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Abstract instance, one of typical AQM mechanisms called “RED
(Random Early Detection)” [2] randomly drops an arriv-
In recent years, AQM (Active Queue Management) ing packet with a probability proportional to its average
mechanisms, which support the end-to-end congestion congueue length. However, it is known that RED’s effective-
trol mechanism of TCP by performing congestion control at ness is heavily dependent on the setting of its control param-
a router, have been actively studied by many researchers.eters. Moreover, another problem that the average queue
AQM mechanisms usually have several control parameters,length of RED in steady state depends on the number of
and their effectiveness depend on a setting of those controlctive TCP connections has been reported [2, 3]. Hence,
parameters. Therefore, issues on parameter tuning of sev4n the literature, several variants of RED — GRED (Gentle
eral AQM mechanisms have been extensively studied usindRED) [4], DRED (Dynamic-RED) [5], and SRED (Stabi-
simulation experiments. However, in most of those stud-lized RED) [6] — have been proposed for solving the prob-
ies, only a small number of simulation experiments are per- lems of RED.
formed for investigating the effect of control parameters on  GRED is an improvement of RED based on an ad hoc
the performance of AQM mechanisms. In this paper, we approach [4]. In RED, when the average queue length be-
therefore statistically analyze a large number of simulation comes large, the packet drop probability is changed dras-
experiments using multivariate analysis, and quantitatively tjcally. Hence, RED has a problem that the queue length
show how the performance of AQM mechanisms is affectechecomes unstable when the average queue length is large.
by a setting of control parameters. In particular, we an- GRED solves this problem by gently changing the packet
alyze the performance of three AQM mechanisms: GREDgrop probability when the average queue length is large. Al-
(Gentle RED), DRED (Dynamic-RED), and SRED (Stabi- though extensive studies on RED have been performed by

Detection). Through several numerical examples, we clarify fyly investigated.

.hOW control pgrameters of GRED, DRED, and SRED have DRED is also an improvement of RED [5]. DRED solves
impact on their steady state performance measures such a%h

the average queue length and the packet loss probability.. e RED's "”OV.V” problem that the average queue length
S o in steady state is dependent on the number of active TCP
We present a few guidelines for configuring control param- ; ! . .
: connections. DRED dynamically adjusts its packet drop
eters of those AQM mechanisms.

probability in proportion to its average queue length. So,
in DRED, the average queue length is not dependent on the
number of TCP connections. However, similar to RED, the
1 Introduction performance of DRED is significantly affected by the set-
ting of its control parameters suchass, T', andL [5]. For
For solving problems of conventional Drop Tail routers, €xa@mple, simulation experiments show thaand . are di-

researches on AQM (Active Queue Management) mecha-rectly related to its queue length and packet loss probability.
nisms have been performed actively in the last few years [1]. However, effects of those control parameters on DRED’s
AQM mechanisms control the queue length (i.e., the num- Performance (e.g., the average queue length and the packet
ber of packets in router’s buffer) by actively discarding ar- loss probability) have not been quantitatively investigated.
riving packets before the router’s buffer becomes full. For  Similar to DRED, SRED solves the RED’s problem that



the average queue length is dependent on the number of acahereq is a current queue length, ang is one of GRED’s

tive TCP connections [6]. The key idea of SRED is to es- control parameters, which specify the weight of an expo-
timate the number of active TCP connections using a smallnential averaging. GRED determines the packet drop prob-
cache called “zombie list". SRED determines its packet ability p;, based on the average queue lenpts

drop probability in proportion to the estimated number of

active TCP connections. Hence, in SRED, the averagepb -

gueue length is almost independent of the setting of con- 0 o if § < ming,

trol parameters [6]. However, the performance of SRED mazy () if ming, < g < mawy,
has not been fully evaluated, and effects of SRED's control (1- maxp)(%) +max, if mazy, <7< 2maxyy,
parameters on its performance have not been clarified. 1 if § > 2maxyy,

