
Video Streaming Systems
with Cooperative Caching Mechanisms

Naoki Wakamiya, Masayuki Murata, Hideo Miyahara

Graduate School of Information Science and Technology
Osaka University

Toyonaka, Osaka 560-8531, Japan

ABSTRACT

In this paper, we investigate mechanisms for the video streaming system where proxies cooperate to provide
users with low-latency and high-quality services under heterogeneous and mobile environment where hosts have
different capabilities and dynamically change their locations. The proxy is capable of adapting incoming or
cached video data to user’s demand by means of transcoders and filters. With such proxies, heterogeneous QoS
requirements on the delivered stream can be fully satisfied by preparing high-quality video data in the local
cache buffer and adjust them to the requirements. On receiving a request from a user, the proxy first checks
the cache. If no appropriate data is available, it retrieves the video data of the satisfactory quality from the
video server or proxies nearby. The proxy communicates with the others and finds an appropriate one for data
retrieval by taking into account the transfer delay and the video quality. We propose a cooperative video caching
mechanism for the video streaming system and evaluate the performance in terms of the delay introduced and
the video quality.
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1. INTRODUCTION

To provide video streams for users without irritating, disappointing, and discouraging them, we should have
mechanisms to accomplish a low-delay and high-quality streaming service. The proxy caching originally proposed
for WWW (World Wide Web) systems seems also helpful to video streaming systems for bandwidth saving,
load balancing, network latency reduction, and high content availability.

There have been several research works in applying proxy caching mechanisms to video streaming services. 1–5

They clarified problems related to efficient and effective video caching. One among them is the size of video
object. For example, two hour long MPEG-2 video amounts to 1.35 GBytes when it is coded at the minimum
quality of 1.5 Mbps video rate. Since the proxy is equipped with the limited buffer, it can cache only ten and
some streams. In addition, retrieving, caching, and replacing video data are performed per whole-stream basis,
one cannot expect efficient use of buffer space.

Another is severe requirements on timing constraints. Once a user starts to watch a video stream, the service
provider should guarantee continuity of the video playback. Each frame or block of the stream must arrive at a
client before a user watches the part. There should be some control mechanisms to guarantee punctual arrivals
because network bandwidth is not alway sufficient to transfer video data in time and there are jitters in the
transfer delay.

The other is the heterogeneity among clients. The available bandwidth and the performance of end-systems
differ among clients. Since receiving and decoding video stream put much loads on both of the networks and
end-systems, the affordable video rate and quality also differ from client to client. In addition, users may have
preferences in the perceived video quality.
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Figure 1. Cooperative Video Streaming System

The client mobility is a new problem that recently arises. With the proliferation of wireless communications
technologies, users come to enjoy a streaming service while moving around using laptops equipped with a
wireless network card. For such environment, proxies should prepare for the client movement in order to
provide a high-quality and continuous video streaming service.

In this paper, we describe a generally applicable idea for the provision of effective and higher-quality video-
streaming services in the heterogeneous and mobile environment. We tackles the problem of how the requested
block should be provided to the client, and what the quality of the block must be. The benefits of applying our
proxy-cooperation mechanism include saving on bandwidth, balancing of the load on the server, a perceived
reduction in network latency, and a higher degree of content availability by cooperative caching. The scheme
also provides support for heterogeneity from client to client and higher level of video quality. Furthermore, our
scheme takes into account client mobility. The mechanisms proposed in the paper are somewhat general, but
provide a good starting point from which we are able to see how several basic techniques may be combined to
accomplish an effective video-streaming service in a heterogeneous environment.

The rest of the paper is organized as follows; In section 2, we present assumptions on the system and our
proposed mechanisms are explained. In section 3, we show results of some preliminary experiments and finally
we summarize the paper in section 4.

