asfollows. Section 2 briefly introduces the congestion
control mechanisms of TCP Reno and TCP Vegas. We next describe the network model used
in our analysis and simulation experimentsin Section 3. Section 4 showsthe analysis results
of fairness between the two versions of TCP, which are validated by the ssimulation resultsin

Section 5. Finally, we conclude our presentation and present some future worksin Section 6.

2 Congestion Control Mechanismsof TCP

In this paper, we consider two versions of TCP; TCP Reno and Vegas versions. For detailed
explanation, refer to [9] for TCP Reno and [5, 6] for TCP Vegas.

TCP adopts awindow-based flow control, which controls the number of on-the-fly pack-

etsin the network. The source terminal is allowed to send the number of packets given by its
window size. The current window size of the source terminal is often denoted by cwnd. The
window sizeis updated at the receipt of ACK (ACKnowledgement) packet. The key idea of
the congestion avoidance mechanism of TCP isto dynamically control the window size ac-
cording to severity of the congestion in the network. In what follows, we denote the current

window size at timet by cwnd(t).

2.1 TCPReno

In TCP Reno, the window size is cyclically changed. The window size continues to be in-
creased until packet loss occurs. TCP Reno has two phases in increasing its window size;
Slow Start Phase and Congestion Avoidance Phase. When an ACK packet is received by
TCP at the server sideat timet + ¢ 4 [sec], cwnd(t 4t 4) is updated from cwnd(t) asfollows

(see, e.g., [9]);

(Slow Start Phase :)

cund(t) + 1, if cwnd(t) < ssth;
cund(t +t4) =)
(Congestion Avoidance Phase :)

cwnd(t) + , if cwnd(t) > ssth;

cwnd(t)

where ssth [packets] isthe threshold value at which TCP changesits phase from Slow Start
Phase to Congestion Avoidance Phase. When packet lossis detected by retransmission time-

out expiration [9], cwnd(t) and ssth are updated as;

cond(t) = 1 2

ssth = 3

On the other hand, When TCP detects packet loss by fast retransmit algorithm [9], it changes

cwnd(t) and ssth asfollows,

ssth = cwnzd(t) (4)
cwnd(t) = ssth (5)

TCP Reno then enters Fast Recovery Phase [9] if the packet lossis found by fast retransmit
algorithm. In this phase, the window size isincreased by one packet when a duplicate ACK
packet isreceived, and cwnd(t) isrestored to ssth when the non—duplicate ACK packet cor-

responding to the retransmitted packet is received.

2.2 TCP Vegas

In TCP Reno (and the older version Tahoe), the window size continues to be increased until
packet 1oss occurs due to congestion. Then, when the window size is throttled because of
packet loss, the throughput of the connection may degrade. However, it cannot be avoided
because of an essential nature of the congestion control mechanism adopted in TCP Reno.
That is, it can detect network congestion only by packet loss. However, throttling the window
sizeis not adequate when the TCP connection itself causes the congestion because of its too
large window size. If the window size is appropriately controlled such that the packet loss
does not occur in the network, the throughput degradation due to the throttled window can
be avoided. Thisis the reason that TCP Vegas was introduced.

TCP Vegas employs another mechanism, in which it controlsits window size by observ-
ing RTTs (Round Trip Time) of packetsthat the connection has sent before. If observed RTTs
become large, TCP Vegas recognizes that the network begins to be congested, and throttles
the window size. If RTTs become small, on the other hand, TCP Vegas determines that the

network isrelieved from the congestion, and increasesthe window size again. Then, thewin-

dow sizein anideal situation becomes converged to the appropriate value. More specifically,

in Congestion Avoidance Phase, the window sizeis updated as;

cwnd(t) + 1, if diff < —2

base_rtt

cond(t +ta) = cwnd(t), if — — < diff < L2 (6)

basertt base_rtt
cwnd(t) — 1, if ﬁ < diff
cwnd(t) cwnd(t)
base_rtt rit

diff =

wherertt [sec] isan observed round trip time, base _rtt [sec] isthe smallest value of observed
RTTs, and « and 5 are some constant values.

TCP Vegas has an another feature in its congestion control algorithm. That is slow Slow
Start mechanism. The rate of increasing its window sizein Slow Start Phaseis ahalf of that
in TCP Tahoe and TCP Reno. Namely, thewindow sizeisincremented at every other time an
ACK packet isreceived. Notethat Equation (6) used in TCP Vegasindicatesthat if observed
RTTsof the packets are identical, the window size remains unchanged.

