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Abstract—The policy-based service is becoming more important for the In-
ternet shared by various applications. To realize the policy-based service, the
router is required to forward packets according to the requirements of the
traffic flow that the packet belongs to. However, the packet (and flow) classi-
fication easily becomes a bottleneck because the router is necessary to handle
multiple fields within the packet. In this paper, we propose a new packet classi-
fication algorithm capable of following the packet forwarding rate of the high-
speed routers with the commercially available CPU, RAM, and cache memo-
ries. Through our experiments, we show the effects of parameters of the cache
structure on the processing rate of the packet classification.

I. I NTRODUCTION

A rapid growth of the Internet and proliferation of new multi-
media applications lead to demands of high-speed networks. In the
today’s Internet, policy-based service is becoming more important
for meeting various requirements of applications. To realize the
policy-based service, the router is required to forward the pack-
ets according to the requirement of the traffic flow that the packet
belongs to. In addition, some routers providing a flow-based oper-
ation are required a capability to store the information of each flow
to their storage devices. As a result, the processing on the packet
(and flow) classification would easily become a bottleneck because
the router is necessary to search multiple fields within the packet
for the flow classification.

There are some studies for speeding up the address lookup at the
router (see, e.g., [1] and references therein). However, it is difficult
to apply those proposals directly to the flow classification, because
the size of a lookup table increases exponentially with the number
of the packet fields. From this reason, it is necessary to investi-
gate the new algorithm suitable for the flow classification. A study
on the flow classification can be found in [2], [3]. However, these
proposal use parallel processing to look-up multiple fields simul-
taneously, and the customized hardware (e.g., FPGA or ASIC) is
necessary to obtain the expected performance, leading to easily in-
crease the cost of routers. If we can use a general-purpose CPU,
on the other hand, the total cost of the flow classification capable
routers can be kept low since the cost of commercially available
CPU becomes more and more reasonable. Another approaches
can be considered by using CAMs (Content Addressable Mem-
ory). However, due to the hardware limitation of CAMs, informa-
tion of millions of flows cannot be stored simultaneously, which is
required for the backbone routers. In such case, using DRAMs is
reasonable for the cost of the implementation.

When the flow classification mechanism is realized by the
general-purpose CPU, the latency of memory accesses would be
most dominant in determining the performance. That is, the opti-
mized data structures determines the performance of the flow clas-
sification by decreasing the number of accesses to RAM. In this
paper, we propose a new flow classification algorithm capable of

following the packet forwarding rate of the high-speed routers by
using the commercially available CPU, RAM, and cache memo-
ries. Then, through our experiments, we show the effects of the
cache memory structures on the processing rate of flow classifica-
tion.

In this paper, we first describe the flow classifier and the memory
requirement to store the flow statistics in Section II. We next show
the brief review of the cache memory structure and the effect of
parameters of the cache memory in Section III. We then examine
the proposed flow classification scheme in Section IV. Section V
shows our experimental results. Finally, we conclude our work
with future research topics in Section VI.

II. D EFINIT ION OF FLOW CLASSIFIER

In this section, we define our flow classifier based on the statis-
tical analysis of the flow data gathered at the operating network.
Requirements on the memory structure to store values associated
with each flow are also examined.

A. Flow Classifier

It is reasonable to consider the sequence of packets belonging
to the same connection as the same flow. Henceforth, it might be
adequate to identify the flow using the following fields contained
in the IP packet.

{Source IP, Destination IP, Source Port Number, Desti-
nation Port Number, Protocol}

However, the total length of the above fields reaches 104 bits,
which is too large for the size of lookup table. Fortunately, we can
disregard theProtocol field for flow classification since it shows
the kind of the IP packets such as TCP, UDP, ICMP, and RAW IP,
and few applications have two or moreProtocol values. Further-
more, HTTP, which is used by a currently dominant application
WWW, supports multiple connections for retrieving text and/or im-
age files. Those connections can be treated as an aggregated single
flow. It is meaningful when we consider the fairness among users
in flow classification. We therefore use the following fields as a
flow classifier.