In [7], we have proposed a method of statistically ana- o . _
lyzing a great number of simulation results, which are ob- wherermin,, is the minimum thresholdnaz,, is the max-
tained by changing control parameters diversely, using the!MUm thresholdinaz;, is the maximum packet drop proba-
multivariate analysis. We have quantitatively shown effects bility, and all are co_nt_rol paramete_rs of GRED. G,RED ran-
of RED’s control parameters on its performance metrics. In domly drops an arriving packet with the probability de-
this paper, we evaluate performance of GRED, DRED, andﬁnecj by
SRED using our analysis method proposed in [7]. Namely, - Dy
we analyze effects of control parameters of three AQM ¢ 1 — count X py
mechanism on their performance metrics (i.e., the averageyherecount is the number of packets that have arrived at

gueue length and the packet loss probability). the router since the last packet dropping.
The organization of this paper is as follows. First, in Sec-

tion 2, we briefly explain three AQM mechanisms, GRED, 2 2 DRED (Dynamic RED)
DRED, and SRED, which will be evaluated in this paper.

In Section 3, we show the outline of the multiple regression  Rgp has a problem that the average queue length is de-
analysis, which is one of representative multivariate analy- pendent on the number of active TCP connections. DRED
sis methods. We then briefly explain how the multiple re- sq|ves this problem by using the feedback control, which
gression analy3|s is applled. for evaluating performgnce Ofadjusts the packet drop probability in proportion to its av-
AQM mechanisms. In Section 4, we explain our simula- grage queue length [5]. DRED is therefore able to stabilize

tion model and parameters used in simulation experimentshe queue length at the target value without being dependent
In Section 5, we present analysis results of the multivari- 5, the number of TCP connections.

ate anal_ysis and discuss how pontrol parameters Qf AQM We briefly explain the algorithm of DRED. DRED uses

mechanisms are related to their performance metrics. Fi-3 fixed sampling interval, and the packet drop probability is

nally, in Section 6, we summarize this paper and discussypgated every sampling interval. In what follows, we focus

future works. on the packet that arrives at the router in thth sampling
interval. First, DRED obtains the error signal as

e(n) = qn)-T

2.1 GRED (Gentle RED) Next, the filtered error signal of(n) (denoted byé(n)) is

] . updated as
GRED [4] is an improvement of RED (Random Early

Detection) proposed in [2]. RED drastically changes the é(n)=(1-p)é(n—1)+ Ben) 1)

packet drop probability to one when the average quUeUe,qra 3 s the DRED's control parameter, and specifies the

length is large. Hence, when the average queue length i%/veight of an exponential averaging. Finally, usie@:),

large, the queue length become unstable. GRED preventyyoEp determines the packet drop probabili as
the queue length from becoming unstable by gently chang- P PP by

ing the packet drop probability. In what follows, we briefly o B é(n)
explain the algorithm of GRED. The packet dropping al- (n) = min |max ¢ pa(n = 1) + e B’ 0p.601 (2

gorithm of GRED is essentially the same as that of RED. where B is the buffer size of the routex is the DRED's

Please refer to [2] for the details of the RED algorithm. control parameter specifying the feedback gain of the
GRED maintains the average queue length as well as o . :
RED. For every packet arrival, the average queue leggth packet drop p.robab|l|ty, andlis the maximurm O.f the packet
is updated as ’ drop probability. The packet drop probability is updated
every sampling interval, but DRED does not drop a packet
7 — (1—wy)q+wsq if ¢(n) < L for maintaining high resource utilization.

2 Active Queue Management




2.3 SRED (Stabilized RED) 3 Multiple Regression Analysis

In RED, the average queue length depends on the num- Multivariate analysis is a set of techniques for statisti-

be_r of T_CP connections. Moreove_r, RE_D does not disti_n- cally analyzing observed data for investigating correlation
guish misbehaving TCP flows, which will not reduce their 004 muitiple factors. Multivariate analysis is capable of

transmission rates after packet losses. For §olving thesesystematically handling a huge amount of data. In this pa-
problems, SRED estimates the number of active TCP con-Eer, we use thenultiple regression analysisvhich is one of

nections in a statistical manner, and determines the packele, 14| myltivariate analysis techniques. Using the multiple
drop pro_bablhty according to _the estw_nated number of TC_P regression analysis, we can analyze effects of multiple pre-
connections [6]. For preventing unfairness caused by mis-ictor variables (i.e., affecting factors) on a response vari-
behaving TCP flows, SRED uses a different (i.e., large) 4pjq (i e, the influenced factor). In what follows, we briefly

packet drop probability for misbehaving TCP flows. o) 5j3in how the multiple regression analysis is applied to
For estimating the number of active TCP connections, xqy mechanisms. Please refer to [8] for the details of the