2. COOPERATIVE PROXY CACHING MECHANISMS

The video streaming system we consider in the paper is illustrated in Fig. 1. The system consists of an
originating video server, cooperative proxy cache servers, a number of base stations, and heterogeneous mobile
clients. Client hosts exist in wireless network environment and move around during a video streaming session.
Client hosts are heterogeneous in regard to the available bandwidth, propagation delay from the proxy cache
server, end-system performance, and user’s preferences on the perceived video quality. A base station is located
at the center of a cell and belongs to a LAN by means of a wired link. There exists a proxy cache server in each
LAN and takes on resposibility for providing clients in corresponding wireless networks with video streaming
services.

A client and a designated proxy cache server communicates over an RTSP session and video data are
transferred over an RTP session established among them. A proxy cache server retrieves video data from a
distant origin server or neighboring proxies on behalf of clients, deposits the data in its local cache buffer, and
adapts the quality of the data to user’s demand. In addition, proxy cache servers communicate with each other
using inter-cache communications protocols, including ICP, CARP, and WCCP.6 Servers exchange blocks over
a pair of an RTSP and an RTP sessions. We should note here that to reduce loads on networks and servers, there
is only one pair of sessions between any pair of servers regardless of the number of clients. Each pair of system
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Figure 2. Behavior of the proposed system

entities also communicates with each other using out-of-band control sessions of RTCP. By exchanging RTCP
messages, they can keep up-to-date information about the network condition, that is, the available bandwidth
and the expected propagation delay.

Of the mechanisms for the adjustment of video quality, which are sometimes called transcoders or filters, we
have tended to concentrate on the quantizer-scale-based approach.7 This was originally intended for use with
MPEG-2 video streams but is also applicable to streams of data produced by such other coding algorithms as
motion JPEG, MPEG-1, and MPEG-4. The originating server generates a video stream of the finest possible
quality by using the smallest quantizer scale, i.e., Q = 1. The originating server requantizes the blocks if the
proxy’s request was for block of lower quality and then sends them to the proxy. The proxy also adjusts cached
and retrieved blocks when a lower quality has been requested by another proxy or the client. Note that we do
not intend to limit the adjustment of video quality to the quantizer-scale-based technique, since this sometimes
leads to sudden jumps in the level of quality due to diverse quantizer scale. Yeadon et al.8 report on a range
of useful and scalable ways of controlling the quality of encoded video streams. The layered coding algorithm
inherently enables the quality adjustment.9, 10

In the following subsections, we propose several mechanisms for the video streaming system where proxies
cooperate to provide users with low-latency and high-quality services under heterogeneous and mobile environ-
ment where hosts have different capabilities and dynamically change their locations. To simplify the discussion,
we have concentrated on the case where clients concentrate on a single video stream. Our mechanism is, how-
ever, applicable to cases where the video-streaming system is providing multiple video streams to individual
users.

2.1. Data Transfer among Servers and Client

Figure 2 illustrates how servers and client communicate with each other in our video streaming system. The video
streaming service is initiated by an RTSP PLAY message issued by a client to a designated proxy cache server.
The message contains information about preferable (upper-constraint) and tolerable (lower-constraint) levels
of video quality which are determined in accordance with the available bandwidth, end-system performance,
and user’s preferences. The client is allowed to dynamically change QoS requirements during a video session to
reflect changes of those constraints.

In our system, a video stream is segmented into blocks to efficiently utilize the cache buffer and reduce
the required bandwidth for data retrieval.5, 7 When we considered the structure of a coded video stream
and its frame-by-frame mode of play-back, we decided to use a block of several frames in segmentation. Such



frame-based segmentation is preferable when we are employing RTSP as the communications protocol for video
streaming. For the proxy to retrieve specific blocks from the other servers, a PLAY request must specify the range
of the required part of the video stream in terms of an SMPTE relative timestamp, a normal play timestamp,
or an ISO 8601 timestamp. Employing frame-based segmentation allows us to easily derive appropriate range
parameters from the order of a block in the sequence, since each block corresponds to a certain number of frames
and we know the period of one frame, e.g., 1/24 second.