{Source IP, Destination IP, Port Number}
Note thatPort Number above is the lower value of two port num-
bers (Source Port Number andDestination Port Number). It is be-
cause most applications use the administrative port number smaller
than 1024 that the application user cannot use.

B. Requirements for Storing the Flow Values

The flow information to be stored into the router memory de-
pends on service policy. In this subsection, we examine some ex-
isting important applications of the policy-based service, and esti-



mate the required memory size to store the value associated with
the flow for given service (which we will call aflow value for
short). We consider three types of applications;Random Early
Detection Based on Flow Classifications [4], [5], Application to
Core-Stateless Routers [6], andFairness with the Deficit Round
Robin [7]. We conclude from these examples that 2 Bytes is suffi-
cient to store the flow value. Of course, there may be other policy
services requiring more bytes. However we continue to discuss the
memory structure by assuming 2 Bytes flow value in this paper.
Note that our method can easily be extended to handle more bytes
of the flow value, but in that case, the required memory capacity is
increased.

III. C HARACTERISTICS OF THECACHE MEMORY

Before describing our flow classification algorithm and memory
structure for the lookup table, we show the brief description on the
cache structure to investigate the effects of parameters of the cache
memory.

A. The Structure of the Cache Memory

A two-level cache structure is common in the recent CPU tech-
nology. A memory access from CPU is first reached at L1 (Level
1) cache to examine whether the address is cached or not. If it is
cached, CPU reads from the L1 cache. Otherwise, the L2 (Level
2) cache is checked. If the address is not cached in the L2 cache,
the address content is read from RAM. We often call acache hit
for the case where the address is cached, andcache miss for the
case where the address is not cached. Note that a more detailed
caching mechanism (such as write-through or write-once) may af-
fect the performance of flow classification, but it is out of scope in
this paper.

B. Effect of Parameters

Here, we examine three parameters of the cache memory; the
cache block size, the degree of set associative mapping, and the
cache size.
Effect of the Cache Size — It is necessary to increase the capac-
ity of the cache memory to improve the cache hit rate. However,
as the cache size becomes large, the cost of the cache memory in-
creases exponentially. Furthermore, too large cache memory does
not necessarily improve the cache hit ratio. It is therefore impor-
tant to investigate the appropriate cache size for classifying flows
efficiently in our case.
Effect of the Set Associative Mapping — Set associative map-
ping is used to increase the utilization of the cache memory. When
the associativity is set to be large, the cache memory is highly and
impartially utilized. However, the large associativity is too expen-
sive.
Effect of the Cache Block Size — The cache block is a unit of data
transfer between L1 and L2, and between L2 and RAM. When the
cache miss occurs, the cache memory reads the block of the mem-
ory. If the block size is large, the continuous address can be cached.
It is therefore expected to improve the cache hit rate. However, the
larger block size leads to larger delay of a memory read.
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IV. FLOW-VALUE LOOKUP PROCEDURES

A. Partitioning the Flow Classifier

The delay for memory accesses is a dominant factor for de-
termining performances of flow classification and its lookup. Of
course, the delay of the table lookup would be minimized by one
memory access if we can prepare a large lookup table. The size
of such a table, however, reaches2 × 280 Bytes for our 80 bits
flow classifier and 2 Bytes flow value. Because there is a trade-off
between the number of memory references and the required table
size, we need to decide the structure of the flow lookup table by
carefully examining both the memory size and the access speed.

We now demonstrate the sparse nature of the IP packet addresses
by using the traced data. We gathered the traced data by the traffic
monitor OC3MON [8], [9] located at the gateway of Osaka Univer-
sity. The total number of collected packet headers is over 27 mil-
lions. In this traced data, we need to store about 9 millon of flow
values.

Figure 1(a) plots a frequency distribution for the number of
lower 16-bit destination IP addresses associated with the upper 16-
bit destination IP address. More specifically, we plot the figure as
follows. For each of 32-bit destination IP address, we divide it into
two parts; upper and lower 16-bit addresses. Then, we count the
number of different lower 16-bit addresses having the same upper
16-bit address in the traced data. For example, there were 10 IP ad-
dresses, each of which shows 21 different lower 16-bit addresses
in the traced data. From the figure, it is apparent that it follows
the Zipf’s Law [10] with parameterα = 1. The lower 16-bit of
addresses which did not appear in the traced data was counted up
over 40,000. The ratio of such addresses is about 60%. Moreover,
the maximum number of lower 16-bit addresses was 97, which is
less than 1% of the 16 bit address space.