SRED uses “zombie list’. Thg zombie_list r_naintains infor- multiple regression analysis, and [7] for the details of the
mation on each TCP connection, and its size is denoted by,

} e - analysis method of AQM mechanisms using the multivari-
list. Namely, each entry of the zombie list consists of a ate analysis
flow identifier, a counter, and a time stamp. When a packet

riv t the router. SRED compar randomlv chosen In this paper, we analyze effects of control parameters
arrves at the router, 5t _compares a randomly Chosen,; AQM mechanisms on their performance metrics using
entry from the zombie list with the entry corresponding to

the arriving packet. If these entries coincide, the counterthe multlple.regressmn analy5|§. We .choose one of perfor-
) S ) ~_mance metrics of AQM mechanisms (i.e., the average queue
in the ?T‘”.y Is increased by one. Othenmse, the entry ISIength and the packet loss probability) as the response vari-
probab|l|st|ca}lly replacgq by the mformatlo.n on the arriv- able, and control parameters of AQM mechanism as predic-
ing packet with probabilityp. With the zombie list, SRED

estimates the number of active TCP connections. For dis tor variables. We first obtain a great number of simulation
AR i . R “results by diversely changing control parameters of AQM
tinguishing misbehaving TCP flows, the zombie list is also y y ging P Q

. mechanisms. From simulation r Its, w ner ir-
used. See [6] for the details of SRED. echanisms om simulation results, we generate a pa

We briefl lain th ket d . lqorith f wise scatter plot for different response variables. The pair-
¢ brietly explain the packet dropping algontinm ot -\ :ee eatter plot illustrates relations between each variable
SRED. First, SRED compares a randomly chosen entry

- ) ) pairs as a scatter plot. For instance, in the multiple regres-
f.ro.m the zombie list with the entry c.or.respondlng to the ar- sion analysis, linearity among response variables and pre-
riving packet. We focus on the-th arriving packet. If these

; L ! . ) dictor variables is assumed. By using a pairwise scatter plot,
entries coincideH (n) is set to one. Otherwisé] (n) is set y gap P

- T i the correlation among predictor variables and response vari-
to zero. The probat_)|!|t3P(n) that- the ;omb|e list contains ables can be visually understood. Furthermore, the use of
the entry for the arriving packet is estimated by

pairwise scatter plot allows us to visually confirm whether
P(n) = (1—a)P(n—1)+aH(n) ©) outliers are contgined in the measured response variables
and predictor variables.
whereq is the SRED’s control parameter, and specifies the  We next apply the multiple regression analysis to simu-
weight of an exponential averaging. Next, in proportion lation results. For measuring the accuracy of the multiple
to the current queue length the packet drop probability — regression analysisz? (multiple R squared) will be used.

Psred(q) IS updated for every packet arrival as When R? is close to zero, it implies that the multiple re-
gression analysis is not successful, and that some factors
DPmaz if %B <g¢<B other than predictor variables chosen affect the response
Psred(q) = 1 X Pmaz If sB<q<iB (4) variable. On the other hand, whet? is close to one, it
0 fo<q<iB implies that the multiple regression analysis is successful

so that effects of control parameters of AQM mechanisms

where [ is the buffer size of a routepn,q, is the SRED's can be estimated from the regression coefficients.

control parameter, and limits the maximum of the packet
drop probability. Finally, SRED randomly drops an arriving

packet with the probability.,, defined by 4 Simulation
. 1 . . . N
Prap = DPsred(q) X min <17 (256><P(n))2> Figure 1 shows the simulation model used in this pa-
per, which consists of five TCP connections and two AQM
« (1 + H(”)) (5) routers. Both AQM routers are either GRED, DRED, or
P(n) SRED. In this network configuration, the link between two



tween other control parametersdz,, or maz,) and the
average queue length. This indicates that the assumption re-
quired for performing the multiple regression analysis (i.e.,
existence of linearity among the response variable and pre-
dictor variables) is valid.