On receiving the first PLAY message, the proxy cache server begins to provide a requested video stream to
the client. The proxy adopt the fastest way that can provide the client with a block of higher level of quality.
The proxy can (i) read out and send a cached block, (ii) use a block being received, (iii) wait for the preceding
request for the same block to be served, or (iv) newly retrieve a block from the other server. If the proxy has a
block of the same number and its quality can satisfy the request, the proxy may consider using the cached block
is the best way. It applies the video quality adjustment to the block as necessary and transfers the block to the
client over an RTP session established between them. If the block being received has the satisfactory quality,
the proxy may decide to send the block under transmission to the client. If there is the preceding request for
the same block of higher quality, the proxy can wait for the request to be served. In some cases the proxy
determines to retrieve the block. It first identifies an appropriate server among candidates, then determines the
quality of the block to retrieve, and sends a PLAY message to the server. A retrieved block is cached and sent to
the client after being applied the video quality adjustment as necessary. When the proxy cache server finishes
sending out the block to the requesting client, it moves to the next block and repeat the similar procedures.

While providing clients with video blocks, the proxy cache server predicts and prepares for a future potential
cache miss by prefetching a block from the other server. A prefetching request is processed without disturbing
normal block retrievals. Details of the prefetching mechanisms will be given in subsection 2.3.

To avoid or absorb unexpected block transmission delays, a client i first defers playing out a received video
block for a predetermined waiting time, denoted as ∆i in the paper, as shown in Fig. 2. Then, it begins to
decode and display received blocks one after another, at regular intervals of B/F where B corresponds to the
number of frames in a block and F stands for the frame rate. Once a user begins to watch a video, the video
streaming system must provide the client with video blocks in a continuous and timely manner. However, in
some cases, a block does not arrive in time and the client is forced to pause. Time required for the client i to
wait for the arrival of necessary block j is called freeze time, fi(j) in the paper. If the block j arrives in time,
freeze time fi(j) becomes zero. Cache miss is one of reasons that make continuous and in-time delivery of video
data difficult. Even if all blocks of a high level of quality is cached, a proxy cache server cannot guarantee the
in-time delivery due to unexpected and uncontrollable network congestion.

2.2. Block Provisioning Algorithm
In providing a client with a block, a proxy cache server can send a cached block, apply a receiving block, make
use of the preceding request, and retrieve a block. Among them, a proxy chooses the best way in terms of
the offerable quality and the block transfer time. For this purpose, servers communicate with each other and
maintain the up-to-date information, such as the quality of offerable blocks, round trip time, and available
bandwidth. To predict the transfer time as accurate as possible, the proxy estimates the block size, propagation
delay and throughput. The block size can be derived using the traffic model of coded video streams11 or the
information provided by the origin server. The latency can be estimated by a means of ping, echoping and so
on. Throughput of a session between two servers can be measured by pathchar, pchar and any other methods.
When we employ the TCP-friendly rate control protocol12 as an underlying rate control mechanism, estimation
of latency and throughput becomes simpler. However, to accurately estimate the network condition, pairs of
servers should keep transferring data and periodically exchanging RTCP messages. Information related to the
network condition among the proxy and clients are also required.

Assume that the proxy k is trying to provide the client i with the block j at time t. The quality of the block
j must be higher than qi(j) and as high as Qi(j), which are determined by the QoS requirements specified by
the latest PLAY message. A deadline Ti(j) that the client i should finish receiving the block j is determined as

Ti(j) = Ti + ∆i + (j − 1)
B

F
− δi + Di(j − 1), (1)



where Ti indicates an instant when the client i issues the first PLAY message, ∆i is the initial waiting time,
B and F stand for the number of frames in a block and the frame rate, respectively. δi is introduced to
absorb unexpected delay jitters and estimation errors. Even if we carefully design control mechanisms and a
streaming system is successfully built, we cannot avoid freezes. After a freeze, the client decodes and displays
the succeeding blocks at regular intervals as shown in Fig. 2. Di(j − 1) is accumulated freeze time and is given
as Di(j − 1) =

∑j−1
l=1 fi(l).

