
1

Modeling End-to-End Packet Delay Dynamics of the Internet using

System Identification

Hiroyuki Ohsakia, Masayuki Muratab, and Hideo Miyaharaa

aGraduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

bCybermedia Center, Osaka University
1-30 Machikaneyama, Toyonaka, Osaka 567-0043, Japan

Understanding the end-to-end packet delay dynamics of the Internet is of crucial im-
portance since (1) it directly affects the QoS (Quality of Services) of realtime applications,
and (2) it enables us to design an efficient congestion control mechanism for both realtime
and non-realtime applications. In this paper, we propose a novel approach for modeling
the end-to-end packet delay dynamics of the Internet. The key idea of our approach is
treating the network, seen by specific source and destination hosts, as a black-box, and
modeling the end-to-end packet delay dynamics using system identification, having been
throughly used in the field of control engineering. The end-to-end packet delay dynamics
is modeled as a SISO (Single-Input and Single-Output) system. The input to the system
is a packet inter-departure time from the source host, and the output from the system is
an end-to-end packet delay variation measured by the destination host. In this paper, the
ARX (Auto-Regressive eXogenous) model is used and its coefficients are determined using
system identification. Several topics such as model validation and selection of the orders
of the ARX model are also discussed. We show that the ARX model accurately captures
the end-to-end packet delay dynamics if the orders of the ARX model are appropriately
chosen. We also show that the effect of other UDP and TCP traffic can be modeled by
white noise by using the end-to-end packet delay variation.

1. Introduction

In the past decade, the Internet has been explosively growing in scale as well as in
population after introduction of the WWW (World Wide Web). In January 1997, only
16 million computers were connected to the Internet, but it has jumped to more than
55 million computers in June 1999 [1]. Because of such changing nature of the Internet,
nobody knows the current network topology of the Internet. Such uncertainty of the
Internet makes it very difficult, but also challenging, to analyze and understand the end-
to-end packet behavior of the Internet.

Understanding the end-to-end packet delay dynamics of the Internet is of crucial im-
portance since (1) it directly affects the QoS (Quality of Services) of realtime applications,
and (2) it enables us to design an efficient congestion control mechanism for both realtime
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and non-realtime applications. For non-realtime applications, a delay-based approach for
congestion control mechanisms, rather than a loss-based approach as used in TCP (Trans-
mission Control Protocol), has been proposed (e.g., [2, 3]). The main advantage of such
a delay-based approach is, if it is properly designed, packet losses can be prevented by
anticipating impending congestion from increasing packet delays.

For a long time, the queuing theory has been extensively used as a powerful too to
analyze both circuit-switched and packet-switched networks. In general, the queuing
theory assumes stationarity of the network, and allows us to obtain several performance
measures such as the average packet delay and the average packet loss probability. The
stringent limitation of the queuing theory is its impossibility to analyze the dynamical
behavior of the network. Several measurement-based studies suggest that the end-to-
end packet behavior in the Internet is quite dynamical [4-6]. Another approach, being
different from the queuing theory, should therefore be taken to investigate the packet
delay dynamics of the Internet.

In this paper, we propose a novel approach to model the end-to-end packet delay dy-
namics of the Internet. The key idea of our approach is treating the network, seen by
specific source and destination hosts, as a black-box, and modeling the end-to-end packet
delay dynamics using system identification, having been throughly used in the field of
control engineering. The end-to-end packet delay dynamics is modeled as a SISO (Single-
Input and Single-Output) system. The input to the system is a packet inter-departure
time from the source host, and the output from the system is an end-to-end packet delay
variation measured by the destination host. In this paper, the ARX (Auto-Regressive
eXogenous) model is used and its coefficients are determined using system identification.
Several topics such as model validation and selection of the orders of the ARX model are
also discussed.

The main objective of this paper is to construct a mathematical model that can be
used, in particular, to design a delay-based congestion control mechanism. Once an
appropriate model of the end-to-end packet delay dynamics is obtained, it is possible
to apply the optimal control theory to design an efficient delay-based congestion control
mechanism (for an example application of the optimal control theory, see, e.g., [7, 8]).
We use the ARX model in this paper since it is simple but also suitable for application
of the control theory. The ARX model is easy to handle, and its coefficients are easily
determined with a little computational burden.