In Tab.2, “regression coefficient” is a coefficient of the
regression equation corresponding to each predictor vari-
able, and “standardized regression coefficient” is obtained
by normalizing each regression coefficientvalue” is the
result oft-test, which investigates whether one of predictor
variables affects the distribution of residuals of a regression
equation, and P-value” is the probability that the distribu-
tion of residuals is the same when one of predictor variables
is removed from the regression equation.

First, we focus on absolute values of the standardized
Figure 1. Simulation model. regression coefficients. One can find that the standardized
regression coefficient ofiing, (the minimum threshold) is
the largest. The values otaz, (the maximum packet drop
probability), max:p, (the maximum threshold), and, (the
Table 1. Parameter values used in simulation. weight of exponential averaging) become small in this or-
der. This means that effectswfin,, max,, andmax;, on
Bandwidth of Bottleneck Link 1.5 [Mbit/s]  the average queue length become small in this order. These
Propagation Delay of Bottleneck Link 50 [ms] results can be explained as follows. Since GRED does not
Packet Size 1,000 [byte]  drop a packet when the average queue length is less than
Buffer Size 100 [packet]  1in,,, the minimum value of the average queue length is
determined bymin,,. On the other hand, absolute values
of standardized regression coefficients show that magnitude
of effects ofmax, andmax, on the average queue length
is the half of that ofmin,,. In addition, the value of the
standardized regression coefficientgfis very small (i.e.,

In this paper, we obtain simulation results for either .
GRED, DRED, or SRED, by diversely changing its control q%(e)Lzu)e, l:sgt:]hls shows that, hardly affects the average

parameters. Every simulation is run for 30 seconds. We use .
In general, for avoiding buffer overflow and buffer un-

each simulation result of the last 5 seconds for calculating 4 N irable that th | hi
performance metrics of the AQM mechanisms such as thed€flow, it is desirable that the average queue length is
stabilized at an appropriate value. To realize thigp,,

average queue length and the packet loss probability. )
should be configured so that the buffer underflow can be
. prevented. Themnaz, andmax, should be configured
5 Analysis Result so that buffer overflow can be prevented. When we compare
the analysis result in [7] with the analysis result for GRED,
In this section, we show analysis results of the multi- it can be found that in REDymax,;, has the largest im-
ple regression analysis to simulation results for three AQM pact on the average queue length, whereas in GRED;;,

1[ms]

bw [Mbps]

7NN

AQM Router AQM Router

10 Mbps 10 Mbps

Source Host Destination Host

AQM routers is the bottleneck. In Tab. 1, we summarize
network parameters used in our simulation.

mechanisms: GRED, DRED, and SRED. has. This is because GRED improves RED’s problem that
the packet drop probability becomes one when the average
5.1 GRED gueue length is larger thamaz,;,. Namely, this implies

that RED’s simulation results or analysis results cannot be
Figure 2 shows the pairwise scatter plot displaying the used to configure control parameters of GRED.

relation among control parameters of GRED and its aver-  Figure 3 shows the pairwise scatter plot displaying the
age queue length. Table 2 shows the result of the multiplerelation among control parameters of GRED and the packet
regression analysis. Figure 2 illustrates whether linear rela-loss probability. Table 3 shows the result of the multiple re-
tion exists between each pair of control parameters and thegression analysis investigating the packet loss probability of
average queue length of GRED. For instance, strong linearGRED. When we focus on absolute values of standardized
relation can be observed betweerin,, and the average regression coefficients, valuesioin,,, max,, max, and
queue length. Linear relation can also been observed bew, become small in this order. This shows that the magni-

