
A Resource/Connection Management Scheme
for HTTP Proxy Servers

Takuya Okamoto1, Tatsuhiko Terai1, Go Hasegawa2, and Masayuki Murata2

1 Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
{tak-okmt, terai}@ics.es.osaka-u.ac.jp

2 Cybermedia Center, Osaka University
1-30 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
{hasegawa, murata}@cmc.osaka-u.ac.jp

Abstract. Although many research efforts have been devoted to the network con-
gestion against an increase of the Internet traffic, there has been a little concern
on improvement of the performance of Internet hosts in spite of the projection
that the bottleneck is now being shifted from the network to hosts. We have pro-
posed SSBT (Scalable Socket Buffer Tuning), which is intended to improve the
performance of Web servers by maintaining their resources effectively and fairly,
and validated its effectiveness through the simulation and implementation exper-
iments. In the current Internet, however, a significant amount of Web document
transfer requests are through HTTP proxy servers. Accordingly, in this paper, we
propose a new resource management scheme for proxy servers to improve their
performance and to reduce Web document transfer time via the proxy servers.
Our proposed scheme has the following two components. One is an enhanced E-
ATBT, which is an enhancement version of our previous SSBT for proxy servers
by taking account of different characteristics among TCP connections. The other
is a scheme that manages persistent TCP connections at proxy servers to avoid
newly arriving TCP connections from being rejected due to lack of resources.
We validate an effectiveness of our proposed scheme through simulation experi-
ments, and confirm that it can manage proxy server resources effectively.

1 Introduction

With the rapid growth of Internet users, many research efforts have been directed to
avoiding and dissolving network congestion against an increase of network traffic.
However, there has been a little concern on improvement of the performance of Internet
hosts in spite of the projection that the performance bottleneck is now being shifted
from the network to endhosts.

In [1], we have proposed SSBT (Scalable Socket Buffer Tuning) which is intended
to improve the performance of Web servers by maintaining their resources effectively
and fairly. SSBT has two major components; E-ATBT (Equation-based Automatic TCP
Buffer Tuning) and SMR (Simple Memory-copy Reduction) schemes. In E-ATBT, we
maintain an ‘expected’ throughput value of each active TCP connection, which is deter-
mined by an analytic estimation [2]. It is characterized by packet loss ratio, RTT (Round

2 Takuya Okamoto et al.

Trip Time), and RTO (Retransmission Time Out), which are easily monitored by a
sender host. Then, the send socket buffer is assigned to each connection based on its
expected throughput with consideration on a max-min fairness among connections. The
SMR scheme provides a set of socket system calls in order to reduce the number of
memory copy operations at the sender host in TCP data transfer. The SMR scheme is
alike as other schemes [3, 4], but it is simpler to implement.

In the current Internet, there are many requests for Web documents transfer via
HTTP proxy servers [5]. Since the proxy servers are usually prepared by ISPs (Inter-
net Service Providers) for their customers, such proxy servers must accommodate a
large number of the customers’ HTTP accesses simultaneously. Furthermore, the proxy
servers should handle both of upward TCP connections (from the proxy server to Web
servers) and downward TCP connections (from the client hosts to the proxy server).
Therefore, it is likely that the proxy server becomes the bottleneck in Web document
transfer, even when both of the network bandwidth and the Web server performance
are large enough. That is, to reduce the Web document transfer time, a performance
enhancement of the proxy servers should next be considered.

In this paper, we first point out several problems in handling TCP connections at
the HTTP proxy server. The one is the assignment of the socket buffer for TCP con-
nections at the proxy server. When a TCP connection is not assigned the proper size
of send/receive socket buffer according to its throughput, the assigned socket buffer
may be left unused or insufficient, which results in waste of the socket buffer. Another
problem is the management of persistent TCP connections, which tends to waste the
resource of the busy proxy server. When a proxy server accommodates many persistent
TCP connections without any effective management, its resources are kept assigned to
those connections whether those connections are actually ‘active’ or not. Then new TCP
connections cannot be established since the server resources are short.

