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Abstract—Many address lookup methods on the IP routers have been
recently proposed to improve the packet forwarding capability; never-
theless, their performance prediction is very limited because of lack of
considering actual traffic characteristics in their evaluations. It is neces-
sary to consider actual traffic to predict more realistic performances on
routers, specially in case of layers 3 and 4 switches whose performances
are more influenced by flow characteristic. In this paper, we propose new
methods for predicting the router’s performance based on the statistical
analysis of the Internet traffic. We also present an example of its appli-
cation to the existing table lookup algorithm, and show that simulation
results based on our method can provide accurate performance predic-
tion.

I. I NTRODUCTION

A rapid growth of the Internet traffic with the spread of mul-
timedia applications such as streaming media leads to an ex-
plosive demand of high-speed packet transmission technolo-
gies. For this purpose, it is necessary to improve the packet for-
warding capability at IP routers as well as to increase the link
capacity. One main task of routers is to determine the output
interface for forwarding the arriving packet according to the
packet header information, e.g., the destination address. Other
information such as the source address, source/destination port
numbers, and protocol number may also be used for policy
routing and/or the layer 4 switching. Every IP router performs
two steps for every arriving packet:

1. Looks up the packet’s next-hop at the routing table.
2. Forwards the packet to the outgoing interface determined

by step 1.
The 1st step influences heavily the router performance because
the longest prefix matching [1] becomes more complex after
the Classless Inter-Domain Routing (CIDR) is introduced [2].
Therefore, the address lookup method becomes easily a per-
formance bottleneck at high-speed routers.

While many approaches have been proposed to overcome
this bottleneck, e.g., [1], [3], [4], their performances have not
been well studied. Two metrics have generally been used to
rate the performance of address lookup algorithms: worst-case
and average-case (or actual-case) performance. Worst-case
performance is easily derived from the complexities of lookup
algorithms, and by using it, a proposed algorithm can easily be
compared with existing algorithms. Worst-case performance
is also a useful index for describing an algorithm’s basic capa-
bility. Most papers on IP lookups thus use worst-case perfor-
mance.

None the less, the actual performance must be heavily
affected by the time–dependent behavior of destination ad-
dresses of arriving packets. Furthermore, the worst-case per-
formance is not always the best metric. It is likely that the de-
sign choice according to the worst-case performance leads to
very expensive algorithms. A closer look at the performance
behavior of the target method may allow a more elegant solu-
tion. For example, we may be able to have a much cheaper so-
lution at the sacrifice of limited performance degradation (e.g.,
introducing a small packet loss probability). For that purpose,
we need a realistic address generation method for evaluating
the performance of IP routers. However, the past researches
only considered the simulation technique using the random
address generation [3]. Or, a small amount of traced data is
used [4]. Since the amount of the traced data is limited, the
actual performance behavior is likely to be missed. Further-
more, because traced data is very few in the public domain,
the simulation result is lack of generality.

In this paper, we first consider the address generation
method of arriving packets at the router. It can be fed into the
simulation when predicting the performance of the IP router.
Since we will consider the address distribution, our framework
can be applied to the performance evaluation of the address
lookup algorithm, which is much affected by the address distri-
bution of IP packets. We also investigate the applicability and
limit of the analysis technique based on the queueing model.
As the results will indicate, the analysis technique, which does
not consider the time–dependent correlation of addresses of
arriving packets, is useful to obtain the quick performance pre-
diction, while its applicable parameter region is of course lim-
ited. We will present it through numerical examples, in order
to show that a careful treatment is necessary in using the anal-
ysis method.

II. STATISTICAL ADDRESSGENERATION METHODS

In this section, we propose two performance prediction
methods on address lookup algorithms. The one is for gen-
erating the destination address of IP packets. The other is for
generating the flow, where the flow duration (the number of
packets contained in the flow) is obtained by the statistical
analysis of traced data. Then, the destination address of the
flow is generated by the statistical model. See Fig. 1 for an
outline of our methods.
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Fig. 1. Outline of Performance Prediction

We will first introduce the model of the destination ad-
dresses in Subsection II-A. Address generation method for our
proposed approaches is then described in Subsection II-B. It is
applied to our proposed generation methods of traffic pattern,
which can be used for simulating the table lookup algorithms.