4



20 40 60 80 00 02 04 06

L N Table 2. Multiple regression analysis result for

wg oy e g average queue length of GRED.
Liiiiiy isess b S s . . standardized
. e - predictor regression )
N | — . = regression t-value P-value
1 . + 4| =i variable coefficient e
4| minth ] —— coefficient
. N [} Pemyioi intercept 15.23 24.41 0.00
S=E S w, 101.32 0.02 3.01 0.00
maxth H: s mz’nth 0.57 0.67 70.82 0.00
= L & maxyy, 0.17 0.28 29.49 0.00
g - maz, -44.17 -0.34 -49.69 0.00
3 1 + maxp —————+ RQ 090
S hifEE P 3 EiPiii BHEHEE e
i ' I l ! l”lﬂﬂ !ll averageq| g
n iiii i [, Table 3. Multiple regression analysis result for
ooos | oo w 100 | 200 2 e 100 packet loss probability of GRED.

standardized

redictor regression )
P 9 regression t¢-value P-value

Figure 2. Pairwise scatter plot of GRED con- . o
variable coefficient

trol parameters and average queue length coefficient
intercept 1.28 80.35 0.00
Wq -1.96 -0.024 -2.29 0.02
mingy, -0.007 -0.53 -35.41 0.00
tude of effects ofnax, andmaz;, on the packet loss prob- ~ MaZn -0.003 -0.31 -20.90  0.00
ability is about 2/3 and 1/2 of that @fin,,. The packetloss  mazp 0.77 036 33.86 0.00

probability counts packet losses caused by GRED’s inten- R~ 0.75

tional packet dropping and buffer overflow. By comparing

Tab. 2 and Tab. 3, one can find that absolute values of stan-

dardized regression coefficients ®fin,, max,, matp,

andw, are almost the same. This can be explained by thequeue length. However, the correlation betwéeand the
following reasons. Namely, (1) the packet loss probability average queue length in Fig. 4 shows that the average queue
in the network and the window size of TCP have very strong length of DRED is not always equal f6; i.e., the average
correlation [9], (2) since TCP has a window-based flow con- queue length is scattered aroufidOn the other hand, stan-
trol, the average queue length of the bottleneck router is de-dardized regression coefficients@fand s are small. This

termined by the window size of TCP. is because, as can be seen from Eqgs.(1) andy(2nd 3
determine the DRED’s transient characteristics, but do not

5.2 DRED affect steady state characteristics such as the average queue
length.

Figure 4 shows the pairwise scatter plot displaying the ~ Figure 5 shows the pairwise scatter plot displaying the
relation amongx (the feedback gain for the packet drop relation among DRED’s control parameters and the packet
probability), 3 (the weight of the exponential averaging),  10ss probability. Table 5 shows the result of the multiple
(the target queue lengthl, (the minimum threshold), and regression analysis for the packet loss probability. By fo-
the average queue length of DRED. Table 4 shows the resulcusing on absolute values of standardized regression co-
of the multiple regression analysis. By focusing on absolute €fficients, one can find that the absolute valugos the
values of standardized regression coefficients in Tab. 4, ondargest, and then values af L, and3 become small in this
can find that the absolute valueBfis the largest, then val- ~ order. Similar to the case of the average queue length in
ues ofa, 3, andL becomes small in this order. Note that DRED, standardized regression coefficientgpff, and L
the absolute value of the standardized regression coefficiengre very small (i.e., less than 1/9 of the standardized regres-
of o, 3, and L is less than 1/9 of that df. As we have  sion coefficient ofl").
explained in Section 2.27" is the target queue length of From these observations, we conclude that the control
DRED so that it should have direct impact on the average parametef” has the largest impact on DRED'’s performance
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trol parameters and packet loss probability trol parameters and average queue length

metrics (i.e., the average queue length and the packet loss

probability) whereas other control parameters have little im-

pact. Hence, when configuring DRED's control parameters, eters §,,...., list, and p) hardly affect the average queue

only the control parametdr should be chosen carefully so  length. The pairwise scatter plot in Fig. 6 shows that vari-

that neither buffer overflow nor buffer underflow occurs. ation of the average queue length becomes large hs-
comes large. This is because wheris large, the estima-