The offerable quality of the block j to the client i with the block j cached at the proxy k’s buffer, cPC
k,i (j),

is derived as
cPC
k,i (j) = min(qk(j), c̄PC

k,i (j)), (2)

where

c̄PC
k,i (j) = max(q|t + dPC

k,i (t) +
aj(q)

rPC
k,i (t)

≤ Ti(j)). (3)

qk(j) stands for quality of the block j cached at the proxy k’s buffer. For this purpose, the proxy has a cache
table which maintains information about cached and non-cached blocks of a video stream. Each entry of the
table consists of the block number j and the quality of the cached block qk(j). Larger values of qk(j) indicates
higher quality and zero means a non-cached block. aj(q) is a function that gives the size of block j of quality
q. If j = 0 or q = 0, aj(q) gives zero. Thus, cPC

k,i (j) becomes zero if a corresponding block is not cached at t.
dPC

k,i (t) and rPC
k,i (t) are estimates of available bandwidth and one-way propagation delay between the proxy k

and the client i at t. Thus, dPC
k,i (t) + aj(q)

rP C
k,i

(t)
provides estimated time required for the client i to receive a whole

of the block j of quality q via an RTP session whose available bandwidth is rPC
k,i (t) and propagation delay is

dPC
k,i (t).

In this paper, we only consider the case where the quality is expressed by a single scalar, i.e., the reciprocal
of the quantizer scale. Several parameters may be combined together to provide a more flexible and convenient
service. For example, the three-member tuple (R, F, Q) corresponds to those scalabilities in the MPEG-2
coding algorithm which directly affect the perceived video quality. They are the spatial scalability R pixels, the
temporal scalability F frames per sec, and the SNR scalability Q (quantizer scale).

If the block j is being received, the proxy can use it. The quality offerable is derived as

bPC
k,i (j) = max

∀s,s �=k
(min(qSP

s,k (t), b̄PC
k,i (j))), (4)

where

b̄PC
k,i (j) = max(q|t + dPC

k,i (t) + max(
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤ Ti(j)). (5)

In the above equations, s indicates the server from which the proxy is receiving the block j. qSP
s,k (t) is the

quality of block being received at t. aSP
s,k (t) stands for the amount that has been received. dSP

s,k (t) and rSP
s,k (t)

correspond to estimates of available bandwidth and one-way propagation delay between the server s and the
proxy k at t.

A proxy keeps track of requests sent out for block retrieval. W SP
s,k (t) = {W1, W2, . . . , Ww} is a list of requests

sent from the proxy k to the server s before t. The quality of the block Wn, qw
s,k(n), is also maintained in a

list. A pair of the block number and the quality is added to the lists when the proxy sends a request for block
retrieval and is removed from the lists when the proxy begins receiving the block. When the mth request is for
the block j, that is, Wm = j, the offerable quality wPC

k,i (j) becomes

wPC
k,i (j) = max

∀s,s �=k
(min(qw

s,k(m), w̄PC
k,i (j))), (6)

where

w̄PC
k,i (j) = max(q|t+2dSP

s,k (t)+dPC
k,i (t)+

∑m−1
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+max(
aj(qw

s,k(m))
rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤ Ti(j)).

(7)
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ps,k(t) indicates the block number to be prefetched from the server s and qp
s,k(t) is the quality requested for

the block ps,k(t). If no prefetching request is waiting, both ps,k(t) and qp
s,k(t) are zero. In our system, only one

prefetching request is permitted by a server per proxy and prefetching is preempted by normal block retrievals.
Details of a prefetching mechanism will be given in subsection 2.3. Equation 7 considers the worst case when
no block is under transmission and the preceding requests from 1 to m − 1 and the pferetching request will be
served in prior to the block Wm, as illustrated in Fig. 3. If the proxy is receiving a block at t, w̄PC

k,i (j) is derived
using the following equations.