We also consider the number of varieties of (Source IP address,
Port Number) fields categorized by the destination IP address. We
count the number of (Source IP Address, Port Number) pairs for
each destination IP address. The result also follows the Zipf’s Law.
It means that there are very few destination addresses having a
large number of pairs of (Source IP Address and Port Number),
and the most of destination addresses have a very small number of
(Source IP Address, Port Number) pairs.

To check the generality of our results, we also examined the



public trace archive [11], which is not shown in this paper due to
the space limitation.

In summary, the flow classifier should be divided into several
parts to improve memory utilization even though the number of
memory references increases to some degree. In our scheme, we
divide the flow classifier into the following three parts; the upper
16-bit of the destination IP address, the lower 16-bit value of the
destination IP address, and the source IP address + port number.

B. Table Compression with the Hash Function

As shown in Figure 1(a), the maximum number of different up-
per 16-bit addresses for the lower 16-bit addresses is less than 1%
of the lower 16-bit address space. In such case, the hash table is
useful to reduce the size of the lookup table to obtain higher uti-
lization of the lookup table. It becomes helpful especially when the
number of active entries is quite smaller than the number of total
entries in the table. In the above case, the hash table with 256 en-
tries is enough to store all lower 16-bit destination addresses. Be-
cause the number of entries is reduced from 65,536 to 256, differ-
ent lower addresses may have the same hash index. When the en-
try has already been used by another lower-address, the algorithm
checks the next entry of the hash table. A step-by-step check is
meaningful to reduce the number of memory accesses because the
CPU caching is performed for each block. On the other hand, the
result in the trace archive shows that maximum number of lower
16-bit addresses is 3598. It was much larger than our traced data
(97 entries), but it is still smaller than the 16-bit address space. We
can easily expand our table entries (i.e., from 256 to 4096).

We can also reduce the size of the (Source IP Address, Port
Number) table by using the hashing technique. From our experi-
ments, the maximum number of (Source IP Address, Port Number)
pairs is 766. The table with 1,120 entries is sufficient. It is required
for 40 blocks in the 32 Bytes block size.

Note that we always assign the maximum number of entries for
each destination address to obtain the maximum speed of the flow
classification (i.e., avoiding the overhead of the table expansion),
which still leads to the under-utilization of memory structures. The
memory size requirement can be reduced if we can change the
number of entries of the lookup table dependent on the destination
address. However, it is out of scope in the current paper.

C. Algorithm of Flow Classification and Lookup

We now describe our flow classification algorithm and lookup
procedunre. Figure 2 shows the data structure of our classification
algorithm. The structure of the lookup table consists of three major
parts.

1. Upper 16-bit destination IP address lookup table:
It is a directly accessible table (65,536 entries), and each entry
contains a pointer to the second table.

2. Lower 16-bit destination IP address lookup table:
It is a 256-entry hash table, and each entry contains a pointer
to the third table.

3. Source address lookup table:
The source address consists of the combination of (Source IP
address, Port Number), and it is a hash table having 1,120
entries. Each entry has

• Destination IP address for verification
• A hash value of (Source IP address, Port Number)

1..16 bits

64K Entries

Hash (Dest IP(17..32))

256 Entries

Destination Address
Lookup Table

Destination Address
Lookup Table

Hash(Source IP)

1K Entries

Source Address
Lookup Table

Source Address
Lookup Table

Dest. IP AddressDest. IP Address

Hash ID   Flow Stat

Fig. 2. Proposed Data Structure

• The value associated with the flow
We describe the data structure of the third lookup table for the

case where when the block size of the cache memory is 32 byte.
The first 4 byte is used to store the destination IP address. It is used
for checking whether the destination address in the packet is equal
to the stored value or not. If the verification succeeds, no memory
reference is necessary because the flow value is cached. In this
structure,(32 − 4)/4 = 7 entries can be stored into one cache
block. The required number of blocks becomes 160 to create the
hash table with 1,120 entries.