5.3 SRED tion of the number of TCP connections becomes inaccurate,
leading the queue length to be unstable.

Figure 6 shows the pairwise scatter plot displaying the

relation among SRED's control parameters and the aver- Finally, Fig. 7 shows the pairwise scatter plot display-

age queue length. Table 6 shows the result of the multipleing the relation among SRED’s control parameters and the

regression analysis for the packet loss probability. By fo- packet loss probability. Table 7 shows the result of the

cusing on the value aRk? (multiple R squared), it is small  multiple regression analysis for the packet loss probability.

(i.e., 0.54). This means that the average queue length ofSimilar to Tab.6,R? is small (i.e., 0.47). By focusing on

SRED cannot be well modeled by the linear combination absolute values of standardized regression coefficients, one

of predictor variables (i.e., control parameters of SRED). can find that almost the same tendency as the result of the

This phenomenon is possibly caused by the fact that the al-multiple regression analysis for the average queue length is

gorithm of determining the packet loss probability...(q) observed. Namely, the absolute value of the standardized
of SRED has non-linearity to the average queue length (segegression coefficient af is about as twice as that 9f,,,
Eq.(4)). and standardized regression coefficientdief and p are

By focusing on absolute values of standardized regres-very small.
sion coefficients, it can be found that the standardized re-
gression coefficient ofv (the feedback gain of the packet From these observations, when configuring control pa-
drop probability) is the largest, and then valuespgf,. rameters of SRED, we should setandp,,,, to be small
(the maximum packet drop probability)st (the size of the  values for preventing the average queue length and the
zombie list), ang (the probability for updating the zombie packet loss probability of SRED to become large. On the
list) are very small. This means that the control parametercontrary,list andp can be configured freely without paying
« affects the average queue length, but other control param-attention to SRED's steady state characteristics.



Table 4. Multiple regression analysis result for
average queue length of DRED.

standardized

redictor regression .
P 9 regression t-value P-value

variable coefficient

coefficient
intercept 1.08 1.04 0.30
Q -233.42 -0.09 -5.70 0.00
I} 3.51 0.02 124 0.22
T 0.83 0.86 38.92 0.00
L 0.05 0.03 1.49 0.14

R? 0.79

Table 5. Multiple regression analysis result for
packet loss probability of DRED.

standardized

redictor regression .
P 9 regression t-value P-value

variable coefficient

coefficient
intercept 451 56.79 0.00
o 1.85 0.02 1.15 0.25
Ié; 0.10 0.02 0.93 0.35
log T -0.92 -0.82 -33.00 0.00
log L -0.05 -0.06 -2.52 0.01

R? 0.75

6 Conclusion

In this paper, we have evaluated the performance of
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Figure 5. Pairwise scatter plot of DRED con-
trol parameters and packet loss probability

vestigate how system parameters such as the bottleneck
bandwidth and the propagation delay affect performance of
AQM mechanisms. Hence, we are currently working on in-
vestigating effects of system parameters on GRED, DRED,
and SRED using the multivariate analysis.

References

GRED, DRED, and SRED using the analysis method pro- [1] B. Braden etal., “Recommendations on queue manage-

posed in [7]. We have analyzed quantitatively the effects
of control parameters of three AQM mechanisms on their
performance metrics (i.e., the average queue length and th
packet loss probability). We have found (1) in GRED, ef-

fects of min,, max,, andmax, on the average queue

length and the packet loss probability become small in this

order whereasy, has little impact, (2) in DRED]" has di-

rect impact on the average queue length and the packet los

probability, and other control parameters3, and L have

little impact, and (3) in SRED, the average queue length
and the packet loss probability are largely affected by con-

trol parametersy and p,,,.. in this order, and other con-
trol parametersp andlist, have little impact. In addition,

ment and congestion avoidance in the InterriRgtjuest
for Comments (RFC) 230%\pr. 1998.