w̄PC
k,i (j) = max(q|t+max(2dSP

s,k (t),
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

)+dPC
k,i (t)+

SSP
s,k (t)

rSP
s,k (t)

+max(
aj(qw

s,k(m))

rSP
s,k (t)

,
aj(q)

rPC
k,i (t)

) ≤ Ti(j)),

(8)
where

SSP
s,k (t) =




∑m−1
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t)), if 2dSP

s,k (t) >
aj(q

SP
s,k (t))−aSP

s,k(t)

rSP
s,k

(t)∑m−1
n=1 aWn(qw

s,k(n)), otherwise
(9)

Finally, the offerable quality sPC
k,i (j) by retrieving the block j from the server s is derived by the following

equations when there is no block under transmission,

sPC
k,i (j) = max

∀s,s �=k
(min(qr

s(j), s̄PC
k,i (j))), (10)

where

s̄PC
k,i (j) = max(q|t + 2dSP

s,k (t) + dPC
k,i (t) +

∑w
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t))

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
) ≤ Ti(j)).

(11)
Here, qr

s(j) corresponds the quality of the block j cached at the server s. The proxy has information about
blocks kept at the originating server and the other proxy servers in remote tables. Each table corresponds
to a server s from which the proxy can retrieve blocks. Proxies communicates with each other and exchange
information about cached blocks. On the contrary, if the proxy k is receiving a block from the server s,

s̄PC
k,i (j) = max(q|t + max(2dSP

s,k (t),
aj(qSP

s,k (t)) − aSP
s,k (t)

rSP
s,k (t)

) + dPC
k,i (t) +

USP
s,k (t)

rSP
s,k (t)

+
aj(q)

min(rSP
s,k (t), rPC

k,i (t))
) ≤ Ti(j)),

(12)
where

USP
s,k (t) =

{ ∑w
n=1 aWn(qw

s,k(n)) + aps,k(t)(q
p
s,k(t)), if 2dSP

s,k (t) >
aj(q

SP
s,k (t))−aSP

s,k(t)

rSP
s,k

(t)∑w
n=1 aWn(qw

s,k(n)), otherwise
. (13)



The fastest and finest way is chosen as far as the offerable quality is higher than the minimum request qi(j)
and is lower than the maximum requeset Qi(j). If none of cPC

k,i (j), bPC
k,i (j), wPC

k,i (j), and sPC
k,i (j) cannot satisfy

the request qi(j), the proxy chooses the fastest way.

2.3. Block Prefetching Algorithm

In order to achieve further effective control, a proxy prefetches blocks in accordance with client requests. While
supplying the client i with the block j, the proxy investigates the cache table for blocks j + 1 to j + P to find a
potential cache miss. The parameter P determines the range of the prefetching window. When the proxy finds
the block whose quality is lower than qi(j) and there is no request waiting to be served, it attempts to prefetch
the block of finer quality. If there are two or more unsatisfactory blocks, one closest to the block j is chosen.

The prefetch requests are treated at the server in a different way from those for retrieving cache-missed
blocks. The origin server and proxy servers maintain pairs of prioritized queues per RTSP session. The queue
given a higher priority is for usual block retrieval and requests are handled in a first-come-first-served discipline.
The other queue for prefetching has only one room and the request waiting in the queue is overwritten with a
new one. The prefetch request in the queue is served only when there is no request in the high-priority queue.
The prefetch request is considered obsolete and canceled when the server receives the request for the same block
with the higher quality requirement.

The proxy decides to prefetch a block if reception of the block is expected to be completed in time. The
expected time tps,k(t) when the proxy finishes prefetching is derived as

tps,k(t) = t + 2dSP
s,k (t) +

aps,k(t)(q
p
s,k(t))

rSP
s,k

, (14)

where ps,k(t) and qp
s,k(t) stand for the block number and the requested quality, respectively. This equation

means that the proxy tries prefetching only when no preceding request is waiting to be served. If the derived
time tps,k(t) is faster than the time T p

i (ps,k(t)) which is derived as,

T p
i (ps,k(t)) = Ti + ∆i + (ps,k(t) − 1)

B

F
− δi + Di(j − 1) − dPC

k,i (t), (15)

the proxy sends a request to the server s.

