A control theoretical analysis of a window-based flow control mechanism for TCP connections with different propagation delays

Hiroyuki Ohsaki Cybermedia Center Osaka University, Japan oosaki@cmc.osaka-u.ac.jp

Contents

- Introduction
- Analytic model
 - A window-based flow control based on TCP Vegas
 - TCP connections with different propagation delays
- Stability and transient behavior analysis
- Numerical examples
- Conclusion

TCP (Transmission Control Protocol)

- Packet retransmission mechanism
 - Retransmit lost packets in the network
- Congestion avoidance mechanism
 - A window-based flow control mechanism
- Several versions of TCP
 - TCP Tahoe
 - TCP Reno
 - TCP Vegas

TCP Reno

- Implemented in BSD UNIX
- Widely used in the current Internet
- Use packet loss as feedback information
 - 1. Source host continuously increases window size
 - 2. Packet loss occurs at the bottleneck router
 - 3. Source host detects packet loss by duplicate ACK
 - 4. Source host reduces its window size to 1/2
- Packet loss is inevitable

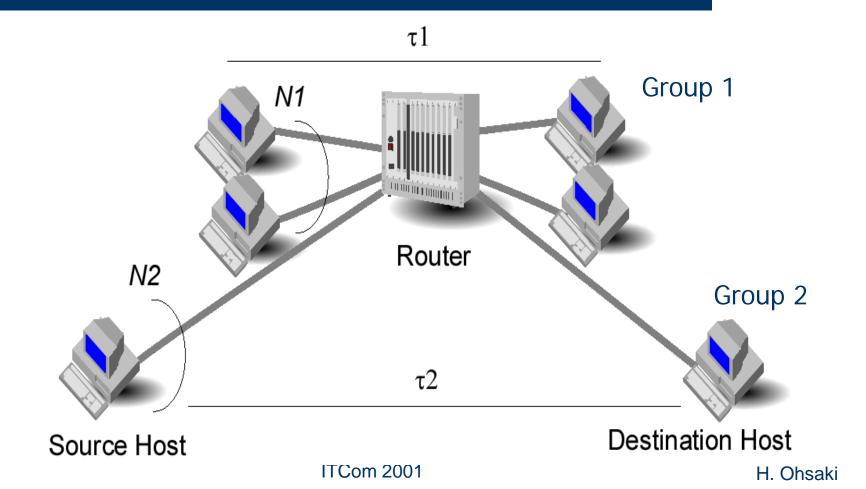
TCP Vegas

- Advantages over TCP Reno
 - A new retransmission mechanism
 - An improved congestion avoidance mechanism
 - A modified slow-start mechanism
- Uses measured RTT as feedback information
 - 1. Source host measures the RTT for a specific packet
 - 2. Source host estimates severity of congestion
 - 3. Source host changes window size
- Packet loss can be prevented

Objectives

- Analyze a window-based flow control
 - Congestion avoidance mechanism of TCP Vegas
 - Connections have different propagation delays
 - Stability and transient behavior using a control theoretic approach
- Show numerical examples
 - Parameter tuning of TCP Vegas

Congestion avoidance mechanism of TCP Vegas


- ullet Source host maintains the minimum RTT: au
- Source host measures the actual RTT: r(k)

$$d(k) = \frac{w_n(k)}{\tau} - \frac{w_n(k)}{r(k)}$$

Window size is changed based on d(k)

$$w_n(k+1) = \begin{cases} w_n(k) + 1 & \text{if } d(k) < \alpha \\ w_n(k) - 1 & \text{if } \beta < d(k) \\ w_n(k) & \text{otherwise} \end{cases}$$

Analytic Model (M = 2)

Assumptions

- A single bottleneck router in the network
- TCP connections in a group are synchronized
- All TCP connections are greedy

Derivation of state transition equations

- Window size: Wm,n(k)
 - \square $\delta m, n$: control parameter (i.e., feedback gain)
 - $\square \Delta m$: Frequency of window size change

$$w_{m,n}(k+\Delta_m) = \max(w_{m,n}(k) + \delta_{m,n}(\gamma_{m,n} - d_{m,n}(k)), 0)$$

Queue length: q(k)

$$q(k+1) = \min \left[\max \left\{ \sum_{m=1}^{M} N_m \left(w_m(k) - \frac{w_m(k)B\Delta_m \tau}{\sum_{m=1}^{M} N_m w_m(k)} \right), 0 \right\}, L \right]$$