This paper is organized as follows. In Section 2, we summarizes related works in the
literature. In Section 3, a black-box approach for modeling the end-to-end packet delay
dynamics of the Internet is explained, followed by introduction of the ARX model. In
Section 4, simulation experiments are performed and a few sets of input and output data
are collected. In Section 5, coefficients of the ARX model is determined from the input
and output data using system identification. Several topics such as model validation and
selection of the orders of the ARX model are also discussed. In Section 6, we discuss
several possible applications of our approach. Section 7 concludes this paper with a few
remarks.



3

2. Related Works

In the literature, there have been several measurement-based studies regarding the end-
to-end packet delay [4, 5, 9, 10] and the end-to-end path characteristics [6, 11]. In [4],
the authors have examined the end-to-end packet delay and loss behavior in the Inter-
net using small UDP probe packets. In [5], the authors have examined the correlation
between packet delay and packet loss experienced by a continuous-media traffic source
based on measurements of per-packet delays and packet loss. In [9], a large number of
TCP measurements have been used to discuss two estimation problems: estimation of
the retransmission timer (RTO) for a TCP connection, and estimation of the available
bandwidth. In [10], the authors have presented an approach to characterize loss and de-
lay characteristics of a transmission link based on end-to-end multicast measurements.
In [6], the packet dynamics of the Internet have been analyzed based on measurements of
about 20,000 TCP data transfers. In [11], the routing behavior of the Internet has been
analyzed based on measurements of about 40,000 end-to-end traceroute results. However,
those studies are limited to statistical behavior of the end-to-end packet delays and/or
path characteristics. In other words, the end-to-end packet delay dynamics of the Internet,
which is the main concern of this paper, has not been investigated.

Besides analyses of the end-to-end packet delay, another area of measurement-based
studies is regarding black-box modeling of the network traffic [12-15]. In [12], the authors
have proposed a traffic model for wide-are TCP traffic by characterizing several distribu-
tions of, for example, the packet inter-arrival time and the number of bytes transferred.
In [13], the authors have proposed a fast algorithm to construct a CMRP (Circulant Mod-
ulated Rate Process) for traffic modeling. In [14], CMRP and ARMA (Auto-Regressive
Moving Average) have been discussed as a traffic model. In [15], a measurement-based
tool for traffic modeling and queuing analysis has been developed, which uses CMRP (Cir-
culant Modulated Poisson Process) for a traffic model. Those studies are closely related to
our black-box modeling approach, but there is a significant difference. Those studies have
focused on traffic modeling based only on outputs (i.e., observed amount of traffic). On
the contrary, this paper focuses on modeling the end-to-end packet delay dynamics based
on both inputs (i.e., packet inter-departure time) and outputs (i.e., end-to-end packet
delay variation). In other words, this paper focuses on how the end-to-end packet delay
of a packet sent from a source host is affected by its past packet transmission process.

3. Black-Box Modeling using ARX Model

As depicted in Fig. 1, the network seen by a specific source and destination pair,
including underlying protocol layers (e.g., physical, data-link, and network layers), is
considered as a black-box. Our goal of this paper is to model a SISO system describing
the end-to-end packet delay dynamics, i.e., the relation between a packet sending process
from the source host and its resulting end-to-end packet delay observed at the destination
host. Effects of other traffic (i.e., packets coming from other hosts) are modeled as noise.
As the input to the system, we use a packet inter-departure time from the source host,
i.e., the interval between two consecutive packet transmissions from the source host. Use
of the packet inter-departure time is straightforward since, as suggested by the queuing
theory, it directly affects the end-to-end packet delay. On the contrary, as the output from
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the system, we use an end-to-end packet delay variation measured by the destination host,
i.e., the difference in two consecutive end-to-end packet delays. We choose the end-to-end
packet delay variation, instead of the end-to-end packet delay itself, as the output from
the system (see Fig. 2). This is to reduce unstationarity of noise (i.e., effect of other
traffic) on the measured end-to-end packet delay since, at a packet-level time scale, the
aggregated network traffic is not stationary [16].

