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Abstract

Understanding the end-to-end packet delay dynamics of
the Internet is of crucial importance since (1) it directly
affects the QoS (Quality of Services) of realtime appli-
cations, and (2) it enables us to design an efficient con-
gestion control mechanism for both realtime and non-
realtime applications. In this paper, we propose a novel
approach for modeling the end-to-end packet delay dy-
namics of the Internet. The key idea of our approach is
treating the network, seen by specific source and destina-
tion hosts, as a black-box, and modeling the end-to-end
packet delay dynamics using system identification, hav-
ing been throughly used in the field of control engineer-
ing. The end-to-end packet delay dynamics is modeled
as a SISO (Single-Input and Single-Output) system. The
input to the system is a packet inter-departure time from
the source host, and the output from the system is an end-
to-end packet delay variation measured by the destination
host. In this paper, the ARX (Auto-Regressive eXoge-
nous) model is used and its coefficients are determined
using system identification. Several topics such as model
validation and selection of the orders of the ARX model
are also discussed. We show that the ARX model accu-
rately captures the end-to-end packet delay dynamics if
the orders of the ARX model is appropriately chosen. We
also show that the effect of other UDP and TCP traffic can
be modeled by white noise by using the end-to-end packet
delay variation.

Key Topics: Traffic Modeling and Measurements and
Simulation methods

1 Introduction

In the past decade, the Internet has been explosively grow-
ing in scale as well as in population after introduction of
the WWW (World Wide Web). In January 1997, only 16
million computers were connected to the Internet, but it
has jumped to more than 55 million computers in June
1999 [1]. Because of such changing nature of the Inter-
net, nobody konws the current network topology of the
Internet. Such uncertainity of the Internet makes it very
difficult, but also challenging, to analyze and understand
the end-to-end packet behavior of the Internet.

Understanding the end-to-end packet delay dynamics
of the Internet is of crucial importance since (1) it di-
rectly affects the QoS (Quality of Services) of realtime
applications, and (2) it enables us to design an efficient
congestion control mechanism for both realtime and non-
realtime applications. For non-realtime applications, a
delay-based approach for congestion control mechanisms,
rather than a loss-based approach as used in TCP (Trans-
mission Control Protocol), has been proposed (e.g., [2,
3]). The main advantage of such a delay-based approach
is, if it is properly designed, packet losses can be pre-
vented by anticipating impending congestion from in-
creasing packet delays.

For a long time, the queueing theory has been exten-
sively used as a powerful too to analyze both circuit-
switched and packet-switched networks. In general, the
queueing theory assumes stationarity of the network, and
allows us to obtain several performance measures such as
the average packet delay and the average packet loss prob-
ability. The stringent limitation of the queuing theory is
its impossibility to analyze the dynamical behavior of the
network. Several measurement-based studies suggest that
the end-to-end packet behavior in the Internet is quite dy-
namical [4-6]. Another approach, being different from the
queueing theory, should therefore be taken to investigate
the packet delay dynamics of the Internet.

In this paper, we propose a novel approach to model
the end-to-end packet delay dynamics of the Internet. The
key idea of our approach is treating the network, seen
by specific source and destination hosts, as a black-box,
and modeling the end-to-end packet delay dynamics us-
ing system identification, having been throughly used in
the field of control engineering. The end-to-end packet
delay dynamics is modeled as a SISO (Single-Input and
Single-Output) system. The input to the system is a packet
inter-departure time from the source host, and the output
from the system is an end-to-end packet delay variation
measured by the destination host. In this paper, the ARX
(Auto-Regressive eXogenous) model is used and its coef-
ficients are determined using system identification. Sev-
eral topics such as model validation and selection of the
orders of the ARX model are also discussed.

The main objective of this paper is to construct a math-
ematical model that can be used, in particular, to design
a delay-based congestion control mechanism. Once an
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appropriate model of the end-to-end packet delay dyan-
mics is obtained, it is possible to apply the optimal con-
trol theory to design an efficient delay-based congestion
control mechanism (for an example application of the op-
timal control theory, see, e.g., [7, 8]). We use the ARX
model in this paper since it is simple but also suitable for
application of the control theory. The ARX model is easy
to handle, and its coeffcients are easily determined with a
little computational burden.

