
Master’s Thesis

Title

A Study on Inline Network Measurement Mechanism

for Service Overlay Networks

Supervisor

Prof. Masayuki Murata

Author

Cao Le Thanh Man

February 13th, 2004

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

A Study on Inline Network Measurement Mechanism

for Service Overlay Networks

Cao Le Thanh Man

Abstract

The performance of service overlay networks depends primarily on how well they take ad-

vantage of the characteristics and resources of the underlying network. To improve performance,

therefore, service overlay networks need fast and accurate information about the IP network con-

cerning resource availability, network congestion, routing and so on. In this thesis we propose

ImTCP (Inline measurement TCP), a real-time inline measurement mechanism with very small

overhead for measuring end-to-end bandwidth availability in service overlay networks. Utilizing

the transmitted packets of an active TCP connection to perform measurements, the inline measure-

ment mechanism of ImTCP has the advantage of yielding results quickly and accurately without

using additional probe packets.

In this thesis, we first introduce a new bandwidth measurement algorithm that can perform

measurement estimates quickly and continuously and is suitable for inline measurement because

of the smaller number of probe packets required and the negligible effect on other network traffic.

We then show how the algorithm is applied in TCP through a modification to the TCP sender only.

We also present a system we designed for storing measurement results from which an application

can retrieve results data for any time scale. In addition, we present examples in which TCP data

transmission performance is improved by using the measurement results.

We show through extensive simulation results that the inline measurement mechanism suc-

cessfully measures bandwidth availability in the end-to-end path at intervals of several RTTs while

1

exhibiting no degradation in TCP transmission speed. We also show how measurement results can

be used to prevent TCP data transmission from affecting other network traffic and how available

bandwidth can be utilized more successfully than with conventional TCP.

2

Keywords

TCP (Transmission Control Protocol), Available bandwidth, Inline measurement, Sender-based