source host destination host

physical layer

network layer

packet inter-departure time end-to-end packet delay variation

UDP packetphysical layer

network layer

data-link layer data-link layer

Figure 1. Modeling end-to-end packet
delay dynamics as SISO (Single-Input
and Single Output) system.

x(k) ∆x(k)

end-to-end packet delay end-to-end packet delay variation

Figure 2. Using end-to-end packet de-
lay variation to reduce unstationarity of
noise.

In this paper, the ARX model is used and its coefficients are determined using system
identification [17]. Figure 3 illustrates the fundamental concept of using the ARX model
for modeling the packet delay dynamics. The input to the ARX model is a packet inter-
departure time from the source host, and the output from the ARX model is an end-to-
end packet delay variation measured by the destination host. Effects of other traffic (i.e.,
packets coming from other hosts) are modeled as the noise to the ARX model. Letting
u(k) and y(k) be the input and the output data at slot k, the ARX model is defend as

A(q) y(k) = B(q) u(k − nd) + e(k) (1)

A(q) = 1 + a1q
−1 + . . .+ anaq

−na

B(q) = b1 + b2q
−1 + . . .+ bnb

q−nb+1

where e(k) is unmeasurable disturbance (i.e., noise), and q−1 is the delay operator; i.e.,
q−1u(k) ≡ u(k−1). The numbers na and nb are the orders of respective polynomials. The
number nd is the number of delays from the input to the output. For compact notation,
ζ is introduced as

ζ = [na, nb, nd] (2)

In this paper, u(k) and y(k) correspond to the k-th packet inter-departure time and the
k-th end-to-end packet delay variation. All coefficients of the polynomials, an and bn, are
parameters of the ARX model, and are to be determined from input and output data
using system identification. Refer to [17] for the detail of the ARX model.

Our approach of a black-box modeling using the ARX model is distinctive from other
black-box approaches for modeling network traffic using the AR (Auto-Regressive) model
or the ARMA (Auto-Regressive Moving Average) model [14, 18, 19]. Figure 4 illustrates
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a typical usage of the AR model or the ARMA model for modeling network traffic. Com-
paring Figs. 3 and 4, the ARX model has the input whereas either the AR model or the
ARMA model does not. In other words, only the ARX model can represent the dynamics,
i.e., the relation how the past input data affects the future output data.

ARX model
u(k) y(k)

input
(packet inter-

departure time)

output
(round-trip time)

e(t) noise
(other traffic)

Figure 3. ARX model for modeling end-
to-end packet delay dynamics.

AR model
or

ARMA model

y(k)

e(t) noise

output
(packet arrival rate)

Figure 4. AR model or ARMA model
for modeling network traffic.

However, the ARX model has a drawback for modeling the packet delay dynamics;
i.e., the ARX model is a linear time-invariant model, so it cannot rigorously capture
non-linearity of the packet delay dynamics. However, it should be noted that the ARX
model is applicable in various control engineering problems. This is because non-linear
dynamical systems operating around the stable point can be well approximated by a linear
system [20]. In Section 5, we will investigate how accurately the end-to-end packet delay
dynamics can be described by the ARX model.

4. Input and Output Data Collection from Simulation

For determining coefficients of the ARX model, a few sets of input and output data
are collected from simulation using ns2. The simulation model consists of 10 source–
destination pairs and a single bottleneck link. We consider two scenarios: (1) each source
host sends only UDP (User Datagram Protocol) packets and (2) each source host sends
both UDP and TCP packets. These scenarios will be referred to as the UDP case and the
UDP + TCP case, respectively. In both cases, a source host intermittently generates UDP
packets to the destination host. The packet inter-departure time from the source host
is randomized according to the exponential distribution. The exponential distribution
is used since it is one of ideal input data for system identification [17]. The average
transmission rate of UDP packets is set to 128 [Kbit/s]. For each UDP packet received,
the destination host records the end-to-end packet delay. In the UDP + TCP case, a
source host sends TCP packets as well as UDP packets to the corresponding destination
host using TCP Reno. Both routers are Drop-Tail routers having a shared buffer of 100
packets. Other simulation parameters are: the packet size is fixed at 1,000 [byte], the
bottleneck link bandwidth is 1.5 [Mbit/s], the propagation delay of the bottleneck link is
1.0 [ms], and propagation delays of access links are ranged from 0.1 to 1.0 [ms].