According to [5], TCP Vegas can achieve over 40% higher throughput than TCP Reno,
which has been confirmed through simulation and implementation experiments. However, it
has not been validated whether TCP Vegas could work well with TCP Reno or not. One of
the things we want to do in this paper is to investigate that, that is, the fairness between the
two versions of TCP when they co-exist in the network. We believe that it is very important

to deploy TCP Vegasto the future Internet.

3 Network Modd

Figure 1 showsthe network model used in thispaper. It consistsof N, sender hostsusing TCP
Reno (SRy, ... SRy,), IV, sender hosts using TCP Vegas (SV4, ... SVy,), areceiver host, a

Sender Hosts

TCP Reno
Hosts
Receiver Host
SRNr ." Router
N
bw [Mbps] =g oY Ml .’!@
— N
svi N0 H50s]
E?v/ ' BufferB [packets]
TCP Vegas | bw{Mbps]
Hosts)
SV \|’ Tsx [sec] . b [sec]

vy

T [sec]

Figure 1: Network Model

intermediate router and linksthat connect the router and the sender/receiver hosts. The band-
width of each link between sender hosts and the router is bw [Mbps]. The bandwidth of the
bottleneck link between the router and thereceiver hostis BWW [Mbps] = i« [packets/sec]. The
size of the buffer inthe router is B [packets], and the propagation delay between sender hosts
and therouter, and that between the router and the receiver host are 7, [sec] and 7,.4[Sec], re-
spectively. We denote the total propagation delay between the sender hosts and the receiver
host by 7, which equals 7, + 7.4. Asthe buffering discipline at the router, we use drop-tail
and RED (Random Early Detection) [8] algorithms. We further assume that the sender hosts

have infinite amount of sending data.

A . RTT .
-

TCP Reno’s
Packet

Buffer Occupancy [packets]

..

TCP Vegas’
Packet

1 Cycle N Time [sec]

Figure 2: The Typical Change of Total Buffer Occupancy at the Drop-tail Router
4 Analysis

In what follows, we use the network model depicted in Figure 1, and derive average through-
put of each TCP connection through mathematical analysis. In the analysis, we assume that
the throughput of each connection becomes proportional to buffer occupancy at the router.
Thisassumption is appropriate for the drop-tail router, and for the RED router where the ad-

ditional function is attached to the drop-tail router.

4.1 Caseof Drop-tail Router

Figure 2, we model the typical change of the total number of packets in the router buffer if
we use drop-tail algorithm. Since TCP Reno connections continue to increase their window
sizes until packet loss occurs at the buffer, the change of the window size also has cyclesin
the this case, where the TCP Reno connections co-exist with the TCP Vegas connection in
the bottleneck touter. Furthermore, if we assume that all packet losses can be detected by
Fast Retransmit algorithm [9], It takes 1 RTT (Round Trip Time) [sec] for sender side TCP

to detect the packet loss until the packet |ossreally occurs at the route buffer. Thisisdepicted

the flat part of the change of the window sizein Figure 2.

TCP Vegas connections, on the other hand, control their window size according to the
observed RTTs of sending packets. In more detail, they try to keep the number of buffered
packets in the router buffer from o to 3 [packets] [4]. If RTTs continue to become larger,
TCP Vegas connections continue to decrease their window size. In thiscase, since TCP Reno
connections continue increasing their window size regardless the increase of RTT, the RTTs
for TCP Vegas connections also become larger. Thisresultsthat the window sizes of the TCP
Vegas connections decrease to reach within the range from « to 3 [packets], in accordance
with Eq. (6). Therefore, 1V, [packets], the total window size of the TCP Vegas connections,

is obtained as follows;

N,-ao <W,< N,-p3 (7)

As the reasonable assumption, we determine W, [packets], the average value of 1V,,, from

Eq. (7) asfollows;

(8)

On the other hand, TCP Reno connections continue increasing their window size until the
router buffer becomesfull. Accordingly, W,. [packets], thetotal window size of the TCP Reno

connections when packet loss occurs at the router buffer, can be calcul ated;

W, = 2ru+B-—W, (9)