measurement, Service overlay network

3

Contents

1 Introduction 8

2 Inline Network Measurement in IP-based Service Overlay Networks 12

2.1 Requirements . 12

2.2 Existing network measurement methods . 13

2.3 Proposed measurement algorithm . 14

2.4 Simulation results . 21

3 ImTCP: TCP with Inline Network Measurement 25

3.1 Overview . 25

3.2 Packet storing mechanism . 26

3.3 Parameter settings . 30

3.3.1 Packet storing timer . 30

3.3.2 Number of packets in a measurement stream 32

3.3.3 Measurement frequency . 34

3.4 Other issues . 34

3.4.1 Effect of Delayed ACK option . 34

3.4.2 Effect of packet fragmentation . 35

3.5 Simulation results . 35

3.5.1 Measurement accuracy . 35

3.5.2 Effect of ImTCP on other traffic . 37

3.5.3 Bandwidth utilization and fair share . 40

4 Implementation Issues 43

4.1 Storage system for measurement results . 43

4.1.1 Time scale problem . 43

4

4.1.2 Application request . 44

4.1.3 Storage system . 44

4.2 API for ImTCP . 45

5 Transmission Modes of ImTCP 47

5.1 Background transmission . 47

5.2 Full-speed transmission . 51

6 Conclusion 56

Acknowledgements 57

References 58

5

List of Figures

1 Outline of proposed measurement algorithm 14

2 Relationship of search range, sub-ranges, streams, and probe packets 16

3 Finding the available bandwidth within a sub-range 19

4 Network model for evaluation of the proposed measurement algorithm 21

5 Results of the proposed measurement algorithm (1) 23

6 Results of the proposed measurement algorithm (2) 24

7 Placement of measurement program at TCP sender 25

8 Structure of the measurement program . 26

9 State transition in the Control Unit . 27

10 ImTCP packet transmission . 29

11 Packets transmission times in TCP . 31

12 Measurement results of ImTCP . 36

13 Throughput of ImTCP and RenoTCP . 37

14 Network model for evaluation of ImTCP’s effect on Web traffic 38

15 Measurement result of ImTCP in Web traffic environment 39

16 Comparison of Web page download times . 40

17 Network model for investigating bandwidth utilization and fair share 41

18 Fairness and link utilization of ImTCP . 42

19 Fairness between RenoTCP and ImTCP . 43

20 ImTCP storage database for measurement results 44

21 Network model for evaluation of ImTCP background mode 49

22 Comparison of ImTCP background and RenoTCP performance 49

23 CDF and average of Web page download time 50

24 Throughput and measurement result of ImTCP background mode 51

6

25 High speed network topology . 53

26 Comparision of TCP window sizes and throughputs 54

27 Wireless network topology . 55

28 TCP throughput in wireless network . 55

7

1 Introduction

Network measurement techniques have received a great deal attention, and numerous measure-

ment tools have been developed [1–10]. These tools observe and/or monitor network characteris-

tics such as the physical link bandwidth [5–8], available bandwidth [1–3], delay [7], loss [9] and

topology [10] of the network. The observed results are often used for network trouble-shooting,

isolation of fault locations, and network provisioning [11]. Measurement techniques can be cat-

egorized into active and passive approaches. Active approaches [1–4, 7–10] inject test packets

into the network, and utilize the feedback information to derive measurement results. Passive ap-

proaches [5, 6] do not use test packets but rather monitor the packets already traversing a router

interface or a link.

As the Internet increasingly diversifies and the user population grows rapidly, new and varied

types of service-oriented networks are emerging. Called service overlay networks, they include

Peer-to-Peer (P2P) networks [12, 13], Grid networks [14–17] and Content Delivery/Distribution

Networks (CDNs) [18–20] and IP-VPNs [21]. Service overlay networks are upper-layer networks

providing special-purpose services built onto the lower-layer IP network. Their performance de-

pends primarily on how well they take advantage of the characteristics and resources of the un-

derlying network. To improve performance, therefore, service overlay networks need fast and

accurate information concerning resource availability in the IP network to realize adaptive control

mechanisms. Some examples of this are:� P2P networks. When a resource discovery mechanism finds multiple peers having the same

requested contents, this information is used to determine which peer should transmit the

contents.� Grid networks. When multiple sites contain the same data, this information is used to deter-

mine from which site data will be copied or read.

8

� CDNs. When backup data or cached data is transmitted, this information can be used to

prevent other network traffic from being deprived of resources during the transmission.

Our study focuses on measuring available bandwidth in the network path of a service overlay

network. Many approaches for measuring bandwidth availability, including active and passive,

have been presented in the previous literature ([3, 5, 22] and references therein). However, ex-

isting measurement algorithms cannot be used directly to measure the network characteristics of

a service overlay network. One reason is that active measurement approaches, utilizing probe

packets with continuous measurements, degrade the performance of the other network traffic. In

addition, existing measurement techniques, especially the passive approaches, require a relatively

long time to collect each measurement result. We must collect as quickly as possible the latest,

and hence most accurate, information on network characteristics when the volume of IP network

traffic fluctuates greatly.

Based on these considerations, we propose a technique for measuring end-to-end network

bandwidth availability that satisfies requirements for service overlay networks. Our method is

based on existing active measurement approaches of PathLoad [3] and PathChirp [22], but does

not require the sending of additional packets. Instead, information on network characteristics is

collected from transmitted packets of an existing TCP service connection. We call this approach

Inline Network Measurement. The rational behind this is to change TCP from a data-transfer-only

tool to one that can also be used for measurement. The method proposed here is a sender-based

approach; it does not require changes to the TCP receiver.

Traditional TCP can be considered to some extent as a tool for measuring available bandwidth

because of its ability to adjust the congestion window size until the transmission rate is relevant to

the available bandwidth. However, the resulting estimation is insufficient and inaccurate because

it is a measure of used bandwidth, not available bandwidth. Especially, in networks where the

probability of packet loss is relatively high, TCP tends to fail in estimating the available bandwidth.