In both the UDP and the UDP + TCP cases, we have collected both the packet inter-
departure time u(k) and the end-to-end packet delay variation y(k) sent from a single
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(b) End-to-end packet delay variation y(k)

Figure 5. Simulation result (UDP case).

source host. Shown in Figs. 5 and 6 are the inter-departure time u(k) and the end-to-end
packet delay variation y(k) for the UDP case and the UDP + TCP case, respectively.
Comparison of two figures suggests that the amplitude of the end-to-end packet delay
variation gets larger when TCP traffic exists. This is because TCP forces the network
to a slightly congested state, leading to a larger waiting time in the router’s buffer. On
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(b) End-to-end packet delay variation y(k)

Figure 6. Simulation result (UDP + TCP case).

the contrary, as one might expect, a negative correlation between the inter-departure
time and the end-to-end packet delay variation can be observed in both cases. Namely,
when the packet inter-departure time is small, the end-to-end packet delay variation
tends to become large, and vice versa. However, such a negative correlation seems not
so strong. This is because the end-to-end delay of a UDP packet is disturbed by other
UDP and TCP packets since the bottleneck node has a shared FIFO buffer. To view the
correlation between u(k) and y(k) more clearly, scatter plots for input and output data
of 1,000 packets are shown in Figs. 7 and 8 for the UDP case and the UDP + TCP case,
respectively. In these figure, a least-squared fit line is also plotted. These figures suggest
a weak negative correlation between the inter-departure time and the end-to-end packet
delay variation. In spite of such a weak correlation, as will be shown in Section 5, the
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ARX model can accurately capture the end-to-end packet delay dynamics.
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Figure 7. Scatter plot of packet inter-
departure time vs. end-to-end packet
delay variation (UDP case).
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Figure 8. Scatter plot of packet inter-
departure time vs. end-to-end packet
delay variation (UDP + TCP case).

5. System Identification and Discussions

The system identification problem for the ARX model is formulated as a minimization
problem, where the cost function is given by a loss function [17]. Because of space limita-
tion, only the outline are shown in this paper, and interested readers should refer to [17]
for more detail. The following numerical examples are obtained using MATLAB and its
System Identification Toolbox.

Let θ be a vector of all coefficients and ψ(k) be a vector of all past na outputs and nb

inputs, respectively.

θ = [a1, . . . , ana , b1, . . . bnb
]T (3)

ψ(k) = [−y(k − 1), . . . ,−y(k − na), u(k − nd − 1), . . . , u(k − nd − nb)] (4)

Using Eq. 1, the output from the ARX model ŷ(k|θ) is given by

ŷ(k|θ) = ψT (k) θ (5)

The loss function VN (θ, ZN) is defined as the sum of all squared prediction errors for N
input and output data.

VN(θ, ZN) =
1

N

N∑
k=1

(y(k) − ŷ(k|θ))2 (6)

where Zn is the past input and output data defined as

ZN = {u(1), y(1), . . . , u(N), y(N)} (7)

The solution θ̂N that minimizes the above loss function is easily obtained by the least
squares method:

θ̂N =

[
N∑

k=1

ψ(k)ψT (k)

]−1 N∑
k=1

ψ(k)y(k) (8)
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Of all input and output data collected in Section 4, we use the input and output data of
100 packets (2500 ≤ k < 2600) for coefficients determination and model validation. As an
example, when ζ = [5, 5, 1], coefficients of the ARX model and their standard deviations
are obtained from Eq. (8) as Tab. 1 (the UDP case) and Tab. 2 (the UDP + TCP case).

