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Abstract-Short-lived TCP connections, which send small
documents, suffer from significant low throughput com-
pared with long-lived TCP connections, which transmit
large documents. It is because of an inherent nature of the
ACK-based window flow control of TCP. In this paper, we
focus on the unfairness problem of TCP connections trans-
mitting differently sized documents. To improve the fair-
ness, it is necessary to treat packets from short-lived TCP
connections preferentially over those from long-lived TCP
connections. For realizing it, we first introduce a new anal-
ysis approach to estimate the throughput of TCP connec-
tions when the packet loss probability of each transmitted
packet from the same connection is different. Our analysis
can give a better estimation of the TCP throughput than
the existing analysises. Using the analysis results, we pro-
pose a new algorithm to improve the fairness, and investi-
gate its effectiveness through simulation experiments. We
show that our proposed algorithm can improve the fairness
without degradation of the network utilization.

1 Introduction
Fair service among users is one of the most important goals for
those who are concerned with the quality of best–effort traffic.
It is becoming more important as the limit on the use of net-
work resources is alleviated by broadband access technologies
such as the cable modem, wireless and xDSL (Digital Sub-
scriber Line) accesses. While much research efforts have been
recently made on the QoS guarantee/discrimination mecha-
nisms by IntServ and DiffServ architectures, the fairness issue
is often more important than those mechanisms. Even if the
DiffServ architecture will be successfully deployed in the fu-
ture, the fairness among users within a class is still important
to be achieved.

For an inherent nature of the ACK-based window flow con-
trol of TCP, there exists the inevitable unfairness among TCP
connections that transmit differently sized documents even
when all other characteristics of the connections such as link
bandwidths and propagation delays are identical [1]. This un-
fairness is brought by the difference of TCP window sizes. A
TCP connection transmitting small documents (which is called
short-lived connections hereafter) ends its transmission before
it opens TCP window largely. On the other hand, the window
size of a TCP connection transmitting large documents (long-
lived connection) becomes large enough since it takes many
RTTs to transmit the documents. As a result, when the short-
lived connection and the long-lived connection share the bot-
tleneck link, the long-lived connection utilizes larger amount
of the network bandwidth.

Therefore, in this paper, we tackle the unfairness problem
between long-lived and short-lived TCP connections. We first
confirm the unfairness through some simple simulation exper-

iments. One possible way to overcome the unfairness is to dis-
tinguish long-lived and short-lived connections and treat pack-
ets from short-lived TCP connections preferentially over those
from long-lived TCP connections at the router buffer. For real-
izing that mechanism, We propose hash-RED method, which
use hash table for differentiation of long-lived and short-lived
connections, and RED (Random Early Detection) [2] for pro-
tecting short-lived connections.

To derive an appropriate parameter of hash-RED method, it
is necessary to estimate throughput of TCP connections when
we change the packet discarding probability during the con-
nection. Accordingly, we develop a new analysis technique to
estimate TCP throughput under such a situation. It can give
higher accuracies than the previously proposed analysis meth-
ods described in [3, 4].

The rest of this paper is organized as follows. Section 2
shows some simulation results to confirm the unfairness prop-
erty between long-lived and short-lived TCP connections.
Section 3 proposes a new analysis approach for estimation of
the throughput of TCP connections when the packet loss prob-
ability of each transmitted packet is different. The hash-RED
method to improve the fairness and simulation results is shown
in Section 4. Finally, we present conclusions and future work
in Section 5.

2 Unfairness between Long-lived and Short-
lived TCP Connections

In this section, we confirm the unfairness between long-
lived and short-lived TCP connections through simple sim-
ulation experiments. In the simulation, we use the simple
network model depicted in Figure 1, where we identically
set the propagation delays of the links between a router and
sender/receiver hosts to 50 [msec]. The bandwidth of both
links are 500 [Mbps], which are enough large so as not to limit
the throughput of TCP connections. We set the packet length
fixedly to 1460 [Bytes]. The receive buffer at the receiver host
and the maximum window size of TCP are set enough large
not to limit the TCP throughput. Although no packet loss
occurs at the router buffer, we intentionally introduce packet
losses at the link between the sender host and the router. The
packet loss ratio of the link is denoted byp. In the simulation,
the sender host sends various sizes of documents by TCP, and
the throughput value of each document transfer is observed.