We finally show the address calculation algorithm for the flow
lookup.
1. Ptr1 = HeadTable[Dest Addr(1..16)]
2. Ptr2 = Ptr1[Hash(Dest Addr (17..32))]
3. statePtr = Ptr2 × 32 × 160 + 32 ×
(Hash(Src, Port) / 7) + (Hash(Src, Port)
mod 7) + 4

V. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we show our experimental results on the flow
lookup delay and the effect of parameters of the cache structure.

A. Experimental Setup

We implemented our proposed scheme on the following archi-
tecture.

• Intel Pentium II 450 MHz
– 16 KB 4 way set associative L1 cache
– 512 KB 4 way set associative L2 cache
– 256 MB main memory

• Linux 2.0.36
• GNU gcc version 2.95.2 19991024 (release)

We used the packet traced data that we have described in Section 2.
To investigate the effect of parameters of the cache memory,

we used trace driven cache simulator, Dinero IV version 7 [12].
Dinero IV reports the total number of memory referencesN , and
the cache miss ratios of L1 and L2 (denoted byML1 andML2,
respectively). If we have the reference delays of memory, L1, and
L2 cache (NMem, NL1, andNL2, respectively), we can determine
the mean access delayD for the flow classification as

D = N/P × ((1 − ML1)NL1 (1)

+ML1(1 − ML2)NL2

+ML1ML2NMem) + Calc [cycles],
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Fig. 3. The Effect of the L1 Cache Size

whereP is the total number of packets andCalc is the delay of ad-
dress calculations which is independent from the memory access.

To obtain the delays of memory references (NMem, NL1, and
NL2 in (2)), we run a simple benchmark program on our experi-
mental architecture, which collects the number of CPU cycles for
reading from L1 cache, L2 cache, and RAM memories. From re-
sults of our benckmark program, we get reference delays of mem-
ory, L1, and L2 as about 6.7 nsec, 44.4 nsec, and 155.6 nsec, re-
spectively.

B. Effects of Cache Memory Sizes

We first show the effect of the L1 cache size on the average ac-
cess delay. Note that the average memory access delay is affected
not only by the L1 cache size, but also by the size of L2 cache. We
thus evaluate the effect of the L1 cache size with various L2 cache
sizes from 16 KB to 2048 KB.

Figures 3(a) and 3(b) show the mean access delay against the
L1 cache size by utilizing the cache simulator Dinero IV. In Fig-
ure 3(a), four different values of the L2 cache size are used; 16 KB,
32 KB, 64 KB, and 128KB. On the other hand, 256 KB, 512 KB,
1024 KB and 2048 KB are used in Figure 3(b). The mean access
delay can be decreased by the increased size of the cache memory.
The effect of the L1 cache size is significant when the L1 cache
size is between 1 KB and 64 KB. However, we cannot observe the
improvement as the L1 cache size goes beyond 64 KB. Namely,
the currently available L1 cache size of Intel Pentium II (and III)
is slightly smaller than the expected one. In Figure 3(a), the mean
delay can be improved by the larger size of L2 cache, but such an
improvement cannot be seen in Figure 3(b). We can observe from
these figures that the 256 KB L2 cache is sufficient in our experi-
ments.

We next evaluate the effect of the L2 cache size when the size
of L1 cache is varied from 1 KB to 256 KB. We can see that the
effect of the L2 cache size is significant when the size of L1 cache
is small. However, the increase of L2 cache does not much affect
the mean access delay if the L1 cache size is larger than 128 KB.

C. Effects of Set Associative Mapping

Figures 4(a) and 4(b) show the mean access delays against the
set associative mapping method. The size of the L1 cache is fixed
at 16 KB. The L2 cache sizes are 64 KB in Figure 4(a), and 512 KB
in Figure 4(b), respectively. The effect of set associative mapping
is significant when the cache size is small as shown in Figure 4(a).
However, even if we change L1 set associativities from 8-way to
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Fig. 5. Relation between Cache Size and Associativity (L2 = 512 KB, 4-way)

16-way, the mean access delay are not changed. From these fig-
ures, we can observe that the expected associativities of L1 cache
is 8-way, but a currently available CPU (4-way) also gives a good
performance.