Thenumber of packet lossesin one buffer overflow becomes N, [packets], sincefrom Eg. (1),
the window sizes of TCP Reno connections are increased by 1 [packet/RTT], according to

the Congestion Avoidance Phase explained in Section 2. When we assume that packet loss

probability for each connection is proportional to itswindow size, we can obtain L, [packets]
and Luv [packets], which are the number of packet |osses of TCP Reno and Vegas connections

in the one buffer overflow, as follows;

W

L, = Ny ——— 10
W, + W, (19

W,
L, = N, - ——— 11
W, + W, (13)

The TCP Reno connections which detect the packet |oss halve their window sizes according
to the fast retransmit algorithm. Therefore, W/ [packets], the total window size of the TCP

Reno connections just after the buffer overflow, can be calculated from Eq. (1) and (10);

1 W, W,
W; = §.N .Lr_i_N '(Nr—Lr)
W, + 2W,,

|
=

(12)

20W, +W,) "

From Figure 2 and Eq. (1), we can derive W, [packets], which isthe average value of thetotal

window size of the TCP Reno connections;

W, = S (13)

Accordingly, we can obtain B, [packets] and B, [packets], the average number of packets at

the router buffer of each version of TCP, as follows;

B

B, = W, —— 14
2ru+ B (14

— — B
B, = W, —— 15
2ru+ B (19

Finally, we can calculate p, [packets/sec], p, [packets/sec], the average throughput of the

10

connectionsof thetwo versionsof TCP, sincewe have assumed that they become proportional

to the buffer occupancy at the router. The result is asfollows;

B,
r = : 1
P "B, 1B, (16)
B
. = o 17
P "B, 1B, (17

4.2 Caseof RED Router

RED algorithm dropsincoming packets at the preset probability when the number of packets
in the buffer exceeds a certain threshold value [8]. For simplicity of the following analysis,
it isassumed that all packet |oss are occurred at the probability p by the RED algorithm, and
no buffer overflow takes place.

Even with the RED algorithm, the TCP Reno connections continue increasing their win-
dow sizes until packet loss occurs. Therefore, as in the drop-tail case, the TCP Vegas con-
nections can not open their window sizes and keep them ranging from « to 3. Therefore, the

following equations are satisfied for W, and 1,,;

Ny-ao < W, <N, -3 (18)
[A (19)

TCP Reno connections, on the other hand, change their window size cyclically triggered
by packet losses, as in the drop-tail router case. Since all arriving packets are dropped at
the router with probability p by our assumption, the connection can send 1/p packets in one
cycle (between the events of packet |osses) on the average. We define the number of packets
transmitted during onecycleas N, that is, N, = 1/p. Different from the previous Subsection
of drop-tail router case, we focus on a certain TCP Reno connection because we assume that

all TCP Reno connections behave identically under the RED’s stochastic packet dropping

11

algorithm.

Although the RED algorithm can eliminate the bursty packet losses leadingto TCP'sre-
transmission timeout expiration, timeout expiration cannot be avoided perfectly [10]. Even
if timeout expiration rarely happens, the effect of timeout expiration on throughput is large.
Therefore, we consider the throughput degradation caused by retransmission timeout expira
tion. We denote the probability of occurring timeout expiration in the window by p;,. Aswe
denote the average value of the window size of acertain TCP Reno connection when packet

lossis detected by w,,, we can determine p;, according to the following simple eguation;

Pro = i(w_> pre(1—p)ortt (20)

i—2 \ ¢

Inwhat follows, we distinguish two methods of detecting packet | oss; retransmission timeout
expiration (TO case) and fast retransmit (FR case), because the two cases have the different
algorithms of changing the window size.

If retransmission timeout expiration occurs (TO case), thewindow sizeisreset to 1 [packet]
and it is updated according to the Slow Start Phase (Eg. (1)), until it reachesw, /2 [packets).
From Eq. (1), we can derive T}, 1 [sec], which is the time duration of the Slow Start Phase,
and A, 1 [packets], which isthe number of packets transmitted in the Slow Start Phase. That

is,

Tion = rtt~log2?r (21)
Apr = %—1 (22)

wherertt [sec] isthe mean value of RTT of sending packets. Furthermore, we can easily ob-

tain 73,2 [sec] and Ay, » [packets], which are the time duration and the number of transmitted

12

packets in the following Congestion Avoidance Phase from Eqg. (1).