This paper is organized as follows. In Section 2, we
summarizes related works in the literature. In Section 3,
a black-box approach for modeling the end-to-end packet
delay dynamics of the Internet is explained, followed by
introduction of the ARX model. In Section 4, simulation
experiments are performed and a few sets of input and
output data are collected. In Section 5, coefficients of the
ARX model is determined from the input and output data
using system identification. Several topics such as model
validation and selection of the orders of the ARX model
are also discussed. In Section 6, we discuss several possi-
ble applications of our approach. Section 7 concludes this
paper with a few remarks.

2 Related Works

In the literature, there have been several measurement-
based studies regarding the end-to-end packet delay [4,
5, 9, 10] and the end-to-end path characteristics [6, 11].
In [4], the authors have examined the end-to-end packet
delay and loss behavior in the Internet using small UDP
probe packets. In [5], the authors have examined the cor-
relation between packet delay and packet loss experienced
by a continous-media traffic source based on measure-
ments of per-packet delays and packet loss. In [9], a large
number of TCP measurements have been used to discuss
two estimation problems: estimation of the retransmission
timer (RTO) for a TCP connection, and estimation of the
available bandwidth. In [10], the authors have presented
an approach to characterize loss and delay characteris-
tics of a transmission link based on end-to-end multicast
measurements. In [6], the packet dynamics of the Inter-
net have been analyzed based on measurements of about
20,000 TCP data transfers. In [11], the routing behavior
of the Internet has been analyzed based on measurements
of about 40,000 end-to-end traceroute results. However,
those studies are limited to statistical behavior of the end-
to-end packet delays and/or path characteristics. In other
words, the end-to-end packet delay dynamics of the Inter-
net, which is the main concern of this paper, has not been
investigated.

Aside from analyses of the end-to-end packet de-
lay, another area of measurment-based studies is regard-
ing black-box modeling of the network traffic [12-16].
In [12], the authors have proposed a traffic model for
wide-are TCP traffic by characterizing several distribu-

tions of, for example, the packet interarrival time and the
number of bytes transferred. In [13], the authors have pro-
posed a fast algorithm to construct a CMRP (Circulant
Modulated Rate Process) for traffic modeling. In [14],
CMRP and ARMA (Auto-Regressive Moving Average)
have been discussed as a traffic model. In [15, 16], a
measurement-based tool for traffic modeling and queue-
ing analysis has been developped, which uses CMPP (Cir-
culant Modulated Poisson Process) for a traffic model.
Those studies are closely related to our black-mox model-
ing approach, but there is a significant difference. Those
studies have focused on traffic modeling based only on
outputs (i.e., observed amount of traffic). On the contrary,
this paper focuses on modeling the end-to-end packet de-
lay dynamics based on both inputs (i.e., packet inter-
departure time) and outputs (i.e., end-to-end packet delay
variation). In other words, this paper focues on how the
end-to-end packet delay of a packet sent from a source
host is affected by its past packet transmission process.

3 Black-Box Modeling using ARX
Model

As depicted in Fig. 1, the network seen by a specific
source and destination pair, including underlying proto-
col layers (e..g, physical, data-link, and network layers),
is considered as a black-box. Our goal of this paper is to
model a SISO system describing the end-to-end packet de-
lay dynamics: i.e., the relation between a packet sending
process from the source host and its resulting end-to-end
packet delay observed at the destination host. Effects of
other traffic (i.e., packets coming from other hosts) are
modeled as noise. As the input to the system, we use
a packet inter-departure time from the source host: i.e.,
the interval between two consecutive packet transmissions
from the source host. Use of the packet inter-departure
time is straightforward since, as suggested by the queue-
ing theory, it directly affects the end-to-end packet delay.
On the contrary, as the output from the system, we use an
end-to-end packet delay variation measured by the desti-
nation host: i.e., the difference in two consecutive end-to-
end packet delays. We choose the end-to-end packet delay
variation, instead of the end-to-end packet delay itself, as
the output from the system (see Fig. 2). This is to reduce
unstationarity of noise (i.e., effect of other traffic) on the
measured end-to-end packet delay since, at a packet-level
time scale, the aggregated network traffic is not station-
ary [17].