9

Moreover, the TCP sender window size often does not accurately represent the available bandwidth

due to nature of the TCP congestion control mechanism. A study by TCP Westwood [23] presents

an improved TCP bandwidth measurement mechanism in which the TCP sender uses the arrival

intervals of ACK packets to estimate the available bandwidth and control the transmission rate

accordingly. It is a good measurement algorithm in terms of simplicity. However, it tends toward

underestimation when the available bandwidth of the network path transitions from a low to a

high value. This is due to the fact that when available bandwidth suddenly increases, the TCP

data transmission rate, due to the self-clocking phenomenon of TCP, does not change as quickly

and needs time to ramp up. Meanwhile, as the transmission rate continues at a rate lower than the

available bandwidth, the measurement algorithm yields results lower than the real values. This

shortcoming arises from the fact that Westwood TCP, as with traditional TCP, measures the used

bandwidth, not the available bandwidth.

In this paper, we first introduce a measurement algorithm suitable for the inline network mea-

surement. This algorithm periodically yields measurement results at short intervals such as several

RTTs. The key idea in measuring rapidly is to limit the bandwidth measurement range using sta-

tistical information from previous measurement results. This is done rather than searching out the

physical bandwidth [3, 22], from 0 bps to the upper limit of the range, in every measurement as

existing algorithms do. By limiting the measurement range, we can avoid sending probe packets

at an extremely high rate and keep the number of probe packets small.

We then introduce ImTCP (Inline measurement TCP), a Reno-based TCP in which the pro-

posed algorithm for inline network measurement described above is included. When a sender

transmits data packets, ImTCP first stores a group of five to 10 packets in a queue and subse-

quently forwards them at a transmission rate determined by the measurement algorithm. Each

group of packets corresponds to a probe stream. Then, considering ACK packets as echoed pack-

ets, the ImTCP sender estimates available bandwidth according to the algorithm. To minimize

transmission delay caused by the packet store-and-forward process, we introduce an algorithm

10

similar to the RTO (round trip timeout) calculation in TCP to regulate packet storage time in the

queue. We evaluate the inline measurement system with simulation experiments. The results

show the proposed algorithm works with the window-based congestion control algorithm of TCP

without degrading transmission throughput.

We also propose some modifications to the socket interface of traditional TCP so that upper-

layer applications can control ImTCP behavior and access ImTCP measurement results. We pro-

pose a storage mechanism and new API allowing retrieval of measurement results for any given

time interval by applications. We also present two examples using ImTCP congestion window

control modes to show how measurement results can be applied to TCP data transmission. In

background transfer mode, ImTCP uses bandwidth availability measurement results to prevent

its own traffic from degrading the throughput of other traffic. This allows priority to be given to

the other traffic sharing the network bandwidth. In full-speed transfer mode, ImTCP uses mea-

surement results to keep its transmission rate close to the measured value necessary for optimum

utilization of available network bandwidth. This mode is expected to be used in wireless and high

speed networks where traditional TCP cannot utilize the available bandwidth effectively [24, 25].

The remainder of this paper is organized as follows. In Section 2, we discuss requirements for

network measurement in service overlay networks and the problems found with existing network

measurement methods. We introduce the proposed algorithm for inline network measurement

and evaluate it. In Section 3, we introduce ImTCP (Inline measurement TCP) and evaluate its

performance. In Section 4 we discuss some of the implementation issues of ImTCP. In Section 5,

we introduce two examples of congestion window control mechanisms for ImTCP. And finally in

Section 6, we present concluding remarks and discuss future projects.

11

2 Inline Network Measurement in IP-based Service Overlay Networks

2.1 Requirements

In accordance with the discussion in Section 1, we consider the following factors to be the require-

ments of the measurement algorithm of inline network measurement:� Small number of packets used

Because our method uses TCP packets for the measurement, there is a limitation on the num-

ber of packets available for transmission at any one time because of the TCP window size.