We propose a new resource management scheme for proxy servers to resolve such
problems, and then to reduce Web document transfer time via the proxy servers. Our
proposed scheme has following two features. One is an enhanced E-ATBT, which is
an enhancement version of our previous E-ATBT for proxy servers. Differently from
the Web servers, the proxy server should handle both upward and downward TCP con-
nections and behave as a client host to obtain Web documents and in-line images from
Web servers. We therefore enhance E-ATBT to effectively handle a dependency be-
tween upward and downward TCP connections and to assign its receive socket buffer
size dynamically. The other is a resource management scheme that can avoid newly
arriving TCP connections from being rejected due to lack of resources for establishing
them on the proxy server. It involves the management of persistent TCP connections
provided by the HTTP/1.1. The persistent connection can omit the overhead of TCP’s
three-way handshake and then reduce the document transfer time by HTTP. However,
when the persistent TCP connection is unused until it is closed by timeout mechanism,
the resources assigned for the TCP connection are wasted. The proposed scheme inten-
tionally tries to close the persistent connections when the resources of the proxy server
are shorthanded.

A Resource/Connection Management Scheme for HTTP Proxy Servers 3

Internet
 Upward

 TCP connection

 Downward

 TCP connection

Web servers

HTTP proxy server

Client hosts

Request a document

deliver the document

Request the document

to the original Web server

get the document from

the original Web server

Hit

No Hit

Internet

Fig. 1. HTTP Proxy Server

2 Background

2.1 Proxy Server

An HTTP proxy server works as an agent for Web client hosts that request Web doc-
uments. When it receives Web document transfer requests from the Web client host, it
obtains the requested document from the original Web servers on behalf of the client
host and delivers it to the client. It also caches obtained Web documents. When other
client hosts request the same documents, it transfers the cached documents, which re-
sults in that the document transfer time is much reduced. For example, it is reported
in [6] that using Web proxy servers reduces document transfer time by up to 30%. Also,
when the cache is hit, the document transfer is performed without any connection estab-
lishment to Web servers. Thus, the congestion within the network and at Web servers
can also be reduced.

The proxy server accommodates a large number of connections, which are con-
nected from Web client hosts and to Web servers as depicted in Figure 1. It is a different
point from Web servers. The proxy server behaves as a sender host for the downward
TCP connection (between the client host and the proxy server) and as a receiver host for
the upward TCP connection (between the proxy server and the Web server). Therefore,
if the resource management is not appropriately configured at the proxy server, the doc-
ument transferring time increases even when the network is not congested or the load
at the Web server is not high. That is, careful and effective resource management is a
critical issue for improving the performance of the proxy server. In the current Internet,
however, most proxy servers including those in [7, 8] are lack of such considerations.

Resources of HTTP proxy servers that we focus in this paper are mbuf, file de-
scriptor, control blocks, and socket buffer. Those are closely related to the performance
of TCP connections in transferring Web documents. Mbuf, file descriptor, and control
blocks are resources for TCP connections. The amount of those resources cannot be
changed dynamically according to the requirement of the proxy server, since it is deter-
mined when the system kernel is booted or when the proxy server is activated [9]. When

4 Takuya Okamoto et al.

at least one of the resources lacks, therefore, newly arriving TCP connections for Web
document transfer have to wait for other connections to be closed and their assigned
resources to be released.

The socket buffer is used for data transfer operations between user applications and
the sender/receiver TCP. When the user application transmits data using TCP, the data
is copied to the send socket buffer and subsequently it is copied to the mbufs (or mbuf
clusters). The size of the assigned socket buffer is a key issue for the effective data
transfer by TCP. Suppose that a server host is sending TCP data to two client hosts;
one a 64 Kbps dial-up (say, client A) and the other a 100 Mbps LAN (client B). If the
server host assigns equal size of send socket buffers to both client hosts, it is likely that
the amount of the assigned buffer is too large for client A and too small for client B,
because of the differences of capacity (more strictly, bandwidth-delay products) of their
connections. For an effective buffer allocation to both client hosts, a compromise of the
buffer usage should be taken into account.