a1 a2 a3 a4 a5

coefficient 0.2617 0.2481 0.2819 0.1332 0.0493
standard deviation 0.1108 0.1137 0.1130 0.1098 0.1069

b1 b2 b3 b4 b5

coefficient 0.0035 0.0201 0.0005 0.0067 0.0100
standard deviation 0.0146 0.0145 0.0147 0.0147 0.0144

Table 1
Coefficients and standard deviations of the ARX model for ζ = [5, 5, 1] (UDP case).

a1 a2 a3 a4 a5

coefficient 0.1063 0.1279 0.0175 -0.0515 -0.0277
standard deviation 0.1064 0.1069 0.1094 0.1083 0.1079

b1 b2 b3 b4 b5

coefficient 0.0089 -0.0246 0.0058 -0.0111 0.0274
standard deviation 0.0267 0.0265 0.0267 0.0265 0.0253

Table 2
Coefficients and standard deviations of the ARX model for ζ = [5, 5, 1] (UDP + TCP
case).

In what follows, we discuss how accurately the end-to-end packet delay dynamics is
modeled by the ARX model. Figures 9 and 10 show comparisons between the measured
data (solid line) and the model output (dotted line) for ζ = [5, 5, 1]. More specifically,
the measured data is the measured end-to-end packet delay variation y(k), and the model
output y∗(k|θ) is the simulated output from the ARX model, which is defined as

y∗(k|θ) = ψ∗T (k|θ) θ (9)

where

ψ∗(k|θ) = [−y∗(k − 1|θ), . . . ,−y∗(k − na|θ), u(k − nd − 1), . . . , u(k − nd − nb)] (10)

Note the difference between ŷ(k|θ) and y∗(k|θ); i.e., ŷ(k) is a 1-step ahead prediction from
the measured inputs and outputs, whereas y∗(k|θ) is a simulated output only from the
measured inputs assuming zero noise. Figures 9 and 10 indicate that the ARX model
does not capture the end-to-end packet delay dynamics. In both the UDP and the UDP
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Figure 9. Comparison between mea-
sured data y(k) and model output y∗(k)
for ζ = [5, 5, 1] for (UDP case).
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Figure 10. Comparison between mea-
sured data y(k) and model output y∗(k)
for ζ = [5, 5, 1] for (UDP + TCP case).

+ TCP cases, the model output y∗(k) is almost unchanged although the measured end-
to-end packet delay variation excessively oscillates. Namely, the end-to-end packet delay
dynamics cannot be modeled by the ARX model with ζ = [5, 5, 1].

However, as will be shown below, the ARX model can correctly model the end-to-end
packet delay dynamics if ζ is chosen appropriately. We choose ζ = [18, 20, 1] for the UDP
case and ζ = [18, 13, 1] for the UDP + TCP case. These values are chosen to minimize
the AIC (Akaike’s Information Theoretic Criterion) [17]. The AIC is defined as

AIC � log
[
(1 +

2n

N
)VN(θ, ZN)

]
(11)

where n is the number of unknown parameters, i.e., na +nb. Shown in Figs. 11 and 12 are
comparisons between the measured data (solid line) and the model output (dotted line)
for ζ = [18, 20, 1] (the UDP case) and ζ = [18, 13, 1] (the UDP + TCP case), respectively.
It can be found that, in both cases, the model output y∗(k|θ) and the measured output
y(k) roughly coincide but slightly differ. This is because the measured end-to-end packet
delay variation is disturbed by other traffic, which is unknown so that not included in the
model output y∗(k).

2500 2520 2540 2560 2580 2600
−0.05

0

0.05

sequence number

en
d−

to−
en

d p
ac

ke
t d

ela
y v

ari
ati

on
 [m

s] measured data
model output 

Figure 11. Comparison between mea-
sured data y(k) and model output y∗(k)
for ζ = [18, 20, 1] for (UDP case).
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Figure 12. Comparison between mea-
sured data y(k) and model output y∗(k)
for ζ = [18, 13, 1] for (UDP + TCP
case).