Tron = rtt- (w_r -~ :> (23)

1) w
Ap = 5w+ —) (W — -
10,2 5 (w + 5 > (w 5 > (24)

These equations are determined from that the window size is increased by 1 [packet] per
RTT [sec] in the Congestion Avoidance Phase (Eg. (1)).

Onthe other hand, if the TCP Reno connection detects the packet |oss by Fast Retransmit
algorithm (FR case), Thewindow sizeishalved tow; /2, and the Congestion Avoidance Phase
starts again. That is, the time durations and the number of transmitted packets in the Slow
Start Phase (7,1 and Ay,.1) and the Congestion Avoidance Phase (1, and Ay,) can be

derived asfollows;

Ty = 0O (25)
Afpr = 0 (26)
Tjo = rtt- (w_r— %) (27)
1 w, w,
Apa = ST+) (@ —
fr2 2<w+2><w 2> (28)

Consequently, the following equations are satisfied for the number of transmitted packetsin

one cycle, and w, from Egs.(21)-(28);

= pto(Ato,l + Ato,?) + (1 - pto)(Afr,l + Afr,Q) (29)

__ At01+At02 Afr1+Afr2
w, = rtt- | p ’ ’ + (1 —pio) | =———— 30
(pt (Tto,l + Tt + rto (1= po) Tiry+Thrp (30)

D=

where rto [sec] is the retransmission timeout value of the connection. Since we can obtain

po @nd w,. by solving Egs. (29) and (30), the total window size of all TCP Reno connections,

13

W, can be easily obtained as follows;

W. = N, -w, (31)

Finaly, p, and p, inthe RED case can be determined as similarly to the drop-tail router case,

from Egs.(14)-(16), (18), and (31).

5 Numerical Examples and Discussions

We next show some numerical examplesof theanalysisresults, whichisvalidated by compar-
ing them with simulation results. Furthermore, we present some discussions on the fairness
between the two versions of TCP, using the numerical results.

Inwhat follows, we use the network model depictedin Figure 1, and set 7., = 0.0015 [sec],
Tza = 0.005 [sec], bw = 10 [Mbps] and BW = 1.5 [Mbps]. For the RED router, we set the
threshold values: th,,;, = 5 [packets] and th,,,.. = 0.6-B [packets].

5.1 Caseof Drop-Tail Router

Figure 3 shows the average throughput of the TCP Reno connections and the TCP Vegas con-
nections, as afunction of the router buffer size B [packets] in drop-tail router case. We con-
sider three cases of the number of connections of TCP Reno and Vegas (N, and N,); Fig-
ure 3(a) for N, =5, N, =5, Figure 3(b) for N, =5, N, = 10, and Figure 3(c) for N, = 10
N, =5. In these figures, we show both of the analysis results and the simulation results for
validating our analysis in Section 4. We can say from these figures that our analysis gives
appropriate estimations of throughput, regardless of the number of connections of the two
versions of TCP. However, especially when the router buffer size isvery small (< 20 [pack-

etg]), the analysis results under-estimate the throughput of the TCP Reno connections, and

14

300 St 300 F T RS S S
& 250 | e 1 & 250t :
15y -7 Analysis-Reno 15y A ,
X, 200 °. ¥ Simulation-Reno -+ 1 X, 200 r % Analysis-Reno - .
5 s Simulation-Vegas o s Slmulqtlon-Reno ek
2 150 Analysis-Vegas 1 2 150 " Simulation-Vegas e 4
=) P =) 8o Analysis-Vegas
3 100 | 7 8 {1 2 100t -
= ; = o *
T os0f o 17 sof o, 1
0 /)) ... _— 0 ; L B, P
10 100 1000 10 100 1000
Buffer Size [packets] Buffer Size [packets]
(& N, =5,N, =5. (b) N,. =5, N, = 10.
140 ¢ E* **** """]
Q120 ¢ R , .
8 i Analysis-Reno -
X, 100 ¢ 5 Simulation-Reno +x- 1
5 g0k o Simulation-Vegas = |
2 o Analysis-Vegas
2@ 60 » -
) 5,
E 40 7‘ =) i
= :
20 - 8. . i
0 f T B8 =)
10 100 1000

Buffer Size [packets]

(© N, =10, N, =5.