We proposed an E-ATBT scheme [1], which assigns the receive socket buffer to each
TCP connection dynamically according to its throughput estimated from the observed
network parameters, such as packet loss ratio, RTT, and RTO. That is, a sender host
calculates the average window size of its TCP connection based on the analysis result
in [10] from the above three parameters. The throughput of the TCP connection is then
obtained by considering the performance degradation caused by TCP’s retransmission
timeout. Finally, we estimate the required receive socket buffer size as multiplication of
the estimated throughput and RTT of the TCP connection. By taking into account the
observed network parameters, the resource at the Web server is appropriately allocated
to connections in various network environments.

E-ATBT is applicable to HTTP proxy servers, since the proxy servers also accom-
modate many TCP connections issued by clients in various environments. However,
since proxy servers have a dependency between upward and downward TCP connec-
tions, a straightforward application of E-ATBT is insufficient. Furthermore, the proxy
server behaves as a receiver host for the upward TCP connection to the Web server, we
have to consider the management scheme for the receive socket buffer, which was not
considered in the original E-ATBT.

2.2 Persistent TCP Connection of HTTP/1.1

In recent years, many Web servers and client hosts (namely, Web browsers) support a
persistent connection option, which is one of the important functions of HTTP/1.1 [11].
In the older version of HTTP (HTTP/1.0), the TCP connection between server and client
hosts is immediately closed when the document transfer is completed. However, since
Web documents have many in-line images, it is necessary to establish TCP connections
many times to download them in HTTP/1.0. It results in a significant increase of doc-
ument transfer time since the average size of Web documents at several Web servers is
about 10 [KBytes] [12, 13]. The three-way handshake in each TCP connection estab-
lishment makes the situation worse.

In the persistent connection of HTTP/1.1, on the other hand, the server preserves the
status of the TCP connection, which includes the congestion window size, RTT, RTO,
ssthresh, and so on, when it finishes the document transfer, and re-uses the connection

A Resource/Connection Management Scheme for HTTP Proxy Servers 5

and its status when other documents are transferred by using the same HTTP session.
Then, the three-way handshake can be omitted. However, since it keeps the TCP con-
nection established whether the connection is active (in use for packet transfer) or not,
the resources at the server are wasted when the TCP connection is inactive. Therefore,
the significant portion of the resources may be wasted in order to keep the persistent
TCP connections at the proxy server accommodating many TCP connections.

One solution against this problem is simply to discard HTTP/1.1 and to use HTTP/1.0,
since HTTP/1.0 closes the TCP connection when the document transfer is finished.
However, HTTP/1.1 has other elegant mechanisms such as the pipelining and the con-
tents negotiation [11]. We should therefore develop an effective resource management
scheme under HTTP/1.1. Our solution is that the proxy server aggressively closes the
persistent TCP connections that are unnecessarily wasting the proxy resources, as the
resources become short.

3 Algorithm and Implementation Issues

In this section, we propose a new resource management scheme suitable to the HTTP
proxy server, which consists of a new management scheme of send/receive socket
buffer, and a handling algorithm of persistent TCP connections.

3.1 New Socket Buffer Management Method

Handling the Relation of Upward and Downward Connections

A HTTP proxy server relays a document transfer request to a Web server for a Web
client host. Thus, there is a close relation between an upward TCP connection (from the
proxy server to the Web server) and a downward TCP connection (from the client to
the proxy server). That is, the difference of the throughput of both connections should
be taken into account when socket buffers are assigned to them. For example, when the
throughput of a certain downward TCP connection is larger than that of other concurrent
downward TCP connections, the larger size of socket buffer should be assigned to the
TCP connection by using E-ATBT. However, if the throughput of the upward TCP
connection corresponding to the downward TCP connection is low, the send socket
buffer assigned to the downward TCP connection is likely not to be fully utilized. In
this case, the unused send socket buffer should be assigned to the other concurrent TCP
connections having smaller socket buffers, hence, that the throughputs of those TCP
connections would be improved.

There is one problem to realize the above-mentioned method. The TCP connec-
tion is identified with the control blocks, tcpcb, by the kernel. However, the relation
between the upward and downward connections cannot be known by the kernel. Two
possible ways to overcome this problem are considered as follows:

– The proxy server monitors the utilization of the send socket buffer of downward
TCP connections. Then, it decreases the assigned buffer size of connections whose
send socket buffers are not fully utilized.

6 Takuya Okamoto et al.

– When the proxy server sends the document transfer request to the Web server, the
proxy server attaches an information of the relation to the packet header.