Figure 2 shows the relationship between the transmitted
document size in packet and the average throughput of 1000
times transmissions of each size of the document. We can ob-
serve from this figure that if the transmitted document size is
small (a short-lived TCP connection), the TCP connection suf-
fers from very low throughput. It is because the short-lived
TCP connection finishes its document transmission before its



congestion window becomes large, which is inevitable due to
an inherent nature of the ACK-based window flow control of
TCP. Furthermore, when packet losses occur, the short-lived
TCP connection cannot detect the loss by duplicate ACK pack-
ets because of its too small window size. It brings TCP time-
out, which results in serious performance degradation.

If the transmitted document size is large (a long-lived TCP
connection), on the other hand, the TCP connection can ob-
tain large throughput as shown in Figure 2. It is because the
congestion window of the connection becomes large enough
during its document transfer, which results in that it can utilize
the link bandwidth effectively. Especially when the number of
transmitted packets is from 100 to 1000 in Figure 2, the ob-
tained throughput is quite high. This is caused by the inflated
window in the initial slow start phase of TCP. Note that since
TCP doubles its window size in every RTT during the slow
start phase, the window size increases very fast as no packet
loss occurs in the network. In addition, a large size of the con-
gestion window makes it possible to retransmit lost packets by
fast retransmit and fast recovery algorithms without retrans-
mission timeouts.

These simulation results clearly show the existence of
significant unfairness in throughput between long-lived and
short-lived TCP connections. It was reported in [5] that the av-
erage size of Web documents at several Web servers was under
10 [KBytes]. More importantly, Crovella and Bestavros [6]
reported that the Web document size exhibits a heavy-tailed
nature, meaning that very large documents exist with certain
probabilities, but at the same time, small-sized documents ex-
ist with large probabilities. That is, the unfairness between the
long-lived and short-lived TCP connections is serious in the
Internet. One possible way to overcome this problem is to set
the packet discarding probability for packets from long-lived
TCP connections higher than that for packets from short-lived
TCP connections. In the next section, we develop a new anal-
ysis method of estimating the TCP throughput to realize such
mechanism.

3 TCP Throughput Analysis
In this section, we develop a new analysis modeling of TCP to
derive a TCP throughput when packet discarding probability
of each transmitted packet is different. We then verify the ac-
curacy of our analysis by comparing the analysis results with
simulation results.

3.1 Assumptions
In our analysis, we make the following assumptions. The
sender host uses the congestion control mechanisms of TCP
Reno [7]. ACK packets are never lost in the network. The
time needed to transmit all packets within a congestion win-
dow is smaller than the round trip time of the TCP connec-
tion. When a packet loss occurs during packet transmission
in a window, all of the remaining packets in the window are
also lost. The packet discarding probability is independent of
the window size. For treating the model in which packet dis-
carding probabilities of transmitted packets are different, we
denote the packet discarding probability of thei-th packet by
pi.

We further assume that the TCP receiver hosts send back
an ACK packet everyb data packets received, and the TCP
sender hosts increase their congestion window during the slow
start phase byδ in receiving an ACK packet. The initial con-
gestion window size of the TCP connection isw1. Note that
the normal TCP usesδ = 1 andw1 = 1. We will obtain the
throughput in TCP data transfer ofd packets document by di-
viding the analysis into two parts; the one is for the initial slow
start phase, and the other is the following congestion avoid-
ance phases. We show the detailed analysises in the following
subsections.

3.2 Slow Start Phase
The analysis method during the initial slow start phase follows
that in [4]. Hence, we mainly describe the difference between

our analysis and that in [4], especially the difference of the
packet discarding probabilities.