Figure 3: Case of Drop-Tail Router

over-estimate that of TCP Vegas connections. Thisis because the assumption intheanalysis,
that the window sizes of TCP Vegas connections are fixed at W, = (a + (3)/2, can not be
satisfied when the buffer size istoo small.

The another important observation obtained from these figuresisthat the TCP Vegas con-
nections suffer from significantly low throughput, compared with the TCP Reno connections.
Thisis because of the difference of buffer occupancy at the router. The TCP Reno connec-
tions canincrease their window sizes until the buffer becomesfull and packet loss occurs. On

the other hand, the TCP Vegas connections can not inflate their window size larger than 3, as

15

have pointed out in the Section 4. That is, the larger the router buffer size becomes, the worse
the fairness between the TCP Reno connections and the TCP Vegas connections becomes.
In short, this serious unfairness is caused by the difference of the congestion control al-
gorithm of the two versions of TCP, and the drop-tail algorithm at the router buffer. We con-
clude that the drop-tail router can not provide fairness between TCP Reno and TCP Vegas

connections when they share the bottleneck router in the network.

5.2 Caseof RED Router

Figure 4 showstheresult of the case where RED a gorithm isadopted at the router buffer. We
first set p, the packet dropping probability, to 1/30. In the figure, we can see that the analysis
results are not effected by the router buffer size. This is because we have assumed in our
analysisthat the packet dropping probability is constant, and that all packet drops are caused
by the stochastic dropping of RED a gorithm, not by the buffer overflow. On the other hand,
we can also find from this figure that the simulation results are affected by the buffer size,
especialy when the buffer size is small. This is because the packet loss occurs by buffer
overflow, as well as by the stochastic packet dropping of the RED algorithm. Taking this
observations into consideration, we can again say that our analysis results can approximate
the throughputs of the connections of the two versions of TCP with the appropriate accuracy,
especialy when the buffer sizeislarge.

We further present some discussions from these figures that the fairness between the two
versionsof TCP greatly improves, compared with the case of drop-tail router. Thiscan beex-
plained as follows. With the RED algorithm, the TCP Reno connections can not inflate their
window sizes until the router buffer becomes fully-utilized, since packet loss occurs before
the buffer becomes full, which is caused by RED algorithm. That results in the deteriora-
tion of buffer occupancy of the TCP Reno connections, that decreases the difference of the

throughput of the TCP Reno and Vegas connections.

16

300 T T] 300 f T ; T]
Analysis-Reno -~
@ 250 ¢ 1 = 250 | Simulation-Reno x|
Q Q Simulation-Vegas =
™ - e R e ™ i Analysis-Vegas ,
X, 200 " Analysis-Reno - X, 200 4 g
5 X Simulation-Reno - 5, _ | R e R R o
% 150 &« Simulation-Vegas =]| % 150 r e 1
" Analysis-Vegas T
5 100 7 s (=E] yu Bg =] =] & 5 100 Fo 'V'D 7
= (< 8 a
F o0t 1 F s0f]
0 1 1 1 0 1 1
10 100 1000 10 100 1000
Buffer Size [packets] Buffer Size [packets]
(& N, =5,N, =5. (b) N,. =5, N, = 10.
140 1
g 120 L ** rrrrrrrrr Kenee x ————————— Koo K-
¥s) I Analysis-Reno -
X, 100 g Simulation-Reno
5 80 | . Simulation-Vegas = |
o s. Analysis-Vegas
2 601 B]
o
= 40 | 1
|_
20 + 1
0 1 1
10 100 1000

Buffer Size [packets]

(© N, =10, N, =5.

Figure 4. Case of RED Router: p = %

From the above discussion, we may expect that if the packet dropping probability is fur-
ther increased, the fairness can be further improved because the window sizes of the TCP
Reno connections becomes still smaller. This observation can be confirmed by Figure 5,
where we increase the packet dropping probability to 1/10. We can see the further fairness
enhancement by comparing this figure with Figure 4.