The former algorithm can be done only by the modification of the proxy server. On
the other hand, the latter algorithm needs the interaction of the HTTP protocol. In the
higher abstract model, the above two algorithms have a same effect. However, the latter
has a implementation difficulty while it can achieve a precise control.

Control of Receive Socket Buffer

In most of past researches, it was assumed that a receiver host has enough large size of
receive socket buffer, considering that the performance bottleneck of the data transfer is
not at the endhosts, but within the network. Therefore, many OSs assign a small size of
the receive socket buffer to each TCP connection. For example, the default size of the
receive socket buffer in the FreeBSD system is 16 [KBytes]. Now it is very small [14]
because the network bandwidth is dramatically increased in the current Internet, and
the performance of the Internet servers becomes higher and higher.

To avoid the performance limit by the receive socket buffer, the receiver host should
adjust its receive socket buffer size to the congestion window size of the sender host.
This can be done by monitoring the utilization of the receive socket buffer, or by adding
information about the window size to data packet header, as described above. In the
simulation in the next section, we suppose that the proxy server can obtain complete in-
formation about required sizes of the receive socket buffer of upward TCP connections
and control them according to the required size.

3.2 Connection Management

As explained in Subsection 2.2, a careful treatment of persistent TCP connections on the
proxy server is necessary for an effective usage of the resources of the proxy server. We
propose a new management scheme of persistent TCP connections at the proxy server
by considering the amount of the remaining resources. The key idea is as follows. When
the load at the proxy server is low and the remaining resources are much enough, it tries
to keep as many TCP connections as possible. On the other hand, when the resources at
the proxy server are going to be short, the proxy server tries to close the persistent TCP
connections and free the resources, such that the released resources can be used for new
TCP connections.

The remaining resources of proxy servers should be monitored for realizing the
above-mentioned control method. The resources for establishing TCP connections at
the proxy server include mbuf, file descriptor, and control blocks. The total amount of
these resources cannot be changed dynamically after the kernel is booted. However, the
total and remaining amounts of these resources can be observed in kernel system [9].
Therefore, we introduce threshold values of the utilization for these resources, and if
one of utilization level of those resources, calculated by the kernel system at regular
intervals, reaches the threshold, the proxy server starts closing the persistent TCP con-
nections and releasing the resources assigned to the connections.

A Resource/Connection Management Scheme for HTTP Proxy Servers 7

IP address, port number time

socket file descriptor NULL

hash function

(IP address, port number)

time scheduling list

(192. 168. 10. 200, 10010)

(192. 168. 17. 10, 12049)

(192. 168. 240. 3, 10338)

(192. 168. 2. 155, 10110)

246

36

159

120

16 : 20 ' 40

16 : 20 ' 42

16 : 20 ' 48

16 : 20 ' 53

Fig. 2. Management Scheme of Persistent TCP Connections

The proxy server maintains persistent TCP connections as follows. See also Fig-
ure 2. When a TCP connection becomes idle, the proxy server records the connection
and the current time. For fast lookup of the record, we use the hashing algorithms, of
which key is the combination of source/destination IP addresses and the port number
of the TCP connection. We also introduce a list, called a time scheduling list, to put the
persistent connections in order of the time length that they are persistent. When a new
persistent TCP connection is registered hash table, it is added at the end of the time
scheduling list, so that the proxy server can select the older persistent TCP connections
to be closed.

Each entry in the hash table has the socket file descriptor of the corresponding to
the TCP connection, which is used later to identify the connection. When the proxy
server closes some of persistent TCP connections, it selects them from the top of the
time scheduling list, by which the proxy server can close the older persistent connec-
tions. When a certain persistent TCP connection in the hash table becomes active before
closed, or when it is closed by persistent timer expiration, the proxy server removes the
corresponding entry from the hash table and the time scheduling list. All operations on
the persistent TCP connections can be performed by simple pointer manupilations and
hash operations.

For the further effective resource usage, we also add the mechanism that the amount
of resources assigned to the persistent TCP connections is decreased gradually after the
connection is inactive. The socket buffer is not necessary at all when the TCP connec-
tion becomes idle. However, we gradually decrease the send socket/receive buffer size
of persistent TCP connections by taking account of the fact that as the connection idle
time continues, the possibility that the TCP connection is ceased becomes large.