We definedss as the number of packets transmitted in the
initial slow start phase andE[r] as the average round trip time.
Since the initial slow start phase continues until a first packet
loss occurs, we can derivedss and its expectationE[dss], as
follows:

P [dss = k] =
k−1∏
l=1

(1 − pl)pk

E[dss] =
d∑

k=1

P [dss = k]k +
d∏

k=1

(1 − pk)d (1)

By usingE[dss], we can obtain the following equations where
E[Tss] is the time length of the initial slow start phase,w 1 is
the initial window size,Wmax is the maximum window size,
andγ = (1 + δ

b ). For more detail, refer to [3].

E[Tss] =




E[r] · [logγ
Wmax

w1
+ 1

+ 1
Wmax

(E[dss] − γWmax−w1
γ−1

)] if E[Wss]] > Wmax

E[r] · [logγ(E[dss](γ−1)
wi

+ 1)] if E[Wss] ≤ Wmax

3.3 Congestion Avoidance Phase
We depict a typical evolution of the TCP window size at the
sender host in Figure 3. In the congestion avoidance phase,
TCP sender host transmits its packets allowed by its conges-
tion window. By receiving ACK packets from the receiver
host, the TCP sender host increases its congestion window and
transmits new packets to the receiver. When packet loss oc-
curs, the TCP sender host detects them by duplicate ACKs or
retransmission timeouts. It then retransmits the lost packets
and decreases its congestion window. The TCP sender host
repeats this cycle until all of thed packets are successfully
transmitted.

We define anepoch as a cycle from the previous packet
loss to the next packet loss. Thei-th epoch from the begin-
ning of the TCP connection is referred to as epochi. In each
epoch,round is defined as a time slice from the first transmis-
sion of packet in a window to the receipt of the ACK for the
first transmitted packet. Especially,j-th round ini-th epoch
is referred to as roundi,j. The number of rounds included in
epochi is denoted byXi. Note that packet loss actually oc-
curs in roundi,Xi−1, and the sender detects the packet loss in
the next round (roundi,Xi ) by receiving three duplicate ACKs
or by waiting a retransmission timeout. The time length of
epochi is denoted bySi. In Si, the time duration when the
TCP sender host is sending packets is denoted byAi, and
the time duration that the sender waits for a retransmission
timeout (called as aretransmission phase) is Zi. Therefore,
Si = Ai + Zi. Further,Mi is defined as the number of pack-
ets transmitted in epochi. We further denote the number of
packets transmitted inAi andZi by Yi andRi, respectively.
We also useQi as a probability that timeout occurs in epochi.
Then, the following equations hold:

E[Mi] = E[Yi] + Qi · E[Ri]
E[Si] = E[Ai] + Qi · E[Zi]

Following [3], we can obtainQi. We then havenca, the num-
ber of epochs in the congestion avoidance phase necessary to
finish the document transmission, which can be obtained by
solving the following equation:

d = E[dss] +
n∑

i=1

E[Mi]

From all of the above equations, we can calculateB, the
throughput of TCP in the congestion avoidance phase, as fol-
lows;

B =
∑n

i=1(E[Yi] + Qi · E[Ri])∑n
i=1(E[Ai] + Qi · E[Zi])

(2)
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Figure 1: Network model (1)
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In what follows, we calculateE[Yi], E[Ri], E[Ai], andE[Zi]
to determineB. We denote the average value of the initial re-
transmission timeout byT0. We want to deriveP [Ri = k], the
probability that in the retransmission phase the TCP host fails
to retransmit the lost packet(k − 1) times and finally trans-
mits k-th packet successfully.P [Ri = k] andLk, the time
length of the retransmission phase, can be obtained as follows
by considering the exponential backoff of the retransmission
timeout [7]:

P [Ri = k] =
k−1∏
l=1

pALYi+l(1 − pALYi+k)

Lk =
{

(2k − 1)T0 k ≤ 6
(63 + 64(k − 6))T0 k > 7

Here, we denote the number of packets that the TCP can trans-
mit from the beginning of the connection to epochi by ALi,
andALYi is defined asALi−1 + Yi. We then obtain the fol-
lowing equations forE[Z i] andE[Ri].