Information about a prefetching request is kept at a proxy as a pair of the block number ps,k(t) and the
quality qp

s,k(t) and is overwritten by a new prefetching and canceled when a corresponding block reception begins
or a normal block retrieval is requested for the same block of higher quality. The quality q p

s,k(t) is determined
on the basis of the QoS requirement as βQi(j) where 0 < β ≤ 1. If we set β to a small value, we can expect
to prepare enough number of blocks but the quality of blocks provided to clients becomes low. On the other
hand, with a large β, there is little chance to successfully prefetch blocks but a high-quality video stream can
be provided with prefetched blocks.

2.4. Cache Replacement Algorithm

After the proxy has received the jth block, the block is placed in the proxy’s cache buffer if a copy of the block
is not already in the cache, or replaces the cached copy of block j in coarser form which is already in the cache.
Since a block of higher quality requires more space and the cache buffer is of limited size, the proxy sometimes
discards cached blocks and stores the new block instead.

The proxy makes a list of blocks to be discarded on the basis of its cache table. Those blocks which are
located in prefetching windows are placed beyond the the scope of replacement. Retention of the first P blocks
is also considered important as a way of hiding the initial delay. This was discussed by Sen et al..13 The rest of
the blocks are all candidates for replacement. Among the others, the block closest to the end of the longest run,
a succession of non-prioritized blocks, becomes the first ’victim’. Let m be its identifier. If the victim is cached,
the proxy first tries degrading its quality to shrink the block size and make a room for the new block. The
quality adjustment is limited to the maximum among the QoS requests issued by the clients watching blocks
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behind the victim. If the adjustment is not effective enough, the victim is swept out of the cache buffer. If
it still is insufficient, the proxy moves to the next victim. When all the victims are dropped but there is not
enough room yet, the proxy gives up storing the new block when all attempts failed. Figure 4 illustrates an
example of an order of victims. We have a video stream of 32 blocks and the prefetching window P = 4 blocks.
The proxy is serving client A and B with a block 10 and 23, respectively. Then, those blocks from 1 to 4, from
10 to 14, and from 23 to 26 are not to be replaced. Among the others the first victim is block 22, since a run
that the block belongs to is the longest and the block is located at the end of the run. The fourth victim is
chosen from the other run which is located closer to the end of the stream as illustrated.

2.5. Moving Client

A client moves around during a video session. A client is assumed to have a capability of predicting its motion.14

When the client i detects a future handoff, it notifies the designated proxy k of expected time of handoff and
the next cell identifier. Proxies know topology of wireless networks, or at least can identify a proxy that is
responsible for a cell. If the next cell is under the control of the other proxy s, the proxy k informs the proxy s
of client’s movement. The message contains the expected time of handoff, the block number j being provided
to the client i, the requested quality qi(j).

The next proxy s begins to prepare for a new client. To avoid degrading services provided to existing clients,
only prefetching mechanism starting with the block j is applied to the client i. In a case that the proxy predicts
a future cache miss and sends a prefetching requests, it waits for expected time for prefetching and moves to
the next block. Otherwise, the proxy moves to the next block after the fixed interval of B/F . The preparation
is canceled when (i) the client i enters the proxy s’s cell, (ii) the client i predicts another movement to the
different server’s cell, (iii) the expected time of movement has passed.