?2] S. Floyd and V. Jacobson, “Random early detection

gateways for congestion avoidanclsEE/ACM Trans-
actions on Networkingvol. 1, pp. 397-413, Aug. 1993.

L3] W.-C. Feng, D. D. Kandlur, D. Saha, and K. S. Shin,
“Techniques for eliminating packet loss in congested
TCP/IP networks,” Tech. Rep. CSE-TR-349-97, U.
Michigan, Apr. 1997.

4] S. Floyd, “Recommendations on using the gentle vari-
ant of RED,” May 2000. available dittp://www.

we have discussed how control parameters of AQM mecha-  4cirj org/floyd/red/gentle.html.

nisms should be configured based on our analysis results.

In this paper, we have analyzed effects of control pa- [5] J. Aweya, M. Ouellette, and D. Y. Montuno, “A control
rameters of three AQM mechanisms on their steady state  theoretic approach to active queue managemeua-

performance. Our analytic approach can be applied to in-

puter Networksvol. 36, pp. 203-235, 2001.



[6]

[7]

[8]

[9]

0 1000 2500 0.0 0.4 0.8

4+
4+

TR R R
FF H AR

¥

Table 6. Multiple linear regression analysis re-

- B [ R [ U T s sult for average queue length of SRED.
alpha C
gif g@iiigmiiigl Sl . . standardized
R e predictor regression .
g . > regression t¢-value P-value
] . variable coefficient -
ghrr ot MU s gt coefficient
clmrs 3z 3 CTIIREE N CTAE A A intercept 51.55 119.85 0.00
SOURED IO T fa -41.19 -0.69 -60.01  0.00
A ) . . prob N S R Y 4 0.00 0.006  0.55 0.58
Bii i ofiEir 3 IRERY T 0.21 0.003  0.30  0.76
e Prmas -12.68 -0.21 -1850  0.00
O I e R? 0.54
SlEr 3 oFmEr  fimioiiog =
llll ! ! ’ % @g I ! averagedr = Taple 7. Multiple regression analysis result for
. LI LI — % packet loss pability of SRED.

00 02 04 06 0.0 04 0.8 10 20 30 40 50

Figure 6. Pairwise scatter plot of SRED con-
trol parameters and average queue length

T. J. Ott, T. V. Lakshman, and L. Wong, “SRED: Sta-
bilized RED,” in Proceedings of IEEE INFOCOM '99
pp. 1346-1355, Mar. 1999.

T. Eguchi, H. Ohsaki, and M. Murata, “Multivariate
analysis for performance evaluation of active queue
management mechanisms in the Internet,Pinceed-
ings of SPIE’s International Symposium on the Con-
vergence of Information Technologies and Communi-
cations (ITCom 2002)pp. 144-153, July 2002.

L. C. Hamilton, Regression with GraphicsBelmont,
California: Duxbury Press, 1992.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Mod-
eling TCP throughput: a simple model and its empiri-
cal validation,” inProceedings of ACM SIGCOMM '98
pp. 303-314, Sept. 1998.

predictor regression

standardized

, - regression t-value P-value
variable coefficient =
coefficient
intercept 0.25 17.85 0.00
o 1.11 0.62 50.55 0.00
list 0.00 0.004 0.30 0.76
P 0.01 0.007 0.55 0.58
DPmaz 0.53 0.30 24.37 0.00
R? 0.47
o 1000 2500 0.0 0.4 0.8
apha |7 " U I —
i oii DEED TP BT OTOTOYomme
U B OO 1 VOO A
::tttt £ LS B E & 0 H O EEE ¥ & f R
i () P + prob P It [ PP —
Hii f O §@ i : BEi o3 ¥ G
;:++++ P ) - A s o+ o+ 4 pmax -
o Wiy 3 odm sy RN i
— —
+ M i
*
i ‘ Eii gif ; ‘ il |

00 10 20

00 02 04 06

0.0

0.8

00 1.0 20

Figure 7. Pairwise scatter plot of SRED con-
trol parameters and packet loss pability

00 02 04 06