System state

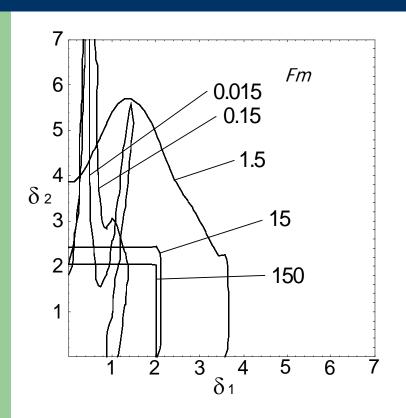
$$\begin{pmatrix} w_1(k) & w_2(k) & \dots & w_M(k) & q(k) \end{pmatrix}$$

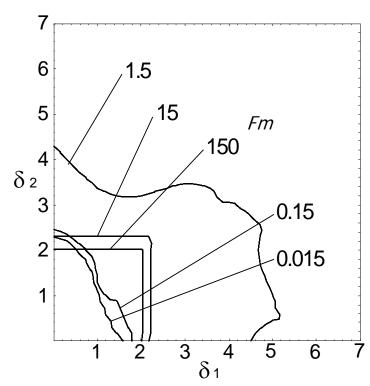
Stability and transient behavior analysis

- Obtain a linearized model
 - $\mathbf{x}(\mathbf{k})$: state vector (current state equilibrium state) $\mathbf{x}(k + \Delta_{LCM}) = \mathbf{A} \mathbf{x}(k)$
- Eigenvalues of A determine stability and transient behavior
 - s: the maximum eigenvalues of \mathbf{A} $s = \max_{i}(s_{i})$ s < 1: stable
 s > 1: unstable
 smaller s: better transient performance \mathbf{A} $\mathbf{X}(k) \equiv \begin{bmatrix} w_{1}(k) w_{1}^{*} \\ \vdots \\ w_{M}(k) w_{M}^{*} \\ q(k) q^{*} \end{bmatrix}$

Numerical examples

- Network parameters
 - M = 2: 2 groups of TCP connections (short and large delay)
 - N1=10:# of TCP connections in group 1
 - N2=10:# of TCP connections in group 2
 - B=150Mbps: processing speed of the bottleneck router
- Control parameters
 - $\gamma 1 = \gamma 2 = 3$: control parameter adjusting # of in-flight packets
 - $-\delta 1$, $\delta 2$: control parameter adjusting a feedback gain

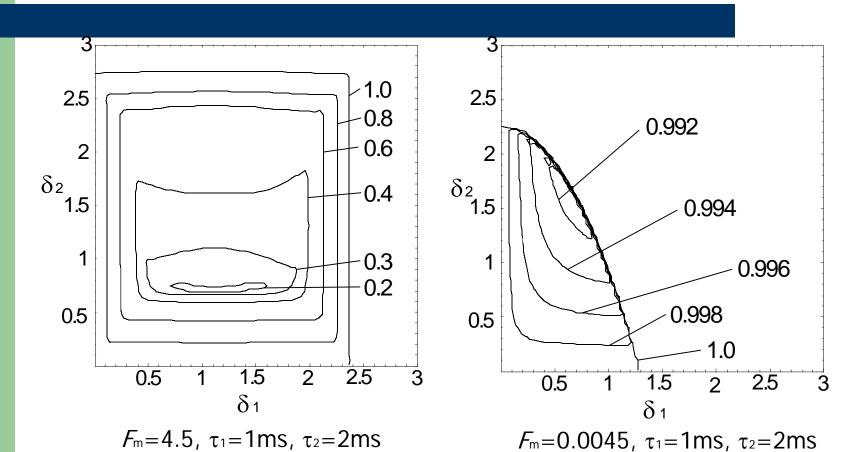

Queuing delay ratio: Fm


- Ratio of queuing delay to propagation delay
 - Nm γm: # of packets in the router's buffer

$$F_{m} = \frac{N_{m} \gamma_{m}}{B \tau}$$

- Large Fm: the queuing delay is not negligible
- Small *Fm*: the queuing delay is negligible
- If *Fm* is identical, stability and transient behavior are not changed

Stability region in δ_1 - δ_2 plane



 $\tau 1 : \tau 2 = 1:4$

 $\tau 1 : \tau 2 = 2:3$

Maximum eigenvalue s in $\delta 1-\delta 2$ plane

negligible queuing delay

non-negligible queuing delay

Conclusion

- A window-based flow control based on TCP Vegas
- TCP connections have different propagation delays
- Stability and transient behavior analysis
- if Fm is small (i.e., propagation delay > queuing delay)...
 - ullet Parameter δ should be proportional to TCP's propagation delay
 - Transient behavior cannot be improved
- if Fm is large (i.e., propagation delay < queuing delay)...</p>
 - Parameter δ should be between 0 and 2
 - Transient behavior can be greatly improved