
Implementation and Evaluation of Video-Quality Adjustment
for Heterogeneous Video Multicast

 Tatsuya Yamada*, Naoki Wakamiya**, Masayuki Murata**, and Hideo Miyahara**

* Graduate School of Engineering Science, Osaka University, Japan
** Graduate School of Information Science and Technology, Osaka University, Japan

E-mail: t-yamada@ics.es.osaka-u.ac.jp, {wakamiya,murata,miyahara}@ist.osaka-u.ac.jp

Abstract

By introducing video-quality adaptation mechanisms into intermediate network equipments using active network
technologies, we can provide users with video distribution services taking into account client heterogeneity in
terms of available bandwidth, performance of client systems, and user’s preferences about video quality. In this
paper, we implement the low-pass filter, a quality adjustment technique for real-time multicasting of MPEG-2
video, on an Intel IXP1200 network processor-based network node. We applied the filter to video streams pass-
ing through the node and evaluated its practicality and applicability in term of accuracy of video rate adaptation,
variation of video quality, and filtering throughput. From the result of evaluation experiments, we demonstrate
that the implemented video-quality adjustment mechanism has sufficient rate adaptation capability, and that the
low-pass filter is able to accelerate with parallel processing.

Keywords: heterogeneous video multicast, video-quality adjustment, network processor, active network

1. Introduction

With the proliferation of broadband access to the
Internet, video distribution services such as video-
streaming or live transmissions are now becoming
widely deployed. Since video services involve
those users who are heterogeneous in terms of the
capacity of access links, the available network
bandwidth, the performance of client machines, and
the user’s preferences on the perceived video qual-
ity, we should introduce mechanisms so that a
video stream provided meets user’s environment
and preferences.

In [1], we proposed mechanisms for video multi-
cast services in which diverse client requests are
simultaneously satisfied while network resources
are efficiently used. Our mechanisms are developed
on the basis of active network technologies where
intermediated network nodes, called active nodes,
adapts the video rate to the desired level.

An active network is a network whose behavior
can be dynamically and flexibly tailored to network
administrator’s, user’s, or even application’s de-
mands [2]. Each packet passing through a network
equipment, called active node, is processed in ac-
cordance with a program that is contained in the
packet itself or has been preloaded at the node. By
introducing programs to active nodes, they can per-
form highly intelligent packet processing from
lower-layer functions such as QoS routing to appli-
cation-layer functions that manipulate user data in
packet payload. In our video multicast mechanisms
proposed in [1], to cope with the client-to-client
heterogeneity, appropriately chosen active nodes
are configured to adapt the rate of an incoming

video stream to the desired level by means of
video-quality adjustment as illustrated in Fig. 1.

In [3], we compared several quality-adjustment
mechanisms for real-time MPEG-2 video multicast,
namely frame discarding, low-pass, and requantiza-
tion filters. We proposed algorithms for those qual-
ity-adjustment mechanisms to adapt the video traf-
fic to the specified target rate. We conducted sev-
eral experiments and concluded that the low-pass
filter, which provides rate reduction by progres-
sively eliminating high-frequency components of
the video signal, is the most effective in terms of
suppression of the quality degradation and granu-
larity of the rate adaptation. However, we did not
consider several implementation-related issues such
as per-packet processing, and limitations in the
available memory and the processing capability of
the network equipment.

To evaluate and verify the practicality and appli-
cability of the video-quality adjustment within a
network, we implemented the proposed mechanism
on a network processor-based programmable net-
work equipment. In this paper, we show details of

Figure 1: Heterogeneous video multicast

video

low−bandwidth link

high quality

low−quality
video

client

high−quality
video

low−quality
video

lowperformance
high

performance
client

server
video

quality
 adjustment

��
��
��

��
��
��

�
�
�

�
�
�

the implementation and results of the conducted
evaluation experiments.

The organization of this paper is as follows. In
section 2, we briefly introduce the MPEG-2 coding
algorithm, the implemented low-pass filter, and the
rate adaptation mechanism. In section 3, we explain
the features of the Intel IXP1200 network processor
and describe issues related to implementation. We
give experimental results and discussion in section
4, and conclude the paper in section 5.

2. Quality Adjustment and Rate Adaptation

2. 1 MPEG-2 Video Coding Algorithm

Our low-pass filter is intended for video streams
in the MPEG-2 Program Stream format where a
video and an audio streams are multiplexed into a
single PS stream. Figure 2 shows the hierarchical
structure of MPEG-2 video data.