Aswe can naturally guess, however, if the packet dropping probability of RED algorithm

is set too high for further fairnessimprovement, we can not avoid the degradation of thetotal

17

300 * * . 300 F * *

Analysis-Reno -~ Analysis-Reno -~
& 250 Simulation-Reno - J — 250 - Simulation-Reno -
Q Simulation-Vegas = Q Simulation-Vegas =
S 200 Analysis-Vegas <. 200 | Analysis-Vegas
s | O —— 5
gL g =
=) = B B B B o N PR P o I P
3 100 - 3 100 &
e i e
" os0t " os0t
0 L L L 0 L L
10 100 1000 10 100 1000
Buffer Size [packets] Buffer Size [packets]
(& N, =5, N, =5. (b) N, =5, N,, = 10.
140 |
g: 120 F
é 100 ‘* ,,,,, Koo Ko e nmmee * *
E_ 80 - B = -8 = E
2 60 Analysis-Reno -~
o Simulation-Reno -
= 40 r Simulation-Vegas e
20 Analysis-Vegas
0 L L
10 100 1000

Buffer Size [packets]

(©) N, =10, N, =5.

Figure 5: Case of RED Router: p = -

throughput. Figure 6 showsthe simulation resultsof the throughput of the TCP Reno connec-
tions, that of the TCP Vegas connections, and the total throughput at the router, asafunction
of p, the packet dropping probability of RED algorithm. We set N, =5, N, =5, and B =
100 [packets] to obtain this figure. We can see from the figure that when the packet drop-
ping probability becomes too large (> 0.01), the fairness between the two versions of TCP
improves, while the total throughput degrades. In other words, there is an inevitable trade-

off between fairness and throughput in the RED algorithm, therefore it is difficult to set p to

18

300 R z TE T e n T
TCP Vegas Yea
o 250 £ Yoo R B *..
&
X 200 "
2 150 | Total v]
= TCP Reno
© 100
N
F 50}
0 Y 1 Y .

le-05 0.0001 0.001 0.01 0.1
Packet Dropping Probability p

Figure 6: Throughput vs. Packet Dropping Probability of RED algorithm

appropriate value.

6 Conclusion

In this paper, we have investigated the fairness between TCP Reno and Vegas, when the TCP
connections of the two versions share the bottleneck link. We have derived the following
results through the mathematical analysis and the simulation experiments; TCP Vegas suf-
fers from serious performance degradation with drop-tail routers, because of the difference
of buffer occupancy of the router buffer. RED routers can improve the fairness to some de-
gree, but we have also revealed that there exists an inevitabl e trade-off between fairness and
throughput.

Asthe future works, we plan to propose the two kinds of modification for further fairness
enhancement. The first one isto improve the congestion control algorithm of TCP Vegas to
compete equally with TCP Reno. The second is to modify the RED algorithm at the router
buffer so that the router can detect mis-behaving flows, which correspond to TCP Reno con-
nectionsin thisresearch, and eliminate the unfairness by intentionally dropping more packets

from the mis-behaving flows than well-behaved flows.

19

References

[1]

[2]

(3]

[4]

(]

6]

[7]

8]

[9]

[10]

Z. Wang and J. Crowcroft, “ Eliminating periodic packet lossesin 4.3-Tahoe BSD TCP conges-
tion control,” ACM Computer Communication Review, vol. 22, pp. 9-16, April 1992.

M. Perloff and K. Reiss, “Improvements to TCP performance,” Communications of ACM,
vol. 38, pp. 90-100, February 1995.

M. Mathisand J. Mahdavi, “ Forward acknowledgment: Refining TCP congestion control,” ACM
S GCOMM Computer Communication Review, vol. 26, pp. 281-291, October 1996.

G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stability of the congestion control
mechanism of TCP,” in Proceedings of IEEE INFOCOM'’ 99, pp. 1329-1336, March 1999.

L. S. Brakmo, S. W.O'Malley, and L. L. Peterson, “TCP Vegas: New techniques for congestion
detection and avoidance,” in Proceedings of ACM SSIGCOMM' 94, pp. 24-35, October 1994.

L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance on a global
Internet,” IEEE Jounal on Selected Areas in Communications, vol. 13, pp. 1465-1480, October
1995.

J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and comparison of TCP reno and
vegas,” in Proceedings of IEEE INFOCOM'’ 99, March 1999.

S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,”
|IEEE/ACM Transactions on Networking, vol. 1, pp. 397413, August 1993.

W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts: Addison-
Wesley, 1994.

K. Fall and S. Floyd, “ Simulation-based comparisons of Tahoe, Reno, and SACK TCP,” ACM
S GCOMM Computer Communication Review, vol. 26, pp. 5-21, July 1996.

20