We also examine the effect of L2 set associative mappings. By
contrast with Figure 4, the effect of L2 set associative mapping is
limited. In particular, the L2 set associativity does not affect the
mean access delay when the L2 cache size is 512 KB. It is because
as the cache size becomes large, the cache miss by the address
conflict is rare.

Figure 5 plots the relation between the cache size and the asso-
ciativity of set mappings. The figure shows that the effect of set
associative mapping is remarkable if the L1 cache size is between
8 KB and 32 KB. For example, when the L1 cache size is 16 KB,
changing associativities from 2-way to 4-way gives good results;
i.e., a similar effect can be obtained as doubling the size of L1
cache.

D. Effects of Cache Block Size

Figures 6(a) and 6(b) plot the mean access delay dependent on
the cache block size. The L1 cache size is set to be 8 KB in Fig-
ure 6(a), and 64 KB in Figure 6(b). The advantage of the larger
cache block size is that it can be cached at the continuous ad-
dresses, and be expected to increase the cache hit rate. However,
the cache miss penalty becomes large in the case of cache miss.
As a result, one may expect that there exists an optimal block size.
However, Figure 6(a) shows that the mean access delay is expo-
nentially increased as the block size becomes large. In Figure 6(a),
the L1 cache size is small (8 KB) and the cache miss ratio increases
significantly by the larger block size. Because many packets of var-
ious connections are mixed at the IP router, accesses to the same
address does not occur continuously, but periodically. It causes
frequent cache replacements when the cache size is small. On the
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other hand, if the cache size is large, the effect of the large block
size overcomes above disadvantages as shown in Figure 6(b).

E. Effect of the Cache Replacement Policy

In this subsection, we examine the effect of the cache replace-
ment policy in the set associative cache memory. In our exper-
iments, we use three replacement policies; LRU (least recently
used), FIFO (first in first out), and RANDOM. Figures 7(a) and
7(b) compare the mean memory access delay among three cache
replacement policies by changing the size of L1 or L2 cache. From
these figures, LRU gives the best performance, and FIFO is better
than RANDOM. Especially, the effect of cache replacement policy
is remarkable when the cache size is small. However, the imple-
mentation of LRU policy is very difficult even in 4-way set asso-
ciative mapping. From this reason, FIFO is still reasonable if a
slight performance degradation is acceptable.

F. CPU Cycles and Required Memory Size

We finally show the average CPU cycles necessary for the packet
classification by using RDTSC instruction in Pentium II [13]. The
sizes of L1 and L2 caches and associativities are determined based
on 450 MHz Intel Pentium II. That is, we used 16 KB 4-way
set associative L1 cache and 512 KB 4-way set associative L2
cache. Our result shows that the average CPU cycles is 228.8 (e.g.,
506 nsec). This result indecates that our implementation can clas-
sify about 2 million packets per second if we neglect other oper-
ations. The required memory size was 49.1 MB. It is rather large
since lookup table size is fixed for each flow in the current imple-
mentation. If we can change the size of lookup table dependent on
the flow, the required memory size could be reduced, which is our
future research topic.

VI. CONCLUDING REMARKS

In this paper, we have proposed a new packet classification al-
gorithm capable of following the packet forwarding rate of the
high-speed routers with the commercially available CPU, RAM,
and cache memories. Through our experiments, we have shown
that the L1 cache size gives a great impact to the performance of
the flow classification, but the effect cannot be found if the suffi-
cient L1 cache exists. We have also shown that the set associative
mapping is effective when the cache size is small, and sometimes
gives the same performance improvement to double the cache size.
The effect of cache block size has also been examined. Our re-
sults have shown that the effect of the large block size would be
appeared if the cache size is large. Finally, we have checked the
effect of cache replacement policies. From numerical results, we
have shown that LRU gives a best performance, but FIFO is still
reasonable if we consider the implementation cost. In this paper,
we always assign the maximum number of entries for flow lookup
tables to avoid the overhead of the table expansion. However, it
leads to the under-utilization of memory structures. The memory
size requirement can be reduced if we can change the number of
entries of the lookup table dependent on the destination address. It
is our future research topic.
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