Analysis of Dynamic Behaviors of Many TCP Connections Sharing Tail-Drop / RED Routers

> Go Hasegawa Osaka University, Japan hasegawa@cmc.osaka-u.ac.jp

Backgrounds

TCP (Transmission Control Algorithm) Majority in the current Internet, also in the future

Analytic investigation is necessary to understand its characteristics

Past researches on TCP throughput analysis

Long-term average throughput

Short-term throughput is important for short file transfer

Assume constant packet loss ratio

Packet loss ratio changes dynamically due to bursty packet loss

Assume RED works fine at the router

Bad parameter setting degrades RED performance, causing bursty packet loss

Objectives

Analysis of window size distribution of TCP connections

- Using simple <u>Markov modeling</u> of TCP behavior
- Many TCP connections accommodated
- TD (Tail-Drop) and RED (Random Early Detection)
- Effect of <u>bursty packet loss</u>
- Evaluation of TD/RED routers in terms of ...
 - Short-term fairness among TCP connections
 - Effect of poor parameter set of RED
 - Effect of TD buffer size

Network model

Sender Host 1

Sender Host 2

Sender Host N

N sender hosts transmit packets to receiver host by TCP Reno

Receiver Host

- Two packet dropping disciplines at router
 - TD (Tail Drop)

<u>TD/RED Router Buffer Size:</u> B packets

RED (Random Early Detection)

Focus on changes of window size, and ssthresh value of TCP connection

Markov modeling of TCP behavior

- State is a combination of window size and ssthresh values of a TCP connection
 (w_i, t_i)
- State transition occurs at every RTT
 cwnd increases when no packet loss occurs
 cwnd and *ssth* decrease when packet loss occurs
- State transition probabilities are dependent on...
 - Packet loss probability at the router buffer

Slow start, congestion avoidance algorithms of TCP

Increasing window size

- When no packet loss occurs
 Probability: (1 p)^{wi}
- State transition from (w_i, t_i) to ...
 [2w_i, t_i]
 - When w_i < (1/2)t_i (Slow Start Phase)
 - 🗆 (ti , ti)
 - When (1/2)t_i < w_i < t_i (Phase Shift)
 - □(*w_i+1, t_i*)
 - When t_i < w_i (Congestion Avoidance Phase)

Decreasing window size

When packet loss occurs

Probability: 1-(1-p)^{wi}

State transition from (w_i, t_i) to ...

□ (1, w_i/2)

When <u>timeout</u> occurs

□ (*w_i/2, w_i/2*)

When <u>fast retransmit</u> occurs

Probability of timeout

Dependent on *w_i* and number of lost packets in a window

27th, Nov 2001

Packet loss probability: p

- Past researches assume <u>p is constant</u>
- Actually dependent on...
 - Router buffer size: B
 - Window size: W_i
 - Packet discarding discipline
 - TD (Tail Drop), RED (Random Early Detection)

Tail-drop router

- Bursty packet loss occurs when the router buffer overflows
- To calculate p, we have derived ...
 - *poverflow*: frequency of buffer overflow
 - Loverflow: # of lost packets in each buffer overflow
 - L_i: # of lost packets for each TCP connection in each buffer overflow

 $= \rho = min(1, \rho_{overflow} L_i/W_i)$

Tail-drop router (2)

Poverflow: frequency of buffer overflow Considering <u>queue dynamics</u> 1/(N(W_f - Nw')

Loverflow: # of lost packets in each buffer overflow

Each TCP connection increases its window size by 1 packet at every RTT

N packets are lost in total

L_i: # of lost packets for each TCP connection in each buffer overflow

Proportional to window size of each TCP connection

RED router

Packet discarding probability is determined from <u>average queue length</u>

For applying to our model, we use instantaneous queue length;

$$p_{red}(q) = \begin{cases} 0 & \text{if } q < \min_{th} \\ \frac{q - \max_{th}}{\max_{th} - \min_{th}} & \text{if } \min_{th} \le q < \max_{th} \\ \frac{q \cdot \max_{p} + (q - \max_{th})}{q} & \text{if } \max_{th} \le q \end{cases}$$

RED router (2)

q: queue length

Assume that other TCP connections are in steady state, and queue length is affected only by w_i

$q = ((N-1)/N)w^* + w_i - 2\tau\rho$

$\square \rho = \rho_{red}(q)$

Accuracy of Analysis

N=1000, BW/=1.5 Mbps, τ =2 msec

Fairness evaluation

Fairness of TD is much affected by buffer size Variation of window size of RED is small, <u>regardless of buffer size</u> RED can provide <u>better</u> <u>fairness in short-term</u> <u>TCP throughput</u>

Conclusion

Analysis of window size distribution of TCP connections

- TD/RED disciplines
- Burst packet loss

Fairness evaluation of TD/RED router

RED can give short-term fairness among connections

RED router

- Probability is changed according to average queue length
- Avoid buffer overflow, keep queue length low

²⁷th, Nov 2001