A. Modeling Destination Addresses

We use the approach of the address generation algorithm
proposed in [5], where the addresses are generated by a Least
Recently Used (LRU) stack and Inverse Stack Growth Func-
tion (ISGF).

For briefly summarizing ISGF, we introduceti, denoting the
arrival time ofith packet (or flow). We definef(t, T ) as the
expected value of the number of distinct addresses of packets
arrived during a period[t− T, t). Assume thatf(t, T ) is inde-
pendent from timet, i.e.,f(ti, T ) = f(tj , T ) for all i, j. Then,
f(t, T ) can be denoted byf(T ). This assumption is called a
time–translation invariance, and makes it for us to obtain the
same valuef(T ) whenever trace data are gathered. ISGF is a
power low function given by

f(T ) � Tα (T � 1) (1)

whereα (0 < α < 1) is a constant parameter.
While ISGF was originally used for predicting the cache hit

ratio of computer architectures, the authors in [5] have found
that the number of distinct destination addresses also satisfies
ISGF. Namely, when we collectT packets from the traced data,
the number of distinct destination addresses can be estimated
asTα. By using ISGF, it is possible to derive the probability
that the destination address of the arriving packet has already
appeared. However, applying only ISGF is insufficient in some
situations.

Let us consider the sequence of packet arrivals for the TCP
flow. Because the TCP flow is divided into packets, the proba-
bility that the next packet of the TCP flow arrives at the router
tends to be decreased as the time passes. This tendency can-
not be modeled by ISGF solely. Therefore, an Least Recently
Used (LRU) stack model is applied to the probability structure
as follows.

The probabilityai is defined as

ai = {f(g(i − 1) + 1) − (i − 1)}
−{f(g(i) + 1) − i}, (2)

whereg(T ) = f−1(T ). From Eq. (1), we have

ai = {((i − 1)
1
α + 1)α − (i − 1)}

−{(i 1
α + 1)α − i}. (3)

B. Address Generation Method

In this subsection, we explain the procedure of destination
address generation based on ISGF. We prepare the set of dis-
tinct destination addresses of trace data with their numbers of
references from the traced data. Then, ifNp packets include
Na distinct destination addresses,α is calculated from Eq.(1).
Since Eq.(1) holds whenNp is large, we need to calculateα
with the adequately large number of packets. We use a least–
square method to calculateα.

Moreover, we define a list of destination addresses as
A(i) (i = 1, 2, . . . , Na). Then, time–dependent destination
addresses are generated by the following procedure using the
above quantities;Np, Na, α andA(i):

1. LRU stack sizeS is set toNa.
2. StoreA(1), A(2), . . . , A(Na) sequentially in the LRU

stack.
3. Choose a random numberp (0 ≤ p < 1).
4. Calculate the minimumk if p ≤ ∑k

i=1 ai.
5. Assign the address of a new access ask-th element of the

LRU stack.
6. Movek-th element to the top of the LRU stack.
7. Return to Step 3.
The above procedure gives a series of destination addresses,

which can be embedded in the simulation program for packet
generation. More specifically, either of the following proce-
dures is performed as a packet generator in the simulation:

• Address Generation per Packet (AGP)
1. A packet is generated according to, e.g., a Poisson pro-

cess. A heavy-tailed distribution may also be applied
to determine the interarrival times of packets.

2. The destination address of the generated packet is
decided by the address generation method described
above.

• Address Generation per Flow (AGF)
1. Generates a flow, and determines the number of packets

in the flow.
2. The destination address of the flow is decided by the

address generation method mentioned above.
3. Determines the interarrival times of packets during

which the flow is active. All the packets in the flow
use the same destination address.

We note here that in AGF, the number of packets within the
flow may be determined from the statistical analysis of the ac-
tual data. For example, in [6], the entire flow duration can
be well approximated by the log-normal distribution while the
tail–part has a heavy-tailed distribution. Thus, the combination
of the two distributions can be used for the flow duration and is
used in our experiments. To fit the combination of the two dis-
tribution function accurately, we estimate parameters using the
maximum-likelihood-estimator (MLE) method [7]. Once the
flow is accurately characterized, the packet interarrival times
may be modeled by a Poisson distribution [6].
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On the other hand, AGP cannot model the heavy-tailed dis-
tribution for representing the number of flows because the
probability that the generated address would appear again in
the future depends only on the position of the LRU stack; it
does not depend on the number of references. However, AGP
has some advantages. It requires lower processing overhead
and the smaller number of parameters than AGF.

