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Abstract 

 
By introducing video-quality adaptation mechanisms into intermediate network equipments using active network 
technologies, we can provide users with video distribution services taking into account client heterogeneity in 
terms of available bandwidth, performance of client systems, and user’s preferences about video quality. In this 
paper, we implement the low-pass filter, a quality adjustment technique for real-time multicasting of MPEG-2 
video, on an Intel IXP1200 network processor-based network node. We applied the filter to video streams pass-
ing through the node and evaluated its practicality and applicability in term of accuracy of video rate adaptation, 
variation of video quality, and filtering throughput. From the result of evaluation experiments, we demonstrate 
that the implemented video-quality adjustment mechanism has sufficient rate adaptation capability, and that the 
low-pass filter is able to accelerate with parallel processing. 
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1. Introduction 

With the proliferation of broadband access to the 
Internet, video distribution services such as video-
streaming or live transmissions are now becoming 
widely deployed. Since video services involve 
those users who are heterogeneous in terms of the 
capacity of access links, the available network 
bandwidth, the performance of client machines, and 
the user’s preferences on the perceived video qual-
ity, we should introduce mechanisms so that a 
video stream provided meets user’s environment 
and preferences. 

In [1], we proposed mechanisms for video multi-
cast services in which diverse client requests are 
simultaneously satisfied while network resources 
are efficiently used. Our mechanisms are developed 
on the basis of active network technologies where 
intermediated network nodes, called active nodes, 
adapts the video rate to the desired level. 

An active network is a network whose behavior 
can be dynamically and flexibly tailored to network 
administrator’s, user’s, or even application’s de-
mands [2]. Each packet passing through a network 
equipment, called active node, is processed in ac-
cordance with a program that is contained in the 
packet itself or has been preloaded at the node. By 
introducing programs to active nodes, they can per-
form highly intelligent packet processing from 
lower-layer functions such as QoS routing to appli-
cation-layer functions that manipulate user data in 
packet payload. In our video multicast mechanisms 
proposed in [1], to cope with the client-to-client 
heterogeneity, appropriately chosen active nodes 
are configured to adapt the rate of an incoming 

video stream to the desired level by means of 
video-quality adjustment as illustrated in Fig. 1. 

In [3], we compared several quality-adjustment 
mechanisms for real-time MPEG-2 video multicast, 
namely frame discarding, low-pass, and requantiza-
tion filters. We proposed algorithms for those qual-
ity-adjustment mechanisms to adapt the video traf-
fic to the specified target rate. We conducted sev-
eral experiments and concluded that the low-pass 
filter, which provides rate reduction by progres-
sively eliminating high-frequency components of 
the video signal, is the most effective in terms of 
suppression of the quality degradation and granu-
larity of the rate adaptation. However, we did not 
consider several implementation-related issues such 
as per-packet processing, and limitations in the 
available memory and the processing capability of 
the network equipment. 

To evaluate and verify the practicality and appli-
cability of the video-quality adjustment within a 
network, we implemented the proposed mechanism 
on a network processor-based programmable net-
work equipment. In this paper, we show details of 

Figure 1: Heterogeneous video multicast
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the implementation and results of the conducted 
evaluation experiments. 

The organization of this paper is as follows. In 
section 2, we briefly introduce the MPEG-2 coding 
algorithm, the implemented low-pass filter, and the 
rate adaptation mechanism. In section 3, we explain 
the features of the Intel IXP1200 network processor 
and describe issues related to implementation. We 
give experimental results and discussion in section 
4, and conclude the paper in section 5. 
 
2. Quality Adjustment and Rate Adaptation 

2. 1 MPEG-2 Video Coding Algorithm 

Our low-pass filter is intended for video streams 
in the MPEG-2 Program Stream format where a 
video and an audio streams are multiplexed into a 
single PS stream. Figure 2 shows the hierarchical 
structure of MPEG-2 video data. 

The highest layer is called sequence layer. A se-
quence is constituted by several Group of Pictures 
(GoPs). A GoP is a sequence of three types of pic-
tures, I (Intra-coded), P (Predictive-coded), and B 
(Bidirectionally predictive-coded) pictures. A GoP 
starts with an I picture, followed by several P and B 
pictures. A picture is composed of 16-pixels height 
stripes, called slices. All sequence, GoP, picture, 
and slice layers begin with a 32-bit start code which 
is used for error recovery and for rewind and fast 
forward functions. 