Since the TCP window size is relatively small and changes dynamically, the measurement

algorithm should use as small a number of packets as possible.� Little effect on other traffic on the network

Since the goal of measurement is to improve the quality of services of the service overlay

network, the measurement should not affect either the traffic of the supported services itself

or the external traffic. The measurement may adversely affect the network in two ways: by

sending numerous probe packets and by sending probe packets at a high rate.� Providing results continuously

Since the characteristics of the IP network changes constantly and dynamically, measure-

ment should provide periodic estimation results. Furthermore, the interval should be as

small as possible in order to provide an accurate depiction of the rapid network change.� Providing results quickly

The measurement should be performed quickly in order to obtain up-to-date information of

the IP network. In the proposed method, we therefore assign a higher priority to measure-

ment speed than to measurement accuracy.

12

2.2 Existing network measurement methods

As mentioned in Section 1, the existing measurement methods can be divided into two groups: pas-

sive measurement methods and active measurement methods. The passive methods, represented

by SPAND [5] and Nettimer [6], observe passing traffic at some certain points in the network and

use the monitored information to obtain the measurement results. Although these approaches are

good in terms of not affecting other traffic, they require quite a long time to gather information for

accurate measurement results and many measurements are necessary in order to estimate the char-

acteristics of the end-to-end path. Furthermore, passive approaches cannot provide high-accuracy

measurement results because the available information is very limited.

On the other hand, the active measurement methods inject probe packets into the network

and collect the feedback information from monitored results including transmission delay, packet

arrival-interval time, packet loss ratio and so on. Therefore, we can expect a higher accuracy of

measurement results in an end-to-end fashion than what is possible by passive methods. Cprobe [1],

Topp [2], and Pathload [3], are representative tools to measure the available bandwidth of the net-

work path between two endhosts. These algorithms work on endhosts and require no change

inside the network, so they seem suitable for application to measurement in service overlay net-

works. However, these algorithms also have fundamental disadvantages. One is that many probe

packets are sent at a high transmission rate. For instance, Topp sends 5000 packets to obtain only

one measurement, and Cprobe injects 100-200 probe packets at the physical bandwidth speed of

the link connected to the sender host. PathLoad sends several 100-packet measurement streams

for a measurement. PathChirp [22] is a modification of PathLoad on the purpose of decreasing the

number of probe packets. But the required number of packets to be sent at one time in PathChirp

is still large. The probe traffic can affect other traffic along the path, for example by degrading

traffic throughput and increasing the packet loss ratio and packet transmission delay. Existing

active measurement algorithms also require a long time to obtain one measurement result (for

13

Service Overlay

Network

(1) Send probe packets

(2) Echo packets

(3) Receive echoed packets

 Estimate the available bandwith

Sender Receiver

Figure 1: Outline of proposed measurement algorithm

example, 50-100 RTTs are necessary to obtain one estimation value in Topp and Pathload). Long-

term measurement can provide an accurate result but cannot follow the dynamic changes on the

IP network.

Thus, the existing active measurement algorithms do not satisfy the requirements mentioned in

Subsection 2.1. In the next subsection, we introduce a measurement algorithm which satisfies the

requirements. Note that we do not attempt to replace the existing active measurement approaches

by the proposed measurement algorithm. Rather, the proposed measurement algorithm is useful

in the inline network measurement.

2.3 Proposed measurement algorithm

Figure 1 shows an outline of the proposed measurement algorithm. A sender host transmits mea-

surement packets to a receiver host, which immediately sends received packets back to the sender

host. The sender then estimates the available bandwidth of the path using the arrival intervals of

the echoed packets.

14

In every measurement, we use a search range to find the value of the available bandwidth.

Search range I � �������	��
� is a range of bandwidth which is expected to include the current value

of the available bandwidth. The proposed measurement algorithm searches for the available band-

width only within the given search range. The minimum value of
� �

, the lower bound of the search

range, is 0, and the maximum value of
��

, the upper bound, is equal to the physical bandwidth

of the link directly connected to the sender host. By introducing the search range, we can avoid

sending probe packets at an extremely high rate, which seriously affects other traffic. We can also

keep the number of probe packets for the measurement quite small. As discussed later herein, even

when the value of the available bandwidth does not exist within the search range, we can find the

correct value in a few measurements. The following are the steps of the proposed algorithm for

one measurement of the available bandwidth � :

1. Set the initial search range.

2. Divide the search range into multiple sub-ranges.

3. Inject a packet stream into the network for each sub-range and check the increasing trend of

the packet inter-arrival times of the received stream.