III. PERFORMANCEEVALUATION

In this section, we evaluate the performance of existing ad-
dress lookup algorithms by using our proposed methods. We
use the Patricia Tree Search [8] and the Pointer Cache Method
proposed in [3] as example application of our proposed meth-
ods.

A. Target Algorithms

We briefly summarize the Patricia Tree Search and the
Pointer Cache Method in this subsection. At legacy routers,
the longest prefix matching has been performed by the binary
tree. The Patricia Tree [8] is a popular one, which eliminates
the node having only one child node. See Fig. 2 for an ex-
ample of the Patricia Tree Search. In this case, the nodes for
the fourth and fifth bit of the destination address are removed
because the routing table has only the entries beginning with
101001 when the fourth bit of the destination address is 0. The
Patricia Tree Search is simple and hence easy to implement,
but relatively slow because the number of removable nodes be-
comes decreased when the number of entries is increased. In
the worst case, the Patricia Tree Search still requires up to 32
or 128 memory references in IPv4 or IPv6, respectively.

To resolve the problem, several algorithms have been pro-
posed by using the Content Addressable Memory (CAM),
which can decrease the number of memory accesses (see [9]
and references therein). The Pointer Cache Method [3] is one
of such CAM-based algorithms, combining CAM and the Pa-
tricia Tree Search. Fig. 3 shows its composition. The Pointer
Cache Method first divides the Patricia Tree into some parts by
borders with predefined values as a prefix length of the Patricia
Tree. Then the set of pointers to the root node of each part is
stored into CAM. The address lookup for the arriving packet
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Fig. 3. Composition of Pointer Cache Method

is performed by the following procedure:
1. Searches the CAM for the pointer to the objective part

which includes the longest prefix matched entry for the
destination address.

2. Looks up the address from the part of Patricia Tree.
Because CAM is used like a cache memory for the Patricia
Tree, the performance of the Pointer Cache Method depends
on entries stored in CAM, which must be strongly affected by
the traffic characteristics such as the distribution of addresses
of arriving packets. This is why we choose the Pointer Cache
Method as an example.

B. Traffic Patterns

Before evaluating the performance, we need to determine
the parametersNa, Nd, andA(i) from the traced data. We
use one million packet headers gathered by the traffic monitor
(OC3MON [10]) at the gateway of Osaka University. Traced
data set includes 6,966 distinct destination addresses. Its BGP
information (4,669 entries) are used to construct the Patricia
Tree and CAM entries in the Pointer Cache Method. The data
is collected on January 24th, 2001. The valuesα of ISGF are
0.64 in AGP and 0.77 in AGF, respectively. For comparison
purpose, we also consider the following three kinds of address
generation methods:

Actual: A raw sequence of packet headers obtained by
OC3MON is used.

Random: A randomly chosen 32-bit value is used as the
destination address of each packet.

Trace-Random: Picks up randomly the destination address
of the packet from the traced data.

C. Performance Metrics

In our experiments, we generate ten million packets accord-
ing to the Poisson process for the input to address lookup algo-
rithms. Their destination addresses are generated by five traffic
patterns mentioned above. “Trace-Random” traffic case, AGP
and AGF uses one million packet headers of the traced data.
The buffer size of the router is set to be 3,000 packets.

We denoteS as the address lookup delay, which is the time
duration required for a longest prefix matching for the packet.



TABLE I

M AXIMUM THROUGHPUT(PATRICIA TREE SEARCH)

Input Traffic
Maximum Error

Throughput Rate
Actual 4.63 mpps —

Random 8.33 mpps 79.9%
Trace-Random 4.67 mpps 0.86%

AGP 4.63 mpps 0.00%
AGF 4.52 mpps 2.38%

In the Patricia Tree Search, the address lookup delayS is given
by

S = ts × dr, (4)

wherets is the number of times of lookup in Patricia Tree and
dr is the delay for read / comparison operations in RAM. Un-
der the present circumstance, since a read requires 5 nsec and
a comparison requires 10 nsec in RAM, the value ofdr can be
assumed to be 15 nsec. In the case of Fig. 2, since two lookups
are required to determine the longest prefix entry of the packet,
the valuets is 2 and then the valueS is estimated as 30 nsec.
An address lookup by using the Pointer Cache Method consists
of a search for CAM and a lookup in the Patricia Tree. Since
an access to CAM is performed independently of an access to
the Patricia Tree, it can be improved by performing in parallel
on the pipeline. An arriving packet at the router first searches
the longest prefix entry among all entries stored in CAM. After
the search has finished, the lookup of the packet begins if no
packets are being looked up in the Patricia Tree. Otherwise, it
is kept waiting for finishing the lookup in the Patricia Tree and
a search of a newly arriving packet for CAM does not start. In
the present situation, the search for CAM requires 15 nsec and
we used this value in our experiments.