Each slice consists of one or more macroblocks. 
Each macroblock corresponds to a 16x16 pixel 
square, and is composed of four 8x8 pixel lumi-
nance (Y) blocks and two 8x8 chrominance (Cb, 
Cr) blocks. Each block is transformed to the fre-
quency domain using discrete cosine transform 
(DCT). DCT coefficients in a block are in a ascend-
ing order of horizontal or vertical frequency. 

 
2.2 Low-Pass Filter 

To achieve rate reduction, the low-pass filter 
eliminates appropriately determined number of 
DCT coefficients from the high frequency ones that 
constitute a luminance or chrominance block. We 
call low-pass parameter to the number of DCT co-
efficients left in each block after quality adjustment. 
At the beginning of each GoP, initial low-pass pa-
rameter values are set independently for I, P and B 

pictures, according to the following formulas: 
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Figure 2: MPEG-2 Video Data 

32 905.111427.1127498.5917329.6
iii GGGI rrrl +−+−=  (1) 

32 499.139667.1595488.858626.11
iii GGGP rrrl +−+−=  (2) 

32 265.353353.59075.3609536.71
iii GGGB rrrl +−+−=  , (3) 

where  are low-pass parameter values for I, 
P and B pictures, respectively. 
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iH  is the predictor for the total bits used by header 
data in the i -th GoP, which is derived from the 
measured header size of -th Gop : )1( −i 1−ih
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iT  is the number of bits allowed to the current GoP, 
and is calculated from a specified target rate R  
(bps), the number of pictures in a GoP,  (frames), 
the frame rate  (fps), and an adjustment value : 
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where  is the size of the filtered -th GoP. kf k
The initial low-pass parameter value is changed 

dynamically for each of the following intra macrob-
locks in the GoP, using the following: 
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where  is the low-pass parameter to apply to the jl
j -th macroblock, o  is the macroblock size be-

fore filtering, and  is the size of the filtered 
macroblock. 

1−jMB

1−jMBf

Using the above algorithm, the low-pass parame-
ter value for each macroblock is appropriately de-
termined. By eliminating the specified number of 
DCT coefficients, it is possible to produce a video 
stream of the desired rate. 

 
3. Implementation of Low-Pass Filter 

3.1 IXP1200 Overview 

We implemented our low-pass filter on a pro-

 



grammable network equipment built on an Intel 
IXP1200 network processor [4, 5]. 

The structure of the IXP1200 network processor 
is illustrated in Figure 3. It has a StrongARM Core 
processor and six microengines running at 200 
MHz. A microengine is a simple RISC processor 
optimized for packet forwarding and has limitations 
in the number of registers and executable program 
size. Each microengine can execute four program 
threads concurrently, and thus up to 24 threads can 
be executed in parallel. 

24 MByte of the SDRAM is devoted to the 
StrongARM. 8 MByte of the SDRAM and the 
SRAM are shared among the StrongARM and the 
microengines. 
 
3.2 Data Packetization for Video Filtering 

In order to attain the low-latency and on-the-fly 
video-quality adjustment, a packet-basis mecha-
nism is indispensable, and thus a video stream 
should be segmented into a sequence of independ-
ent packets. It is reasonable to divide a stream into 
multiple units of data at start codes. From the se-
quence layer to the slice layer, we decided to pack-
etize a stream per slice. For example, an MPEG-2 
video stream in a profile of MP@ML, i.e., 720x576 
pixels and 30 fps, has 36 slices per picture. If it is 
coded at the coding rate of 8 Mbps, it follows that 
each packet amounts to 7 Kbits on average. 

 
3.3 Cooperation among Processors 

With support for multiple execution threads, the 
IXP1200 has an architecture suited for parallel data 
processing. We can expect high performance by 
distributing tasks among the StrongARM, which is 
a general processor that can perform complex proc-
essing, and the microengines, which can execute a 
high volume of simple processing. 

To find preferable distribution, we implemented 
the filtering program on a PC and analyzed the 
process. For an 8 Mbps stream, we found that 75% 
of the data is from the block-layer and that 56% of 
the processing time is spent in processing DCT co-
efficients. The code executed at the microengines 
cannot exceed 2048 programming steps and the 
number of registers is limited, but they are enough 
to process block-layer data. Consequently, we de-

termined to devote the microengines to processing 
block-layer data. In our implementation, all six mi-
croengines are used for video filtering so that we 
can evaluate the potential capability of the network 
processor-based video-quality adjustment. 
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3.4 Communications among Processors 

For the StrongARM and the microengines to ad-
just video quality and adapt video rate in a coopera-
tive way, they must communicate with each other 
and share informations and packet data among them. 