4 Simulation Experiments

In this section, we investigate the effectiveness of our proposed scheme through simu-
lation experiments using ns-2 [15]. Figure 3 shows the simulation model. In this figure,
the bandwidths of the links between client hosts and an HTTP proxy server and those
between the proxy server and Web servers are all set to 100 Mbps. To see the effect of

8 Takuya Okamoto et al.

Client Hosts

HTTP proxy server

Web servers

Hr= 0.5

propagation delay : 10 - 100 msec
loss probability : 0.0001 - 0.01

of client hosts : 50, 100, 200, 500
of Web servers : 50

propagation delay : 10 - 200 msec
loss probability : 0.0001 - 0.01

Fig. 3. Simulation Model

various network conditions, we set the packet loss probability on each link to be 0.0001,
0.0005, 0.001, 0.005 or 0.01. That is, one-fifth of the links is assigned one of the above
values. The propagation delay of each link between the client hosts and the proxy server
is also varied as ranged from 10 msec and 100 msec, and that between the proxy server
and the Web servers is from 10 msec and 200 msec. The propagation delays of each link
is determined randomly from the above ranges. The number of Web servers is fixed at
50, and that of the client hosts is changed as 50, 100, 200 and 500. We ran 300 sec
simulation in each experiment.

In the simulation experiments, each client host selects one of the Web servers at ran-
dom and generates a document transfer request via the proxy server. The distribution
of the requested document size is obtained from [12], which is given by the combina-
tion of a log-normal distribution for small documents and a Pareto distribution for large
ones. Note that since we focus on the resource and connection management of proxy
servers, we have not considered detailed algorithms of the caching behavior, including
the cache replacement algorithms. Instead, we set the hit ratio, H r, to 0.5. Using Hr,
the proxy server decides either to transfer the requested document to the client directly,
or to deliver it to the client after downloading it from the Web server. The proxy server
has 3200 KBytes of socket buffer and assigns it as send/receive socket buffer to TCP
connections. It means that the original scheme can establish at most 200 TCP connec-
tions concurrently, since it fixedly assigns 16 KBytes of send/receive socket buffer to
each TCP connection.

In what follows, we compare the performance of the following 4 schemes; scheme
(1) which does not use any enhanced algorithms in this paper, scheme (2) which uses
E2-ATBT, scheme (3) which uses E2-ATBT and the connection management scheme
described in Subsection 3.2, and scheme (4) which uses E 2-ATBT and the connection
management scheme with the algorithm that gradually decreases the socket buffer as-
signed to the persistent TCP connections. Note that for scheme (3) and (4), we do not
explicitly consider the amount and the threshold value of each resource, as explained
in Subsection 3.2. Instead, we introduce Nmax, the maximum number of connections
which can be established simultaneously, to simulate the limitation of the proxy server

A Resource/Connection Management Scheme for HTTP Proxy Servers 9

resources. In scheme (1) and (2), newly arrived requests are rejected when the num-
ber of TCP connections in the proxy server is Nmax. On the other hand, scheme (3)
and (4) forcibly terminate some of persistent TCP connections that are unused for the
document transfer, and establish the new TCP connections. For scheme (4), we exclude
persistent TCP connections from calculation process of E2-ATBT algorithm, and halve
the assigned size of socket buffer every 3 sec. The minimum size of the socket buffer is
1 KByte.

4.1 Evaluation of Proxy Server Performance

We first investigate the performance of the proxy server. Here we define the perfor-
mance of proxy server as the total size of the documents transferred in both directions
by the proxy server during 300 sec simulation time. In Figure 4, we plot the perfor-
mance of the proxy server as a function of the number of client hosts. Here, we set
Nmax to 200. It is clear from this figure that the performance of the original scheme
(scheme (1)) is decreased in the case of the larger number of client hosts. It is because
when the number of client hosts is larger than Nmax, the proxy server rejects some of
document transfer requests, although most of Nmax TCP connections are idle, which
means that they do nothing but waste the resources of the proxy server. The results of
scheme (2) in Figure 4 shows that E2-ATBT can improve the proxy server performance
regardless of the number of client hosts. However, it also shows that the performance
also degrades when the number of client hosts increases. This means that E 2-ATBT
cannot solve the problem of ‘idle’ persistent TCP connections, and that it is necessary
to introduce a connection management scheme to overcome this problem.