The highest layer is called sequence layer. A se-
quence is constituted by several Group of Pictures
(GoPs). A GoP is a sequence of three types of pic-
tures, I (Intra-coded), P (Predictive-coded), and B
(Bidirectionally predictive-coded) pictures. A GoP
starts with an I picture, followed by several P and B
pictures. A picture is composed of 16-pixels height
stripes, called slices. All sequence, GoP, picture,
and slice layers begin with a 32-bit start code which
is used for error recovery and for rewind and fast
forward functions.

Each slice consists of one or more macroblocks.
Each macroblock corresponds to a 16x16 pixel
square, and is composed of four 8x8 pixel lumi-
nance (Y) blocks and two 8x8 chrominance (Cb,
Cr) blocks. Each block is transformed to the fre-
quency domain using discrete cosine transform
(DCT). DCT coefficients in a block are in a ascend-
ing order of horizontal or vertical frequency.

2.2 Low-Pass Filter

To achieve rate reduction, the low-pass filter
eliminates appropriately determined number of
DCT coefficients from the high frequency ones that
constitute a luminance or chrominance block. We
call low-pass parameter to the number of DCT co-
efficients left in each block after quality adjustment.
At the beginning of each GoP, initial low-pass pa-
rameter values are set independently for I, P and B

pictures, according to the following formulas:
I B B P B B BP B P B B

GoP

Slice

MB MB MB MB MB MB MBMB MB MB MB MB

GoP GoP

Y1 Y2

Y4Y3

Cb Cr

Block

Sequence layer

GoP layer

MacroBlock Layer

Slice Layer

Picture layer

Block Layer

GoP : Group of Pictures
MB : MacroBlock

Y1~Y4 : Luminance Blocks
Cb, Cr : Chrominance Blocks

Horizontal frequency

Vertical frequency

DCT coefficient

Figure 2: MPEG-2 Video Data

32 905.111427.1127498.5917329.6
iii GGGI rrrl +−+−= (1)

32 499.139667.1595488.858626.11
iii GGGP rrrl +−+−= (2)

32 265.353353.59075.3609536.71
iii GGGB rrrl +−+−= , (3)

where are low-pass parameter values for I,
P and B pictures, respectively.

i
r is the compres-

sion ratio for the i -th GoP. For example, with

BPI lll ,,

5.

G

0=
i

, they are Gr 17=Il , , . We ob-
tain from the formula below:

14=Pl 7=Bl

iGr

.ii

i
G HG

Tr
i −
= (4)

iG

(

 is the predicted size for the i -th GoP in bits
which is calculated from the measured size of the

)1−i -th GoP, , using the following formula: 1−ig

11 8
1

8
7

−− += iii gGG , ()01,2 gGi =≥ . (5)

iH is the predictor for the total bits used by header
data in the i -th GoP, which is derived from the
measured header size of -th Gop :)1(−i 1−ih

1−= ii hH , ()1≥i . (6)

iT is the number of bits allowed to the current GoP,
and is calculated from a specified target rate R
(bps), the number of pictures in a GoP, (frames),
the frame rate (fps), and an adjustment value :

N
F ia

iii Ha
F

NRT −−
×

= . (7)

The adjustment value is calculated using: ia

() ,5

1

5,0max
∑
−

−=

−
=

i

ik

kk
i

fTa (8)

where is the size of the filtered -th GoP. kf k
The initial low-pass parameter value is changed

dynamically for each of the following intra macrob-
locks in the GoP, using the following:

=−×
<−×−
>−×+

=

−−

−−

−−

,0,
0,1
0,1

11

11

11

jji

jji

jji

MBMBGj

MBMBGj

MBMBGj

j

forl
forl
forl

l (9)

where is the low-pass parameter to apply to the jl
j -th macroblock, o is the macroblock size be-

fore filtering, and is the size of the filtered
macroblock.

1−jMB

1−jMBf

Using the above algorithm, the low-pass parame-
ter value for each macroblock is appropriately de-
termined. By eliminating the specified number of
DCT coefficients, it is possible to produce a video
stream of the desired rate.

3. Implementation of Low-Pass Filter

3.1 IXP1200 Overview

We implemented our low-pass filter on a pro-

grammable network equipment built on an Intel
IXP1200 network processor [4, 5].