In this paper, the ARX model is used and its coef-
ficients are determined using system identification [18].
Figure 3 illustrates the fundamental concept of using the
ARX model for modeling the packet delay dyanamics.
The input to the ARX model is a packet inter-departure
time from the source host, and the output from the ARX
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source host destination host

physical layer

network layer

packet inter-departure time end-to-end packet delay variation

UDP packetphysical layer

network layer

data-link layer data-link layer

Figure 1: Modeling end-to-end packet delay dyanamics as
SISO (Single-Input and Single Output) system.

x(k) ∆x(k)

end-to-end packet delay end-to-end packet delay variation

Figure 2: Using end-to-end packet delay variation to re-
duce unstationarity of noise.

model is an end-to-end packet delay variation measured
by the destination host. Effects of other traffic (i.e., pack-
ets coming from other hosts) are modeled as the noise to
the ARX model. Letting u(k) and y(k) be the input and
the output data at slot k, the ARX model is defend as

A(q) y(k) = B(q)u(k − nd) + e(k) (1)

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = b1 + b2q
−1 + . . .+ bnb

q−nb+1

where e(k) is unmeasurable disturbance (i.e., noise), and
q−1 is the delay operator; i.e., q−1u(k) ≡ u(k − 1). The
numbers na and nb are the orders of respective polynomi-
als. The number nd is the number of delays from the input
to the output. For compact notation, ζ is introduced as

ζ = [na, nb, nd] (2)

In this paper, u(k) and y(k) correspond to the k-th packet
inter-departure time and the k-th end-to-end packet delay
variation. All coefficients of the polynomials, an and bn,
are parameters of the ARX model, and are to be deter-
mined from input and output data using system identifica-
tion. Refer to [18] for the detail of the ARX model.

Our approach of a black-box modeling using the ARX
model is distinctive from other black-box approaches for
modeling network traffic using the AR (Auto-Regressive)

ARX model
u(k) y(k)

input
(packet inter-

departure time)

output
(round-trip time)

e(t) noise
(other traffic)

Figure 3: ARX model for modeling end-to-end packet de-
lay dynamics.

model or the ARMA (Auto-Regressive Moving Average)
model [14, 19, 20]. Figure 4 illustrates a typical usage of
the AR model or the ARMA model for modeling network
traffic. Comparing Figs. 3 and 4, the ARX model has the
input whereas either the AR model or the ARMA model
does not. In other words, only the ARX model can rep-
resent the dynamics, i.e., the relation how the past input
data affects the future output data.

AR model
or

ARMA model

y(k)

e(t) noise

output
(packet arrival rate)

Figure 4: AR model or ARMA model for modeling net-
work traffic.

However, the ARX model has a drawback for modeling
the packet delay dynamics; i.e., the ARX model is a linear
time-invariant model, so it cannot rigorously capture non-
linearity of the packet delay dynamics. But it should be
noted that the ARX model is applicable in various control
engineering problems. This is because non-linear dynam-
ical systems operating around the stable point can be well
approximated by a linear system [21]. In Section 5, we
will investigate how accurately the end-to-end packet de-
lay dynamics can be described by the ARX model.

4 Input and Output Data Collection
from Simulation

For determining coefficients of the ARX model, a few sets
of input and output data are collected from simulation us-
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ing ns2 [22]. The simulation model consists of 10 source–
destination pairs and a single bottleneck link. Figure 5
depicts the network configuration used in our simulation
experiments. We consider two scenarios: (1) each source
host sends only UDP (User Datagram Protocol) packets
and (2) each source host sends both UDP and TCP pack-
ets. These scenarios will be referred to as the UDP case
and the UDP + TCP case, respectively. In both cases, a
source host intermittently generates UDP packets to the
destination host. The packet inter-departure time from the
source host is randomized according to the exponential
distribution. The exponential distribution is used since it
is one of ideal input data for system identification [18].
The average transmission rate of UDP packets is set to
128 [Kbit/s]. For each UDP packet received, the destina-
tion host records the end-to-end packet delay. In the UDP
+ TCP case, a source host sends TCP packets as well as
UDP packets to the corresponding destination host using
TCP Reno. Both routers are Drop-Tail routers having a
shared buffer of 100 packets. Other simulation parameters
are: the packet size is fixed at 1,000 [byte], the bottleneck
link bandwidth is 1.5 [Mbit/s], the propagation delay of
the bottleneck link is 1.0 [ms], and propagation delays of
access links are ranged from 0.1 to 1.0 [ms].