E[Zi]=
d−ALYi∑

k=1

P [Ri = k]Lk +
d−ALYi∏

k=1

pALYi+kLd−ALYi (3)

E[Ri]=
d−ALYi∑

k=1

P [Ri = k]k +
d−ALYi∏

k=1

pALYi+k(d − ALYi) (4)

Figure 4 shows the more detailed behavior of TCP in epochi.
Referring to this figure, we deriveE[Xi] andE[Yi] as follows.
When we defineαi as the number of packets that can be trans-
mitted from the beginning of epochi without packet loss in
epochi, the probability ofα i = k, is given by,

P [αi = k] =
k−1∏
l=1

(1 − pALi−1+l)pALi−1+k

Then,E[αi] is derived as follows:

E[αi]=
d−ALi−1∑

k=1

P [αi = k]k +
d−ALi−1∏

k=1

(1 − pALi−1+k)d (5)

Observing Figure 4 leads to the following equation.

E[Yi] = E[αi] + E[Wi]− 1 (6)

In the congestion avoidance phase, the sender TCP host in-
creases its congestion window by 1 packets everyb rounds.
Then we have the following equation aboutWi.

E[Wi] =
E[Wi−1]

2
+

E[Xi]
b

(7)

We can also obtainYi by summing up the number of transmit-
ted packets in each roundi,j until packet loss occurs:

E[Yi] =

E[Xi ]
b −1∑
k=0

(
[Wi−1]

2
+ k)b + E[βi]

=
E[Xi]

2
(
E[Wi−1]

2
+ E[Wi] − 1) +

E[Wi]
2

(8)

By solving Equations (5), (7) and (8) aboutW i, we obtain

E[Wi] =
b + 1

2b
(9)

+

√
(b + 1)2 − 2b(− 2

b
E[Wi−1]2 + bE[Wi−1]− 4E[αi] + 4)

2b

From these equations, we determineE[Xi] andE[Ai] as fol-
lows:

E[Ai] = (E[Xi] + 1) · E[r] (10)

E[Xi] = b(E[Wi]− E[Wi−1]
2

) (11)

Finally, by using Equations (3), (4), (6) and (10), we can cal-
culateB from Equation (2).
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Figure 5: Numerical results of the analysis

3.4 Validation of Analysis and Discussions
In this subsection, we verify the accuracy of the analysis given
in the previous subsection by comparing the analysis results
with simulation results. In the simulation, we use the same
network model depicted in Section 2. The parameters such as
bandwidths or propagation delays are also unchanged.

We first show the evaluation results when the packet dis-
carding probability is constant for comparison purpose. Fig-
ure 5 shows the relationship between the transmitted document
size (in packets) and the throughput in the document transfer
where we set the packet discarding probability of the link be-
tween the sender host and the router to 0.01 (Figure 5(a)). This
figure includes the results of simulation experiments, our anal-
ysis, and the analysis presented by [4]. From this figure, we
can see that the analysis of [4] cannot estimate the through-
put well, especially when the number of transmitted packets
is around 100 through 1000. It is because the analysis of [4]
assumes that the TCP host shifts its state to be steady just af-
ter the end of the initial slow start phase. Therefore, it cannot
capture the large window size after the slow start phase. On
the other hand, it can be observed that our analysis estimates
the throughput of TCP document transfer with higher accu-
racy because we model the detailed behavior of TCP after the
initial slow start phase with large window size.

We next evaluate the accuracy of our analysis when packet
discarding probabilities differ in each transmitted packets of
a document, which is the main objective of our analysis. Fig-
ure 5(b) shows the relationship between the document size and
the throughput in TCP document transfer where we set the
packet discarding probability to 0 for 1st through 20th trans-
mitted packets, and 0.03 for 21st and later transmitted packets.
From this figure, we can observe that our analysis again esti-
mates the throughput of the TCP exactly even when the packet
discarding probabilities are dynamically changed.