The structure of the IXP1200 network processor
is illustrated in Figure 3. It has a StrongARM Core
processor and six microengines running at 200
MHz. A microengine is a simple RISC processor
optimized for packet forwarding and has limitations
in the number of registers and executable program
size. Each microengine can execute four program
threads concurrently, and thus up to 24 threads can
be executed in parallel.

24 MByte of the SDRAM is devoted to the
StrongARM. 8 MByte of the SDRAM and the
SRAM are shared among the StrongARM and the
microengines.

3.2 Data Packetization for Video Filtering

In order to attain the low-latency and on-the-fly
video-quality adjustment, a packet-basis mecha-
nism is indispensable, and thus a video stream
should be segmented into a sequence of independ-
ent packets. It is reasonable to divide a stream into
multiple units of data at start codes. From the se-
quence layer to the slice layer, we decided to pack-
etize a stream per slice. For example, an MPEG-2
video stream in a profile of MP@ML, i.e., 720x576
pixels and 30 fps, has 36 slices per picture. If it is
coded at the coding rate of 8 Mbps, it follows that
each packet amounts to 7 Kbits on average.

3.3 Cooperation among Processors

With support for multiple execution threads, the
IXP1200 has an architecture suited for parallel data
processing. We can expect high performance by
distributing tasks among the StrongARM, which is
a general processor that can perform complex proc-
essing, and the microengines, which can execute a
high volume of simple processing.

To find preferable distribution, we implemented
the filtering program on a PC and analyzed the
process. For an 8 Mbps stream, we found that 75%
of the data is from the block-layer and that 56% of
the processing time is spent in processing DCT co-
efficients. The code executed at the microengines
cannot exceed 2048 programming steps and the
number of registers is limited, but they are enough
to process block-layer data. Consequently, we de-

termined to devote the microengines to processing
block-layer data. In our implementation, all six mi-
croengines are used for video filtering so that we
can evaluate the potential capability of the network
processor-based video-quality adjustment.

Intel IXP1200 Chip

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Micro-
Engine

Intel
StrongARM

SA1100
Core

(Linux)

Instruction
Cache
16KB

Data
Cache
8KB
Mini

Cache
512B

SRAM
Unit

PCI Unit

SDRAM
Unit

IXBI Unit
Scratchpad
Memory
IX Bus

Interface

Hash Unit

SRAM
2MB

Ethernet
Ports 64bit

~85MHz

32bit
100MHz

SDRAM
For Linux

24MB
Shared

Memory
8MB

64bit 100MHz

32bit
33/66MHz

PCI
Bus

3.4 Communications among Processors

For the StrongARM and the microengines to ad-
just video quality and adapt video rate in a coopera-
tive way, they must communicate with each other
and share informations and packet data among them.

Figure 3: IXP1200 Block Diagram The video-quality adjustment mechanism we
implemented consists of five steps. The current step
number is maintained at the SRAM.

At the first step, the StrongARM receives a
video packet. The packet is first put in the Stron-
gARM’s SDRAM space, but it is immediately cop-
ied to the shared area of the SDRAM for data shar-
ing.

At the second step, the StrongARM processes
headers from sequence to macroblock layers. It
then stores informations obtained from headers into
the shared memory so that the microengines can
use the information in processing block layer.

The step moves to the third, and the microengi-
nes obtain the block data and required information
from the shared memory and apply the quality ad-
justment algorithm to the blocks. They put back the
filtered block to the shared memory.

At the fourth step, the StrongARM first reads out
the filtered blocks from the shared memory. If they
are the last blocks of the given packet, the step pro-
ceeds to the fifth and the final. Otherwise the
StrongARM processes the next macroblock as at
the second step. Finally, at the fifth step, the Stron-
gARM rebuilds a packet and sends it to a network.

4. Evaluation

We evaluate our IXP1200-based video-quality
adjustment mechanism in terms of the accuracy of
rate adaptation, the video quality, and the filtering
performance. An MPEG-2 PS stream used for
evaluation is coded at the average of 8 Mbps. A
video stream of 720x480 pixels and 30 fps, and an
audio stream of 192 Kbps are multiplexed into the
PS stream. GoP length N is set to 15. We should
note here that our implemented system cannot per-
form the video-quality adjustment at the rate of 8
Mbps, as will be shown later. Thus, especially in
evaluating the rate adaptation and the quality, a
video stream injected into the IXP1200-based node
is smoothed down.