10 source hosts 10 destination hosts

bottleneck link
1.5Mbps

1ms
1.5Mbps

0.1-1.0ms

UDP packet 
(TCP Packet)

1.5Mbps
0.1-1.0ms

Figure 5: Network configuration used in simulation exper-
iments.

In both the UDP and the UDP + TCP cases, we have
collected both the packet inter-departure time u(k) and the
end-to-end packet delay variation y(k) sent from a single
source host. Shown in Figs. 6 and 7 are the inter-departure
time u(k) and the end-to-end packet delay variation y(k)
for the UDP case and the UDP + TCP case, respectively.
Comparison of two figures suggests that the amplitude
of the end-to-end packet delay variation gets larger when
TCP traffic exists. This is because TCP forces the net-
work to a slightly congested state, leading to a larger wait-
ing time in the router’s buffer. On the contrary, as one
might expect, a negative correlation between the inter-
departure time and the end-to-end packet delay variation
can be observed in both cases. Namely, when the packet
inter-departure time is small, the end-to-end packet delay
variation tends to become large, and vice versa. However,
such a negative correlation seems not so strong. This is be-
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(b) End-to-end packet delay variation y(k)

Figure 6: Simulation result (UDP case).
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(b) End-to-end packet delay variation y(k)

Figure 7: Simulation result (UDP + TCP case).
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cause the end-to-end delay of a UDP packet is disturbed
by other UDP and TCP packets since the bottleneck node
has a shared FIFO buffer. To view the correlation between
u(k) and y(k) more clearly, scatter plots for input and out-
put data of 1,000 packets are shown in Figs. 8 and 9 for
the UDP case and the UDP + TCP case, respectively. In
these figure, a least-squared fit line is also plotted. These
figures suggest a weak negative correlation between the
inter-departure time and the end-to-end packet delay vari-
ation. In spite of such a weak correlation, as will be shown
in Section 5, the ARX model can accurately capture the
end-to-end packet delay dynamics.
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Figure 8: Scatter plot of packet inter-departure time vs.
end-to-end packet delay variation (UDP case).
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Figure 9: Scatter plot of packet inter-departure time vs.
end-to-end packet delay variation (UDP + TCP case).

5 System Identification and Discus-
sions

The system identification problem for the ARX model
is formulated as a minimization problem, where the cost
function is given by a loss function [18]. Because of space
limitation, only the outline are shown in this paper, and in-
terested readers should refer to [18] for more detail. The
following numerical examples are obtained using MAT-
LAB and its System Identification Toolbox [23].

Let θ be a vector of all coefficients and ψ(k) be a vector
of all past na outputs and nb inputs, respectively.

θ = [a1, . . . , ana , b1, . . . bnb
]T (3)

ψ(k) = [−y(k − 1), . . . ,−y(k − na),
u(k − nd − 1), . . . , u(k − nd − nb)] (4)

Using Eq. 1, the output from the ARX model ŷ(k|θ) is
given by

ŷ(k|θ) = ψT (k) θ (5)

The loss function VN (θ, ZN ) is defined as the sum of all
squared prediction errors for N input and output data.

VN (θ, ZN ) =
1
N

N∑
k=1

(y(k) − ŷ(k|θ))2 (6)

where Zn is the past input and output data defined as

ZN = {u(1), y(1), . . . , u(N), y(N)} (7)

The solution θ̂N that minimizes the above loss function is
easily obtained by the least squares method:

θ̂N =

[
N∑

k=1

ψ(k)ψT (k)

]−1 N∑
k=1

ψ(k)y(k) (8)

Of all input and output data collected in Section 4, we
use the input and output data of 100 packets (2500 ≤
k < 2600) for coefficients determination and model vali-
dation. As an example, when ζ = [5, 5, 1], coefficients of
the ARX model and their standard deviations are obtained
from Eq. (8) as Tab. 1 (the UDP case) and Tab. 2 (the UDP
+ TCP case).