4. Find a sub-range which is expected to include the correct value of the available bandwidth

using the increasing trends of sent streams.

5. Calculate the available bandwidth by means of linear regression analysis for the chosen

sub-range.

6. Create a new search range and return to Step 2.

A packet stream is a group of packets sent at one time for the measurement. In what follows, we

explain in detail the algorithm by which to implement the above steps.

1. Set initial search range

15

Bandwidth 0
Link Capacity Search Range

Sub-range

Transmission of
measurement stream i

Bl Bu

BuBl
Bi-1 Bi

Bi-1 Bi

Pi,N Pi,N-1 Pi,N-2 Pi,3 Pi,2 Pi,1

N packets

Figure 2: Relationship of search range, sub-ranges, streams, and probe packets

We first send a packet stream according to the Cprobe algorithm [1] to find a very rough

estimation of the available bandwidth. We set the search range to� ����������������� � ������������� � , where �����	������� is the result of the Cprobe test.

2. Divide the search range

We divide the search range into sub-ranges I !"� ��� !$#&% �	� ! �'��(�*) � �,+�+- � . All sub-ranges

have the identical width of the bandwidth. That is,� !"� ��
/. ��
/.0��� ��(1.) �2��(�*) � +$+�+ � �34) �
As increases, the results of Steps 4 and 6 become more accurate, because the width of

each sub-range becomes smaller. However, a larger number of packet streams is required,

which results in an increase in the number of used packets and the measurement time.

3. Send packet streams and check increasing trend

For each of sub-ranges, a packet stream
(5��(�6)7+$+�+- � is sent. The transmission rates of

the stream’s packets vary to cover the bandwidth range of the sub-range. We denote the 8 -th

16

packet of the packet stream
(

as P !:9 ; ()=<>80<@? , where ? is the number of packets in a

stream) and the time at which P !A9 ; is sent from the sender host as BC!A9 ; , where BD!:9 % = 0. ThenBC!A9 ; � 8E�F�,+$+-? � is set so that the following equation is satisfied:GBD!:9 ; . BC!A9 ;�HC% � � !$#&%I3 � ! .J� !$#1%? .) � 8 .) �
where

G
is the size of the probe packet. Figure 2 shows the relationship between the search

range, the sub-ranges and the packet streams. In the proposed algorithm, packets in a stream

are transmitted with different intervals, for this reason the measurement result may not be

as accurate as the Pathload algorithm [3], in which all packets in a stream are sent with

identical intervals. However, the proposed algorithm can check a wide range of bandwidth

with one stream, whereas the Pathload checks only one value of the bandwidth with one

stream. This reduces the number of probe packets and the time required for measurement.

By this mechanism, the measurement speed is improved at the expense of measurement

accuracy, as described in Subsection 2.1.

We then observe K�!A9 ; , the time the packet P !:9 ; arrives at the sender host, where K�!:9 %E�ML .
We calculate the transmission delay NO!A9 ; of PQ!A9 ; using the function NR!:9 ;S�@K�!A9 ; . BC!A9 ; . We

then check if an increasing trend exists in the transmission delay
� N !:9 ; . N !A9 ;�HC% �T� �O<08U<? � according to the algorithm used in [3]. As explained in [3], the increasing trend of

transmission delay in a stream indicates that the transmission rate of the stream is larger

than the current available bandwidth of the network path.

Let V ! be the increasing trend of stream
(

as follows:

V&!Q�
WXXXXXXY XXXXXXZ
) increasing trend in stream

(.) no increasing trend in stream
(

L unable to determine the existence of an increasing trend in stream
(

17

As
(

increases, the rate of stream
(

decreases. Therefore, T ! is expected to be 1 when
(

is

sufficiently small. On the other hand, when
(

becomes large, V1! is expected to become
.) .