We present the analysis results in Figure 5(c) where we
change the threshold value (denoted byK). At the given
threshold, the packet loss probability is increased from 0 to
0.03. Note that the results labelled by ‘Threshold=0’ in Fig-
ure 5(c) means that all packets are discarded with probability
of 0.03. It is shown in Figure 5(c) that by setting the thresh-
old value larger, the throughput of the small document transfer
can be improved. That is, we can improve the fairness be-
tween long-lived and short-lived TCP connections by setting
the packet discarding probability of short-lived connections to
0, and that of long-lived connections to a higher value. In the
next section, we will propose the algorithm to set the threshold
value and packet discarding probability for long-lived connec-
tions appropriately by using the analysis results.

4 hash-RED method
To overcome the unfairness problem, we treat packets from
short-lived TCP connections preferentially over those from

long-lived TCP connections at the router buffer. For realizing
that mechanism, we propose hash-RED method, which uses
hash table for differentiation of long-lived/short-lived con-
nections, and RED-based algorithm for protecting short-lived
connections.

For differentiation of long-lived/short-lived connections
we use hash table, and the hash key is a combination of
source/destination IP addresses, port numbers. Each entry of
the hash table includes a counter which records the number
of transmitted packets by the connection, and a timestamp to
record the time at which the last packet of the connection ar-
rived at the router. When a new packet arrives at the router,
the router seeks the corresponding entry in the hash table us-
ing the hashing function, increments the counter, and updates
the timestamp value by the current time. If the difference
of the timestamp value and the current time is larger thanT ,
the router determines that the connection begins another doc-
ument transmission and resets the counter value. Detection of
long-lived TCP connection can be made by checking whether
the counter value is larger thanK or not.

Next, we propose the algorithm which is based on RED for
protecting short-lived TCP connections. RED discards the in-
coming packets with a certain probability, which is calculated
by the average queue length at the router buffer and some con-
trol parameters. In the RED-based algorithm proposed here,
we use the packet discarding probability calculated by the
original RED algorithm as atarget probability p t. In the hash-
RED algorithm, we set the packet discarding probability for
packets from short-lived TCP connections to 0, and set higher
value thanpt for those from long-lived TCP connections, so
that the total packet discarding probability becomesp t.

As shown in Figure 5(c), to determine the threshold valueK
is important. In the hash-RED, We use the analysis result in
the previous section in order to chooseK appropriately. From
the analysis results, we can obtain the relation between the
transmitted document size, denoted byf , and throughput,ρ, as
shown in Figure 5(c). By denoting the relation by the function
ρ(f), we define the fairness index valueF (K) as follows;

F (K) =
L∑

i=1

P (i) · (ρ(i) − ρ(L))2

where P (i) is the probability that the document containsi
packets. It can be obtained from the WWW document size
distribution in [8]. By settingL to large value,ρ(L) would
represent the throughput of long-lived TCP connections. Fig-
ure 7 shows the sample results ofF (K) values, where we set
L = 10000 [packets]. We can see from this figure that oncept
is given, we can find the optimal value ofK such thatF (K)
becomes the smallest value. In the RED-based algorithm, we
use this fairness indexF (K) to determine the threshold value
K.
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Table 1: Link utilization of the bottleneck link
utilization

Tail-Drop 0.9536
hash-RED 0.9521

Figure 8 shows the relationship between the transmitted
document size (in packets) and the throughput where we use
tail-drop and hash-RED as the buffer discipline. All sender
hosts behave as WWW sender hosts where the size of the
transmitted documents follows the distribution presented in
[8]. Table 1 shows the link utilization of the bottleneck link.
From the simulation results, We can conclude that hash-RED
can improve the fairness without degradation of the network
utilization.

5 Conclusion
In this paper, we have first confirmed the unfairness prob-
lem between long-lived and short-lived TCP connections, and
shown that the short-lived connection that transmits small doc-
uments suffer from lower throughput than the long-lived con-
nection. We have also pointed out, through the new analysis
for TCP throughput, that it is necessary to introduce a mecha-
nism to distinguish the long-lived and short-lived TCP connec-
tions at the router, in order to give preferential service to the
short-lived TCP connections for fairness improvement. Our
proposed algorithms have realized such service. Our evalua-
tion results through simulation experiments have revealed that
our proposed algorithms can detect the long-lived TCP con-
nections at the router and improve the fairness, without any
interactions between routers.
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