To confirm the goodness of the ARX model obtained, the auto-correlation functions
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of residuals (i.e., prediction errors e(k) ≡ y(k) − ŷ(k|θ)) are plotted in Figs. 13 and 14
for the UDP and the UDP + TCP cases, respectively. Figure 13 corresponds to the
UDP case with ζ = [18, 20, 1], and Fig. 14 corresponds to the UDP + TCP case with
ζ = [18, 13, 1]. In these figures, 95% confidence interval is also shown. It is known that
the ARX model is inappropriate if any auto-correlation of residuals for a positive lag is
outside the confidence interval [17]. These figures show that all residuals are inside the
confidence interval, indicating the end-to-end packet delay dynamics is well modeled by
the ARX model. This also suggests that the effect of other UDP and TCP traffic can be
modeled by a white noise.
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Figure 13. Autocorrelation of residuals
e(k) for ζ = [18, 20, 1] (UDP case).
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Figure 14. Autocorrelation of residuals
e(k) for ζ = [18, 13, 1] (UDP + TCP
case).

Finally, we investigate how the choice of ζ affects the accuracy of the ARX model. In
Figs. 15 and 16, the loss function for different values of na and nb (1 ≤ na, nb ≤ 20) is
plotted for the UDP case and the UDP + TCP case, respectively. In these figures, nd is
fixed at 1. These figures indicate that the smaller the loss function is, the more accurate
the ARX model becomes. It can be found that a larger value of na and/or nb is desirable.
In particular, it can be seen from Fig. 15 that na should be larger than 10 when there
exist only UDP packets in the network.
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Figure 15. Loss function for different or-
ders of the ARX model for nd = 1 (UDP
case).
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6. Application Scenarios of Our Approach

We discuss several possible applications of our approach — modeling the end-to-end
packet delay dynamics of the Internet using the ARX model. Although details of these
topics are beyond the scope of this paper, it is worthwhile to discuss how our approach
is applied to various problems. The first and straightforward application would be to use
our approach to understand the end-to-end packet delay dynamics of the Internet. We can
analyze the end-to-end packet delay dynamics through the ARX model obtained. Because
the ARX model is one of LTI (Linear Time Invariant) models, various analysis techniques
for LTI models in time- and frequency-domain can be utilized. The second application
would be to predict the future end-to-end packet delay from the ARX model obtained.
As have shown in Section 4, the end-to-end delay of a packet is considerably disturbed
by other UDP and TCP packets. Hence, it is almost impossible to predict the far future
end-to-end packet delay. However, the ARX model can predict the near future end-to-end
packet delay. As noted in 1, the third and possibly most important application would be
to design a congestion control mechanism. Once the ARX model capturing the end-to-end
packet delay dynamics is obtained, it is possible to apply the optimal control theory to
design an efficient delay-based congestion control mechanism. Congestion control of the
Internet is a difficult problem because of its complexity such as heterogeneity of various
network elements and non-negligible propagation delays. However, combination of the
ARX model and the optimal control theory would help us to design a more efficient
congestion control mechanism.

7. Conclusion

In this paper, we have proposed a novel approach to model the end-to-end packet delay
dynamics of the Internet using system identification. We have investigated how accurately
the ARX model captures the end-to-end packet delay dynamics. The key idea is to model
the network, seen by specific source and destination hosts, as the ARX model. The input
to the ARX model is the packet inter-departure time from the source host, and the output
from the ARX model is the end-to-end packet delay variation measured by the destination
host. We have collected input and output data from simulation experiments using only
UDP packets and both UDP and TCP packets. Through several numerical examples,
we have shown that the ARX model accurately captures the end-to-end packet delay
dynamics if the orders of the ARX model is appropriately chosen. We have also shown
that the effect of other UDP and TCP traffic can be well modeled by a white noise as far
as the end-to-end packet delay variation is concerned.

As future work, it would be of importance to investigate effectiveness of the ARX model
using a through set of input and output data. We are currently working on building the
ARX model describing the end-to-end packet delay dynamics based on measured input
and output data from the operating LAN and WAN.
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