Therefore, when neither of the successive streams [or [\3]) have an increasing trend

(V1^_�`V1^ #&% � .)), the remaining streams are expected not to have increasing trends

(V1!a� .) for [b3c�'< (<F). Therefore, we stop sending the remaining streams in order

to speed up the measurement.

4. Choose a sub-range

Based on the increasing trends of all streams, we choose a sub-range which is most likely

to include the correct value of the available bandwidth. First, we find the value of d � Le<df<g h3i) � , which maximizes (jJk;�lDm VD; . jJn;�l k #1% VD;). If)c<`do<g , we determine

the sub-range I k is the most likely candidate of the sub-range which includes the available

bandwidth value. That is, as a result of the above calculation, I k indicates the middle of

streams which have increasing trends and those which do not. If dp�qL or dE�F r3s) , on the

other hand, the algorithm decides that the available bandwidth does not exist in the search

range
�������	��
�

. We determine that the available bandwidth is larger than the upper bound

of the search range when dE�FL , and that when dO�q T3t) the available bandwidth is smaller

than the lower bound of the search range.

In this way, we find the sub-range which is expected to include the available bandwidth

according to the increasing trends of the packet streams.

5. Calculate the available bandwidth

We then derive the available bandwidth � from the sub-range I k chosen by Step 4. We

first determine the transmission rate and the arrival rate of the packet P k 9 ; (8@�u�,+�+$+-?)

as vwyx{z | H w}x{z |�~�� , v��x�z | H ��x{z |�~7� , respectively. We then approximate the relationship between the

transmission rate and the arrival rate as two straight lines using the linear regression method,

as shown in Figure 3. Since we determine that the sub-range I k includes the available

18

Transmission rate

Arrival rate

Available

Bandwidth

(i)

(ii)

0

Figure 3: Finding the available bandwidth within a sub-range

bandwidth, the slope of line (i) which consists of small transmission rates is nearly 1 (the

transmission rate and the arrival rate are almost equal), and the slope of line (ii) which

consists of larger transmission rates is smaller than 1 (the arrival rate is smaller than the

transmission rate). Therefore, we determine that the highest transmission rate in line (i) is

the value of the available bandwidth.

On the other hand, when we have determined that the available bandwidth value does not

exist in the search range (
�����	��

) in Step 4, we temporarily set the value of available band-

width as follows:

�q� WXXY XXZ ��� dp�qL��
 dp�q �34)
6. Create a new search range

When we have found the value of the available bandwidth from a sub-range I k in Step 5,

we accumulate the value as the latest statistical data of the available bandwidth. The next

19

search range (
�S�� �����

) is calculated as follows:��� �� �	� �
 � �6�� . ['d�T�y)7+��7� B� � � � ^��� � �c3�['d�T�y)�+-�7� B� � � � ^�*�,�
where B is the variance of stored values of the available bandwidth and

�
is the number of

stored values. Thus, we use the 95% confidential interval of the stored data as the width of

the next search range, and the current available bandwidth is used as the center of the search

range.
� ^ is the lower bound of the width of the search range, which is used to prevent the

range from being too small. When no accumulated data exists (when the measurement has

just started or just after the accumulated data is discarded), we use the same search range as

that of the previous measurement.

On the other hand, when we can not find the available bandwidth within the search range,

it is possible to consider that the network status has changed greatly. Therefore, we discard

the accumulated data because this data becomes unreliable as statistical data. In this case,

the next search range (
�S�� �	�S�

) is set as follows:

� �� � WXXY XXZ � � dR�FL���,.o��� H ���� dR�F O34)
� �
 � WXXY XXZ ��
 3 ��� H � �� dO�qL��
 dO�q O34)

This modification of the search range is performed in an attempt to widen the search range

in the possible direction of the change of the available bandwidth.