We use the maximum throughput as the performance met-
ric, which is the reciprocal of the minimum average of packet
interarrival time if no packet is lost during the simulation. We
also obtain the behavior of the time–dependent queue length
(the number of packets queued in the buffer).

D. Simulation Results

D.1 Results of Patricia Tree Search

Table I compares simulation results of the Patricia Tree
Search among five traffic patterns (AGP, AGF and three packet
generation methods described above). In Table I, the second
column is the maximum throughput and the third column is the
relative error ratio to the maximum throughput of the “Actual”
case. The table shows that the throughput of “Random” case
is 1.8 times larger than the one of the “Actual” case. It is due
to the characteristics of the destination address distribution. In

the Patricia Tree Search, the packet lookup delay is decided by
the prefix length of the matched entry in the routing table. If
the number of packets whose destination addresses match the
longer-prefix entries of the routing table, the average lookup
delay becomes larger. Furthermore, the prefix length of the
entry shows the size of the organization belonging to it. That
is, the address space which includes the longer prefix entries
tend to include more organizations. Because the most popu-
lar traffic in the current Internet ishttp, packets tend to ac-
cess the destination address space which includes morewww
servers. From the above reason, the “Actual” traffic case tend
to match the longer prefix entries, and the address lookup de-
lay becomes larger. On the other hand, the “Random” pattern
generates uniformly–distributed addresses; the number of ac-
cesses of the entry is inversely proportional to the prefix length.
Namely, in “Random” case, the entry with the short prefix
length is preferably accessed. Therefore, “Random” case over-
estimates the performance of Patricia Tree significantly, when
compared with “Actual” case. In contrast to “Random” case,
results of “Trace-Random” case, AGF, and AGP provide good
estimations with low errors. Among three methods, AGP pro-
vides the best prediction with respect to the throughput. Note
that since the result of “Random” case is far from other traffic
patterns, we will not show the result of “Random” case in the
below.

D.2 Results of Pointer Cache Method

To see the applicability of our proposed methods to other
algorithms, we next examine the Pointer Cache Method [3].
Table II compares the maximum throughput. We can observe
that the results are almost same as the case of the Patricia Tree
Search, and our proposed methods can provide good predic-
tion.

We also show the behavior of the time-dependent queue
length in Fig. 4. From Fig. 4(a), it is observed that the behav-
ior of “Actual” case has two properties. Its fluctuation is low
(below 50 packets). However, the queue length sometimes in-
creases significantly. It is caused by the characteristic of packet
arrivals. Due to the window flow control of TCP, traffic of the
TCP connection contains a burst of packets. Of course, the
continuous arrival of packet belonging to the same flow is an-
other reason. Then, a significant increase (called asspike be-
low) appears when the packets with the long-prefix-matched
address arrive bursty. On the other hand, other three methods
show different results. In “Trace-Random” case (Fig. 4(b)),
any spike does not appear during the simulation. The behav-
ior of AGP (Fig. 4(c)) shows many spikes, but its whole fluc-
tuation is not so low, compared with “Actual” case. On the
other hand, the result of AGF (Fig. 4(d)) shows some spike
and its whole fluctuation is low, and its behavior of the time–
dependent queue length is similar to the one of the “Actual”
case. However, the overall queue length of AGF is longer than
the one of “Actual” case. This is because our proposed method
cannot generate a new address (i.e., it does not appear in the
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Fig. 4. Time–dependent Behaviors of Input Queue Length (Pointer Cache Method)

traced data) that will arrive, for “Trace-Random” traffic, AGP
and AGF are based on 6,966 distinct addresses gathered from
one million traced packet headers, while “Actual” traffic uses
ten million traced packet headers.