3. EVALUATION

In this section, we describe some of the results we obtained in our preliminary experimental evaluation of the
system described above. The network we employed is depicted in Fig. 5. The originating server is behind a
wide-area network or the Internet. It communicates with three proxy servers through 2-Mbps sessions which
are established over narrow and long-haul links of propagation delay 200 msec. The proxy servers are located in
an ISP network and are connected with each other via 5-Mbps sessions which are established over inter-network
broadband lines. Initially, there are ten clients numbered from 1 to 10, from 11 to 20, and from 21 to 30 in the
local network of each proxy server. The proxy server establishes an 8-Mbps fixed-bandwidth session with each
of its clients. The one-way delays for each session are indicated beside the respective connections. Although
the available bandwidth and one-way delay fluctuate greatly under realistic conditions, we have employed static
values so that we are able to clearly observe the behavior obtained by applying the control mechanisms. Clients
1, 11, and 21 first issue PLAY messages at randomly determined time. The inter-arrival time of the first PLAY
messages issued by the clients of each proxy follows an exponential distribution with an average of 30 minutes.

The video stream is 90-minutes long and is played back at 30 fps. The stream is divided up into one-second
blocks, that is, L = 5400 and B = 30. Ten levels of quality are available and the respective block sizes are given
by ∀j aj(q) = qB

F × 106 bits. Thus, a whole video stream amounts to 5.4 Gbits to 54 Gbits. Each proxy is
equipped with a limited cache buffer of 15 Gbits. Initially, all cache buffer are empty and only the originating
video server has all blocks of the highest quality. The prefetching window size is P = 10 blocks. The buffering
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Figure 5. The model used in simulation

times ∆i and δi to absorb delay jitters and prediction errors are set to 4 seconds and 2 seconds, respectively.
The tolerable video quality qi(j) is fixed at 1, since it is the most important to keep playing a video throughout
a video session. On the contrary, the preferable quality Qi(j) varies from 1 to 10. It is initially set to 5, that
is, Qi(1) = 5. Then, the client randomly determines the quality requirement on a block-by-block basis. In the
experiments, a probability of 5% was assigned to the event of the client increasing Qi(j) by one. The event
of the client decreasing Qi(j) by one was assigned the same probability, while retaining the same value for
Qi(j) was assigned a probability of 90%. This is introduced as a way of imitating dynamic changes in quality
requirements according to system conditions and the user’s preference. The ratio of the quality of prefetching
block to the request is determined as β = 0.6. The residence time in a proxy’s wireless domain follows an
exponential distribution whose average is 10 minutes. The client is assumed to predict a handoff 30 seconds
before the movement on average. The next proxy is determined at random.

Figures 6 and 7 depict results of preliminary simulation experiments. For comparison purpose, we conducted
simulation of a system where proxies independently operate (referred to as “independent”). We compare the
performacen in terms of the average freeze time and the average quality ratio. The average freeze time is derived
as

∑L
j=1 fi(j)/L. The quality ratio is defined as the ratio of quality of provided block to the request Qi(j).

Figure 6 implies that clients of proxy 3 first subscribed to the service and began to watch a video. Thus, clients
from 21 to 24 in the independent system were forced to pause and wait for arrivals of blocks. With our system,
the average freeze time is improved very much. Clients 2, 11, 12, and 24 become free from waiting for delivery
of blocks and the average freeze time of clients 1, 21, 22, and 23 are reduced by 88–56%. In addition, Fig. 7
shows that the quality of blocks provided to clients are improved for all clients. In particular, clients with a
larger number, that is, clients subscribed the service later received blocks whose quality ratios are as high as
0.8. This is because that proxies provide those clients with cached blocks and prefetch blocks of higher quality
in advance using residual bandwidth. As these figures clearly show, our proposed mechanisms can provide users
with continuous and higher-quality video streaming services in heterogeneous and mobile environments.

4. CONCLUSION

In this paper, we propose a new and effective video streaming mechanism where proxies retrieve, prefetch,
adjust, cache, and deliver video blocks in a cooperative way in heterogeneous and mobile environments. The
proposed mechanism can be applied to any type of video streaming service as long as the block-based transfer
and the quality adjustment are possible. However, we put some assumptions on the system and only preliminary
experiments have been conducted. We are now considering the implementation to verify the applicability and
practicality of our proposal.
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