We can also see that scheme (3) can significantly improve the performance of the
proxy server, especially when the number of client hosts is large. It is since when the
proxy server cannot accept all connections from the client hosts, which corresponds
to the case where the number of client hosts is larger than 200 in Figure 4, scheme (3)
would close idle TCP connections for newly arriving TCP connections to be established.
It results in that the number of TCP connections which actually transfer documents
increases largely. Scheme (4) can also improve the performance of the proxy server,
especially when the number of client hosts is small, as shown in Figure 4. In the case of
larger number of client hosts, however, there is little performance improvement. It can
be explained as follows. When the number of client hosts is small, most of the persistent
TCP connections at the proxy server are kept established, since the proxy server has
enough resources to accommodate 50 client hosts. Therefore, the socket buffer assigned
to the persistent TCP connections can be effectively re-assigned to other active TCP
connections by scheme (4). When the number of client hosts is large, on the other hand,
the persistent TCP connections are likely to be closed before scheme (4) begins to
decrease the assigned socket buffer. It results in that scheme (4) can do nothing against
the persistent TCP connections.

4.2 Evaluation of Response Time

We next show the evaluation results of response time of document transfer, which cor-
responds to the user-perceived performance. We define the response time as the time

10 Takuya Okamoto et al.

0

200

400

600

800

1000

1200

To
ta

l T
ra

ns
fe

r S
iz

e
[M

B
yt

es
]

Number of client hosts

scheme (1)
scheme (2)
scheme (3)
scheme (4)

50 500200100

Fig. 4. Simulation Result: Proxy Server Performance

from when a client host sends a document transfer request to when it receives the re-
quested document. It also includes the waiting time for connection establishment. Fig-
ure 5 shows the simulation results. We plot the response time as a function of document
size for the four schemes. From this figure, we can clearly observe that the response
time is much improved when our proposed scheme is applied especially when the num-
ber of connections is large (Figure 5 (b)-(d)). However, when the number of client hosts
is 50, the proposed scheme does not help improving the response time. For this, the
server resources are enough to accommodate 50 client hosts and all TCP connections
are soon established at the proxy server. Therefore, response time can not be improved
so much. Note that since E2-ATBT can improve the throughput of TCP data transfer to
some degree, the proxy server performance can be improved as shown in the previous
subsection.

Although schemes (3) and (4) can improve the response time largely, there is little
difference between the two schemes. This can be explained as follows. Scheme (4)
decreases the assigned socket buffer to persistent TCP connections and re-assign it to
other active TCP connections. Although the throughput of the active TCP connections
becomes improved, its effect on the response time is very small compared with the
effect of introducing scheme (3). However, scheme (4) is worth to be used at the proxy
server, since scheme (4) can give a good effect on the proxy server performance as
shown in Figure 3.

From all of the above simulation results, we can say that scheme (4), which has
all enhanced mechanisms proposed in this paper, is the best one to improve both the
performance of the proxy server and response time of client hosts, regardless of the
number of client hosts.

5 Conclusion

In this paper, we have proposed a new resource management scheme for HTTP proxy
servers. Our proposal scheme has two algorithms. One is an enhanced E-ATBT, the
scheme for managing the socket buffer considering about the relation between the

A Resource/Connection Management Scheme for HTTP Proxy Servers 11

0.1

1

10

100

10 100 1000 10000 100000 1e+06 1e+07 1e+08

R
es

p
o
n
se

 T
im

e
[s

ec
]

Document Size [Byte]

scheme (1)
scheme (2)
scheme (3)
scheme (4)

(a) Number of Client Hosts: 50

0.1

1

10

100

10 100 1000 10000 100000 1e+06 1e+07

R
es

p
o

n
se

 T
im

e
[s

ec
]

Document Size [Byte]

scheme (1)
scheme (2)
scheme (3)
scheme (4)