This is the open issue of our generation methods; we do not
consider the new address generation explicitly. One solution
may be to set the index for each entry of the routing table based
on the number of accesses, and to generate the new address
according to the index of the entry. A proposal of new address
generation algorithm is one of our future research topics.

Recall that AGF explicitly models the flow characteristics
(i.e., the number of packets in the flow, interarrival times of
flows, and the number of active flows). Thus, AGF can be
applied to flow classification algorithms (e.g., [11]) as well as
the address lookup algorithms. However, its accuracy should
be investigated as a future research topic.

IV. A PPROXIMATE MATHEMATICAL APPROACH FOR

QUICK PERFORMANCEPREDICTION

We have shown the performance prediction method of ad-
dress lookup algorithms through a simulation technique using
two methods mentioned above, but it requires much CPU pro-
cessing. If the algorithms can be analyzed by a mathematical
analysis, we can know the performance of address lookup al-
gorithms more quickly in various network conditions, which is

TABLE II

M AXIMUM THROUGHPUT(POINTER CACHE M ETHOD)

Input Traffic
Maximum Error

Throughput Rate
Actual 35.2 mpps —

Random 58.8 mpps 67.0%
Trace-Random 36.5 mpps 3.69%

AGP 35.0 mpps 0.57%
AGF 35.0 mpps 0.57%

a subject of this section.

A. Approximate Analysis Method

In this subsection, we describe the analysis method by using
the queueing system [12]. We assume that arrival packets are
stored into the buffer and processed by the First-Come-First-
Served policy. We also assume that the packet interarrival time
can be modeled by a Poisson process as indicated in, e.g., [6].
Then, we can apply aM/G/1 queueing model to predict the
average performance of the table lookup algorithms. A ratio-
nale behind this modeling approach depends on the accuracy



of the Trace-Random traffic case, which corresponds to the
above–mentioned queueing system. Recall that as shown in
Table I, the Trace-Random case was a reasonable solution for
obtaining the average performance such as throughput values.

We denoteλ as the packet arrival rate at the router. Further-
more,S is denoted as the address lookup delay. An average
of S (denoted byE[S]) is determined according to the proba-
bility density of addresses and the corresponding table lookup
delays determined by the memory access times. We define the
traffic intensityρ as

ρ = λE[S]. (5)

The traffic intensityρ is the quantity that governs the stability
of the system, and the maximum throughput can be determined
once we obtain the address distribution.

Let us introducer as the packet processing delay, which is
defined as the time duration from when a packet arrives at the
router to when the packet is forwarded to the output link. By
applying theM/G/1 queueing model, the average packet pro-
cessing delay is derived by

E[r] = E[S] +
λE[S2]
2(1 − ρ)

, (6)

whereE[S2] is the second moment about the origin ofS. Its
accuracy will be examined in the next subsection.

B. Accuracy of Mathematical Approach

We now investigate the accuracy of the average packet pro-
cessing delay analysis described in the previous subsection.
In the previous section, we have shown that AGF provides
the good performance predictions when comparing with the
”Actual” traffic case. We thus investigate the accuracy of the
analysis by comparing with the AGF case. The delay analy-
sis requires the distribution of the address lookup delayS that
we determined by 6,966 addresses gathered from one million
traced packet headers.

Fig. 5 compares the simulation and analysis results for the
average packet processing delay dependent on the packet ar-
rival rate in the case of the Patricia Tree Search. As shown in
the figure, when the traffic load is not high, we can observe the
good agreements between simulation and analysis results.

However, when the traffic load becomes high, theM/G/1
analysis underestimates the packet processing delay. In our
M/G/1 queueing model, the address lookup delay for each
packet is chosen from the distribution of lookup delays and
time–dependent correlation for packet addresses is not con-
sidered. That is the reason for that we observed the spikes
in Fig. 4(a). For a more accurate analysis, we need to take
account of it. Otherwise, the simulation using AGF is a rea-
sonable approach to predict the performance under the heavy–
loaded condition.
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V. CONCLUSION

In this paper, we have proposed performance evaluation
methods of the address lookup algorithms based on the sta-
tistical model obtained from the real traffic. We have found
out that through a packet driven simulation, we can evaluate
them accurately with our proposed method, AGF. And we also
have discussed the accuracy of the average packet processing
delay analysis using theM/G/1 queueing model.

As a future topic, we need to validate the applicability of
AGF to the packet classification algorithm.
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