4.1 Accuracy of Rate Adaptation

Figure 4 depicts trajectories of rate variation of
filtered video streams generated aiming at 2, 4, and
6 Mbps. It is shown that our system can success-
fully adapt the video traffic to the desired rate.
Variations observed in the rate of filtered streams,

Figure 4: Rate Variations of Filtered Stream

2 Mbps 8 Mbps
Figure 5: Example of Quality Degradation

Figure 6: Video Quality Variation

which sometimes exceed the target rate, are due to
the slice-basis packetization and the variable length
coding of the MPEG-2.

4.2 Video Quality Variation

The low-pass filter achieves rate reduction by
eliminating DCT coefficients. As a result, the fil-
tered video loses sharpness and gets blurred. For
example, we show an image taken from an original
stream of 8 Mbps on the left and one from a stream
filtered to 2 Mbps on the right, in Fig. 5.

 Figure 6 illustrates trajectories of video-quality
variation for the same video streams shown in Fig.
4. The video quality is expressed in terms of coding
artifact obtained by using the VP2000A of KDDI
Media Will Corporation [6]. A higher value of cod-
ing artifact indicates that the quality degradation is
noticeable as much blockiness, blurriness, and
noise. Quality variations, i.e., the shape of the tra-
jectories, of filtered video streams resemble that of
an original stream, but the degree of variations be-
comes higher as the target rate decreases.

4.3 Filtering Performance

We repeatedly examined the quality adaptation
while gradually increasing the injection rate by 50
kbps from 0.2 Mbps until the StrongARM begins to
fail in receiving video packets. We considered three
variants of implementation, they are, (1) only
StrongARM is in charge of video-quality adapta-
tion, (2) the StrongARM and one microengine
thread cooperate on filtering, and (3) all processors
and threads are devoted into filtering.

Throughputs attained are 550 Kbps, 350 Kbps,
and 1350 Kbps, respectively. Although the highest
throughput is not enough for practical purposes, we
can see that distributing tasks among processors
leads to the higher performance. We should note
here that our implementation is not the most suit-
able. However, this is a good starting point to verify
the practicality and usefulness of our idea and we
continue improving the performance.

5. Conclusion

In this paper, we implemented our video-quality

adaptation mechanism for heterogeneous video
multicast on an Intel IXP1200-based network node,
and verified its practicality and performance. Our
system adapts the video traffic passing through the
node to the desired rate by means of video-quality
adjustment. It was shown that our system can proc-
ess the video stream up to 1.35 Mbps. We investi-
gate a further efficient and effective way of video-
quality adjustment to improve the performance.

References

[1] H. Akamine, N. Wakamiya, and H. Miyahara,
“Heterogeneous video multicast in an active
network,” IEICE Transactions on Communica-
tions, vol. E85-B, no. 1, pp. 284–292, January
2002.

[2] J. Smith, K. Calvert, S. Murphy, H. Orman, and
L. Peterson, “Activating networks: A progress
report,” IEEE Computer, vol. 32, no. 4, pp. 32–
41, April 1999.

[3] H. Akamine, K. Nakada, N. Wakamiya, M.
Murata, and H. Miyahara, “Implementation and
evaluation of video filtering mechanisms for
real-time multicast,” Technical Report of the
IEICE (NS 2001-50), pp. 13–18, June 2001.

[4] Intel Corporation, “Intel IXP1200 network
processor family hardware reference manual,”
August 2001.

[5] T. Spalink, S. Karlin, and L. Peterson, “Evalu-
ating network processors in IP forwarding,”
Tech. Rep. TR–626–00, Department of Com-
puter Science, Princeton University, November
2000.

[6] KDDI Media Will Corporation,
 http://www.kmw.co.jp/. (in Japanese).

	1. Introduction
	2. Quality Adjustment and Rate Adaptation
	2. 1 MPEG-2 Video Coding Algorithm
	2.2 Low-Pass Filter
	3. Implementation of Low-Pass Filter
	3.1 IXP1200 Overview
	3.2 Data Packetization for Video Filtering
	3.3 Cooperation among Processors
	3.4 Communications among Processors
	4. Evaluation
	4.1 Accuracy of Rate Adaptation
	4.2 Video Quality Variation
	4.3 Filtering Performance
	5. Conclusion
	References