(b) Number of Client Hosts: 100

0.1

1

10

100

10 100 1000 10000 100000 1e+06 1e+07

R
es

p
o
n
se

 T
im

e
[s

ec
]

Document Size [Byte]

scheme (1)
scheme (2)
scheme (3)
scheme (4)

(c) Number of Client Hosts: 200

1

10

100

10 100 1000 10000 100000 1e+06 1e+07 1e+08

R
es

p
o
n
se

 T
im

e
[s

ec
]

Document Size [Byte]

scheme (1)
scheme (2)
scheme (3)
scheme (4)

(d) Number of Client Hosts: 500

Fig. 5. Simulation Result: Response Time

upward and downward TCP connections, which is one of the characteristics of the
proxy servers. It also manages the receiver socket buffer, which is not considered in
the original E-ATBT. The other is the scheme for managing TCP connections at the
proxy servers. It maintains persistent TCP connections, and it aggressively closes them
when the resources lack. We have evaluated our scheme through some simulation ex-
periments, and confirmed that our scheme can improve the performance of the proxy
servers, and reduce document transfer time experienced by client hosts.

We are now implementing the proposed scheme to the actual proxy server, and to
evaluate it through experiments using the actual network. We also plan to introduce
other kinds of the resources of Web servers and proxy servers to our resource manage-
ment scheme. For example, a CPU processing time should be considered for executing
CGI programs, which is one of the bottleneck of the busy Web servers.

12 Takuya Okamoto et al.

Acknowledgements

This work was partly supported by the Research for the Future Program of the Japan
Society for the Promotion of Science under the Project “Integrated Network Archi-
tecture for Advanced Multimedia Application Systems,” Telecommunication Advance-
ment Organization of Japan under the Project “Global Experimental Networks for In-
formation Society Project,” and the “Research on High-performance WWW server for
the Next-Generation Internet” program of from the Telecommunications Advancement
Foundation.

References

1. G. Hasegawa, T. Terai, T. Okamoto, and M. Murata, “Scalable socket buffer tuning for high-
performance Web servers,” in Proceedings of IEEE ICNP 2001, Nov. 2001.

2. G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara, “Comparisons of packet schedul-
ing algorithms for fair service among connections on the internet,” in Proceedings of IEEE
INFOCOM 2000, Mar. 2000.

3. A. Gallatin, J. Chase, and K. Yocum, “Trapeze/IP: TCP/IP at near-gigabit speeds,” in Pro-
ceedings of 1999 USENIX Technical Conference, June 1999.

4. P. Druschel and L. Peterson, “Fbufs: A high-bandwidth cross-domain transfer facility,” in
Proceedings of the Fourteenth ACM symposium on Operating Systems Principles, pp. 189–
202, Dec. 1993.

5. Proxy Survey, available at http://www.delegate.org/survey/proxy.cgi.
6. A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich, “Performance of Web

proxy caching in heterogeneous bandwidth environments,” in Proceedings of IEEE INFO-
COM ’99, pp. 107–116, 1999.

7. Squid Home Page, available at http://www.squid-cache.org/.
8. Apache proxy mod proxy, available at http://httpd.apache.org/docs/mod/

mod_proxy.html.
9. M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman, The Design and Implemen-

tation of the 4.4 BSD Operating System. Reading, Massachusetts: Addison-Wesley, 1999.
10. J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP throughput: A simple model

and its empirical validation,” in Proceedings of ACM SIGCOMM ’98, pp. 303–314, Aug.
1998.

11. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext transfer protocol
– HTTP/1.1,” Request for Comments (RFC) 2068, Jan. 1997.

12. P. Barford and M. Crovella, “Generating representative Web workloads for network and
server performance evaluation,” in Proceedings of the 1998 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems, pp. 151–160, July
1998.

13. M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of World Wide Web traf-
fic for capacity dimensioning of Internet access lines,” Performance Evaluation, vol. 34,
pp. 249–271, Dec. 1999.

14. M. Allman, “A Web server’s view of the transport layer,” ACM Computer Communication
Review, vol. 30, pp. 10–20, Oct. 2000.

15. The VINT Project, “UCB/LBNL/VINT network simulator - ns (version 2).” available
at http://www.isi.edu/nsnam/ns/.