In what follows, we discuss how accurately the end-to-
end packet delay dynamics is modeled by the ARX model.
Figures 10 and 11 show comparisons between the mea-
sured data (solid line) and the model output (dotted line)
for ζ = [5, 5, 1]. More specifically, the measured data is
the measured end-to-end packet delay variation y(k), and
the model output y∗(k|θ) is the simulated output from the
ARX model, which is defined as

y∗(k|θ) = ψ∗T (k|θ) θ (9)

where

ψ∗(k|θ) = [−y∗(k − 1|θ), . . . ,−y∗(k − na|θ),
u(k − nd − 1), . . . , u(k − nd − nb)](10)

Note the difference between ŷ(k|θ) and y∗(k|θ); i.e., ŷ(k)
is a 1-step ahead prediction from the measured inputs and
outputs, whereas y∗(k|θ) is a simulated output only from
the measured inputs assuming zero noise. Figures 10 and
11 indicate that the ARX model does not capture the end-
to-end packet delay dynamics. In both the UDP and the
UDP + TCP cases, the model output y∗(k) is almost un-
changed although the measured end-to-end packet delay
variation excessively oscillates. Namely, the end-to-end
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a1 a2 a3 a4 a5

coefficient 0.2617 0.2481 0.2819 0.1332 0.0493
standard deviation 0.1108 0.1137 0.1130 0.1098 0.1069

b1 b2 b3 b4 b5
coefficient 0.0035 0.0201 0.0005 0.0067 0.0100

standard deviation 0.0146 0.0145 0.0147 0.0147 0.0144

Table 1: Coefficients and standard deviations of the ARX model for ζ = [5, 5, 1] (UDP case).

a1 a2 a3 a4 a5

coefficient 0.1063 0.1279 0.0175 -0.0515 -0.0277
standard deviation 0.1064 0.1069 0.1094 0.1083 0.1079

b1 b2 b3 b4 b5
coefficient 0.0089 -0.0246 0.0058 -0.0111 0.0274

standard deviation 0.0267 0.0265 0.0267 0.0265 0.0253

Table 2: Coefficients and standard deviations of the ARX model for ζ = [5, 5, 1] (UDP + TCP case).
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Figure 10: Comparison between measured data y(k)
and model output y∗(k) for ζ = [5, 5, 1] for (UDP
case).
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Figure 11: Comparison between measured data y(k)
and model output y∗(k) for ζ = [5, 5, 1] for (UDP +
TCP case).

packet delay dynamics cannot be modeled by the ARX
model with ζ = [5, 5, 1].

However, as will be shown below, the ARX model can
correctly model the end-to-end packet delay dynamics if ζ
is chosen appropriately. We choose ζ = [18, 20, 1] for the
UDP case and ζ = [18, 13, 1] for the UDP + TCP case.
These values are chosen to minimize the AIC (Akaike’s
Information Theoretic Criterion) [18]. The AIC is defined
as

AIC � log
[
(1 +

2n
N

)VN (θ, ZN )
]

(11)

where n is the number of unknown parameters, i.e., na +
nb. Shown in Figs. 12 and 13 are comparisons between the
measured data (solid line) and the model output (dotted
line) for ζ = [18, 20, 1] (the UDP case) and ζ = [18, 13, 1]
(the UDP + TCP case), respectively. It can be found that,
in both cases, the model output y∗(k|θ) and the measured
output y(k) roughly coincide but slightly differ. This is
because the measured end-to-end packet delay variation
is disturbed by other traffic, which is unknown so that not
included in the model output y∗(k).

