

MPEG-4 Video Transfer with TCP-Friendly Rate Control

Naoki Wakamiya Osaka University, Japan

• When TCP and UDP co-exist in best-effort Internet, performance of TCP sessions deteriorates.

TCP-friendly rate control

- To have the same throughput on UDP session as TCP session traversing the same path.
- TCP throughput is estimated from observed RTT and packet loss.

$$r_{TCP} \approx \frac{MTU}{RTT\sqrt{2p/3} + T_o(3\sqrt{3p/8})p(1+32p^2)}$$

Naoki Wakamiya, Osaka Univ.

To accomplish TCP-friendly video transfer, we have to regulate video traffic taking into account

characteristics of video coding algorithm
mechanism of video quality adjustment
influence on application-level QoS

perceived video quality

- MPEG-4 FGS video coding algorithm
- Narrow bandwidth from 40Kbps to 2.2Mbps
- TFRC by Sally Floyd [10]
- How should FGS adjust video traffic to TFRC rate without introducing unacceptable video quality degradation?

- How should FGS adjust video traffic to TFRC rate without introducing unacceptable video quality degradation?
 - Target rate determination
 - Video rate adjustment
 - BL rate violation

Target rate determination

• G and V methods for target rate determination

Video quality adjustment

- G and V methods for determination of amount of enhancement layer data
- G-V method

BL rate violation

• When network is congested, BL rate may exceed target rate.

early method

smooth method

Example: G-V method

Multimedia

Information System Lab.

FGS video rate control methods

• Possible combinations are,

	Target rate	Rate adjustment	Excess canceller
V-V early	VOP-based	VOP-based	Early
V-V smooth			Smooth
G-V early	GOV-based		Early
G-V smooth			Smooth
G-G smooth		GOV-based	Smooth

Comparison: Target rate determination

	Target rate	Rate adjustment	Excess canceller
V-V early	VOP-based	VOP-based	Early
G-V early	GOV-based		

Comparison: BL violation

	Target rate	Rate adjustment	Excess canceller
V-V early	VOP-based	VOP-based	Early
V-V smooth			Smooth

Comparison: Control granularity

	Target rate	Rate adjustment	Excess canceller
V-V smooth	VOP-based	VOP-based	Smooth
G-G smooth	GOV-based	GOV-based	

Comparison: FGS vs. MP4

Multimedia Information System Lab.

Quantizer scale based rate control for conventional MPEG-4
 Averaged rate over GOV fits to the target rate.

Under lossy condition

- Uniform probability 10⁻³
- Dynamic quantizer scale based control is required.

Naoki Wakamiya, Osaka Univ.

Multimedia Information

System Lab.

Conclusion

- Proposed and evaluated mechanisms for TCP-friendly transfer of FGS video
- G-G smooth is the most preferable method whereas rate variation is inherently unavoidable
- As future works,
 - Rate and quality control mechanisms under lossy condition
 - Implementation issues

October 30, 2001