

Analyzing the Impact of TCP Connections Variation on Transient Behavior of RED Gateway

Motohisa Kisimoto Graduate School of Engineering Science Osaka University

E-mail:kisimoto@ics.es.osaka-u.ac.jp

Feb,1, 2002

Contents

- Background
- RED Gateway
- Analytic Model
- Transient Behavior Analysis
- Numerical Examples
- Conclusion and Future Work

Background

- TCP (Transmission Control Protocol)
 - Window-based congestion control
 - End-to-end congestion control
 - Assume nothing about a gateway's operation algorithm
- AQM (Active Queue Management)
 - Support end-to-end congestion control mechanism of TCP
 - RED is one of promising gateway

Characteristic of RED

- Compare RED with conventional Drop-Tail
 - Average queue length is kept low
 - A global synchronization problem is avoided
 - RED can improve the fairness among the connections
 - Effectiveness of RED is fully dependent on a choice of control parameters

Studies on RED

- A number of studies on the steady state performance using simulation experiments
- A few studies analyzing the characteristics of RED
 - Stability and transient behavior in the steady state
 - The number of TCP connections changes in an actual network

Feb,1, 2002

Objective

- When the number of TCP connections is increased
 - The traffic increases temporary
 - The possibility of buffer overflow
- When the number of TCP connections is decreased
 - The traffic decreases temporary
 - The possibility of buffer underflow

- Analyzing the transient behavior of the RED gateway
 - Taking account of the variation of TCP connections
 - Focus on the dynamics of the number of packets in the RED gateway's buffer

Feb,1, 2002

Analytic Model

The average state transition equations

 $w(k+\bar{s}(k)) = \frac{w(k)+s(k)-1}{2}$ $q(k+\bar{s}(k)) \cong n(k+\bar{s}(k))w(k+\bar{s}(k)) - B\tau$ $\bar{q}(k+\bar{s}(k)) \cong (1-q_w)^{\overline{X}(k)}\bar{q}(k) + \{1-(1-q_w)^{\overline{X}(k)}\}q(k)$

reference[5]: H.Ohsaki,M.Murata,and H.Miyahara "Steady state analysis of the RED gateway: stability,transient behavior and parameter setting," to appear in IEICE Transactions on Communications, Jan. 2002.

Feb,1, 2002

Linear approximation

- Around their average equilibrium values
- A is state transition matrix

$$\delta \mathbf{x} (k + \overline{s} (k)) = A \delta \mathbf{x} (k)$$
$$\delta \mathbf{x} (k) \equiv \begin{bmatrix} w(k) - w^* \\ q(k) - q^* \\ \overline{q}(k) - \overline{q}^* \\ n(k) - n^* \end{bmatrix}$$

Types of TCP Connections Variation

- Four types of changes in the number of TCP connections
 - All TCP connections are in the congestion avoidance phase
 - 1. End their data transmissions
 - 2. Resume their data transmissions after short idle period
 - $-\Delta N$ TCP connections are in the slow start phase
 - 3. Resume their data transmissions after long idle period
 - 4. Newly start their data transmissions

All TCP connections are in the congestion avoidance phase $u(k) = \begin{cases} \Delta N & \text{if } k = i \\ 0 & \text{otherwise} \end{cases}$ $\delta \mathbf{x}(k + s(k)) = \mathbf{A} \delta \mathbf{x}(k) + \mathbf{B} u(k)$ $q(k) = \mathbf{C} \delta \mathbf{x}(k)$ $\mathbf{B} = [0 \ 0 \ 0 \ 1]^T$ C = [0100]

SISO model

- Single–Input Single–Output model
- The dynamics of the current queue length

k $q(k) = \sum u(i)\delta \mathbf{x}(k-i)$ i=0

ΔN TCP connections are in the slow start phase

 $u'(k) = \sum_{i=1}^{\Delta N} (w_i(k) - w_i(k-1))$

 $\delta \mathbf{x}(k + s(k)) = \mathbf{A} \delta \mathbf{x}(k) + \mathbf{B}' u'(k)$ $q(k) = \mathbf{C} \delta \mathbf{x}(k)$ $\mathbf{B}' = [1000]^T$ $\mathbf{C} = [0100]$

Performance measures for transient behavior

Feb,1, 2002

Queue length variation (maxp)

Performance measures (maxp)

17

Queue length variation (B)

Performance Measures (B)

Conclusion and Future Work

Conclusion

- Analyze the impact of TCP connections variation on the transient behavior of RED gateway
 - Investigate the dynamics of the current queue length
 - When the number of TCP connections is changed
- Numerical Examples
 - The control parameters have little influence
 - The transient behavior is sensitive to the system parameters
- Future Work
 - To investigate the transient behavior for realistic TCP connections variation