Figure 3: IXP1200 Block Diagram The video-quality adjustment mechanism we 
implemented consists of five steps. The current step 
number is maintained at the SRAM. 

At the first step, the StrongARM receives a 
video packet. The packet is first put in the Stron-
gARM’s SDRAM space, but it is immediately cop-
ied to the shared area of the SDRAM for data shar-
ing.  

At the second step, the StrongARM processes 
headers from sequence to macroblock layers. It 
then stores informations obtained from headers into 
the shared memory so that the microengines can 
use the information in processing block layer. 

The step moves to the third, and the microengi-
nes obtain the block data and required information 
from the shared memory and apply the quality ad-
justment algorithm to the blocks. They put back the 
filtered block to the shared memory. 

At the fourth step, the StrongARM first reads out 
the filtered blocks from the shared memory. If they 
are the last blocks of the given packet, the step pro-
ceeds to the fifth and the final. Otherwise the 
StrongARM processes the next macroblock as at 
the second step. Finally, at the fifth step, the Stron-
gARM rebuilds a packet and sends it to a network. 

 
4. Evaluation 

We evaluate our IXP1200-based video-quality 
adjustment mechanism in terms of the accuracy of 
rate adaptation, the video quality, and the filtering 
performance. An MPEG-2 PS stream used for 
evaluation is coded at the average of 8 Mbps. A 
video stream of 720x480 pixels and 30 fps, and an 
audio stream of 192 Kbps are multiplexed into the 
PS stream. GoP length N is set to 15. We should 
note here that our implemented system cannot per-
form the video-quality adjustment at the rate of 8 
Mbps, as will be shown later. Thus, especially in 
evaluating the rate adaptation and the quality, a 
video stream injected into the IXP1200-based node 
is smoothed down. 

 
4.1 Accuracy of Rate Adaptation 

Figure 4 depicts trajectories of rate variation of 
filtered video streams generated aiming at 2, 4, and 
6 Mbps. It is shown that our system can success-
fully adapt the video traffic to the desired rate. 
Variations observed in the rate of filtered streams, 

 



Figure 4: Rate Variations of Filtered Stream

2 Mbps 8 Mbps
Figure 5: Example of Quality Degradation

Figure 6:  Video Quality Variation 

which sometimes exceed the target rate, are due to 
the slice-basis packetization and the variable length 
coding of the MPEG-2. 
 
4.2 Video Quality Variation 

The low-pass filter achieves rate reduction by 
eliminating DCT coefficients. As a result, the fil-
tered video loses sharpness and gets blurred. For 
example, we show an image taken from an original 
stream of 8 Mbps on the left and one from a stream 
filtered to 2 Mbps on the right, in Fig. 5. 

 Figure 6 illustrates trajectories of video-quality 
variation for the same video streams shown in Fig. 
4. The video quality is expressed in terms of coding 
artifact obtained by using the VP2000A of KDDI 
Media Will Corporation [6]. A higher value of cod-
ing artifact indicates that the quality degradation is 
noticeable as much blockiness, blurriness, and 
noise. Quality variations, i.e., the shape of the tra-
jectories, of filtered video streams resemble that of 
an original stream, but the degree of variations be-
comes higher as the target rate decreases. 

 

 

4.3 Filtering Performance 

We repeatedly examined the quality adaptation 
while gradually increasing the injection rate by 50 
kbps from 0.2 Mbps until the StrongARM begins to 
fail in receiving video packets. We considered three 
variants of implementation, they are, (1) only 
StrongARM is in charge of video-quality adapta-
tion, (2) the StrongARM and one microengine 
thread cooperate on filtering, and (3) all processors 
and threads are devoted into filtering. 

Throughputs attained are 550 Kbps, 350 Kbps, 
and 1350 Kbps, respectively. Although the highest 
throughput is not enough for practical purposes, we 
can see that distributing tasks among processors 
leads to the higher performance. We should note 
here that our implementation is not the most suit-
able. However, this is a good starting point to verify 
the practicality and usefulness of our idea and we 
continue improving the performance. 
 
5. Conclusion 

In this paper, we implemented our video-quality 

adaptation mechanism for heterogeneous video 
multicast on an Intel IXP1200-based network node, 
and verified its practicality and performance. Our 
system adapts the video traffic passing through the 
node to the desired rate by means of video-quality 
adjustment. It was shown that our system can proc-
ess the video stream up to 1.35 Mbps. We investi-
gate a further efficient and effective way of video-
quality adjustment to improve the performance. 
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