To confirm the goodness of the ARX model obtained,
the auto-correlation functions of residuals (i.e., prediction
errors e(k) ≡ y(k)−ŷ(k|θ)) are plotted in Figs. 14 and 15
for the UDP and the UDP + TCP cases, respectively. Fig-
ure 14 corresponds to the UDP case with ζ = [18, 20, 1],
and Fig. 15 corresponds to the UDP + TCP case with
ζ = [18, 13, 1]. In these figures, 95% confidence interval
is also shown. It is known that the ARX model is inappro-
priate if any auto-correlation of residuals for a positive lag
is outside of the confidence interval [18]. These figures
show that all residuals are inside of the confidence inter-
val, indicating the end-to-end packet delay dynamics is
well modeled by the ARX model. This also suggests that
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Figure 12: Comparison between measured data y(k)
and model output y∗(k) for ζ = [18, 20, 1] for (UDP
case).
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Figure 13: Comparison between measured data y(k)
and model output y∗(k) for ζ = [18, 13, 1] for (UDP +
TCP case).

the effect of other UDP and TCP traffic can be modeled
by a white noise.

Finally, we investigate how the choice of ζ affects the
accuracy of the ARX model. In Figs. 16 and 17, the loss
function for different values of na and nb (1 ≤ na, nb ≤
20) is plotted for the UDP case and the UDP + TCP case,
respectively. In these figure, nd is fixed at 1. These fig-
ures indicate that the smaller the loss function is, the more
accurate the ARX model becomes. It can be found that a
larger value of na and/or nb is desirable. In particular, it
can be seen from Fig. 16 that na should be larger than 10
when there exists only UDP packets in the network.

6 Application Scenarios of Our Ap-
proach

We discuss several possible applications of our approach
— modeling the end-to-end packet delay dynamics of the
Internet using the ARX model. Although details of these
topics are beyond the scope of this paper, it is worthwhile
to discuss how our approach is applied to various prob-
lems. The first and straightforward application would be
to use our approach to understand the end-to-end packet
delay dynamics of the Internet. We can analyze the end-
to-end packet delay dynamics through the ARX model
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Figure 14: Autocorrelation of residuals e(k) for ζ =
[18, 20, 1] (UDP case).
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Figure 15: Autocorrelation of residuals e(k) for ζ =
[18, 13, 1] (UDP + TCP case).
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Figure 16: Loss function for different orders of the
ARX model for nd = 1 (UDP case).
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Figure 17: Loss function for different orders of the
ARX model for nd = 1 (UDP + TCP case).
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obtained. Because the ARX model is one of LTI (Lin-
ear Time Invariant) models, various analysis techniques
for LTI models in time- and frequency-domain can be uti-
lized. The second application would be to predict the fu-
ture end-to-end packet delay from the ARX model ob-
tained. As have shown in Section 4, the end-to-end de-
lay of a packet is considerably disturbed by other UDP
and TCP packets. Hence, it is almost impossible to pre-
dict the far future end-to-end packet delay. However, the
ARX model can predict the near future end-to-end packet
delay. As noted in 1, the third and possibly most impor-
tant application would be to design a congestion control
mechanism. Once the ARX model capturing the end-to-
end packet delay dynamics is obtained, it is possible to ap-
ply the optimal control theory to design an efficient delay-
based congestion control mechanism. Congestion control
of the Internet is a difficult problem because of its com-
plexity such as heterogeneity of various network elements
and non-negligible propagation delays. However, combi-
nation of the ARX model and the optimal control theory
would help us to design a more efficient congestion con-
trol mechanism.

7 Conclusion

In this paper, we have proposed a novel approach to model
the end-to-end packet delay dynamics of the Internet us-
ing system identification. We have investigated how ac-
curately the ARX model captures the end-to-end packet
delay dynamics. The key idea is to model the network,
seen by specific source and destination hosts, as the ARX
model. The input to the ARX model is the packet inter-
departure time from the source host, and the output from
the ARX model is the end-to-end packet delay variation
measured by the destination host. We have collected input
and output data from simulation experiments using only
UDP packets and both UDP and TCP packets. Through
several numerical examples, we have shown that the ARX
model accurately captures the end-to-end packet delay dy-
namics if the orders of the ARX model is appropriately
chosen. We have also shown that the effect of other UDP
and TCP traffic can be well modeled by a white noise as
far as the end-to-end packet delay variation is concerned.

As future work, it would be of importance to investi-
gate effectiveness of the ARX model using a through set
of input and output data. We are currently working on
building the ARX model describing the end-to-end packet
delay dynamics based on measured input and output data
from the operating LAN and WAN.
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