By this statistical mechanism, we expect the measurement algorithm to behave as follows:

when the available bandwidth does not change greatly over a period of time, the search

range becomes smaller and more accurate measurement results can be obtained. On the

other hand, when the available bandwidth varies greatly, the search range becomes large

20

Background

Traffic

Measurement

TrafficSender Receiver

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

Figure 4: Network model for evaluation of the proposed measurement algorithm

and the measurement can be restarted from the rough estimation. That is, the proposed

algorithm can give a very accurate estimation of the available bandwidth when the network

is stable, and a rough but rapid estimate can be obtained when the network status changes.

2.4 Simulation results

This Subsection shows some simulation results in ns [26] and validates the measurement algorithm

proposed in Subsection 2.3. Figure 4 shows the network model used in the simulation. A sender

host connects to a receiver host through a bottleneck link. The capacity of the bottleneck link is)yL�L Mbps and the propagation delay is �7L msec. All of the links from the endhosts to the routers

have a)yL7L -Mbps bandwidth and a �7L -msec propagation delay.

There is background traffic generated by endhosts connecting to the routers. The background

traffic is made up of UDP packet flows, in which various packet sizes are used according to the

monitored results in the Internet reported in [27]. The correct value of the available bandwidth of

21

the bottleneck link is calculated as:���y�������}�&�}� ��(�� � d}�Cd � (���¡S. V �}� d �a¢ d ���/�¤£0¥ d � �¦ ¢��¤§D�&¨���¢ d £1£1(©�
We make the available bandwidth on the bottleneck link fluctuate by changing background traffic

rates.

The sender host sends probe packets to the receiver host and the receiver host echoes the

packets back to the sender. The sender, using the algorithm proposed in Subsection 2.3 , measures

the available bandwidth of the path between the two hosts. In this situation, the result corresponds

to the available bandwidth of the bottleneck link between the routers.

The number of sub-range , which a search range is divided into, is decided according to the

width of the search range and the latest result of the measured available bandwidth, �T�	���«ª ;
 U�

WXXXXXXY XXXXXXZ
� � LO< ��� H � �¬,�®�¯�°]± L,+$)}² �� � L,+�)y²/< �³� H ���¬ �®�¯�° ± L,+�� �´ � L,+��O< ��� H ���¬µ�®�¯�° �� ^ , the lower bound of the width of search ranges, is set to 10% of � ������ª . The probe packet size

is 1500 Bytes.

Figure 5 shows the measurement results of the available bandwidth and the search ranges for

a simulation time of �7L7L sec. During the simulation, the background traffic is changed so that

the available bandwidth of the bottleneck link is �7L Mbps from L sec to ²�L sec,
´ L Mbps from²7L sec to)}L7L sec, �7L Mbps from)yL7L sec to)y²7L sec, �7L Mbps from)y²�L sec to �7L7L sec and �7L

Mbps from �7L7L sec to �7L7L sec. We also plot the correct values of the available bandwidth in all

figures. Figures 5(a)-5(c) show the results when the number of the probe packets in a stream (?)

is 3, 5 and 8, respectively. These figures indicate that when ? is 3, the measurement results are far

from the correct values. When ? becomes larger than 5, on the other hand, the estimation result

accuracy increases. The proposed measurement algorithm can determine the available bandwidth

rapidly, even when the available bandwidth changes suddenly. When ? is very small, we can not

22

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result
A-bw

(a) ¶ =3

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Search Range
Result
A-bw

(b) ¶ =5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Search Range
Result
A-bw

(c) ¶ =8

Figure 5: Results of the proposed measurement algorithm (1)

determine the increasing trend of the streams correctly in Step 3 in the proposed algorithm, which

leads to the incorrect choice of sub-range in Step 4. Although the accuracy of measurement results

increases as · is increased from 5 to 8, · =5 is judged to be the better setting since we place a

higher priority on measurement speed than on measurement accuracy, as described in Subsection

2.2.

We next show another result in which we change the available bandwidth slowly as follows:

from 0 sec to 50 sec, the available bandwidth is 60 Mbps; from 50 sec to 100 sec, decreases to

23

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

Search Range
Result
A-bw

(a) ¶ =3

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result
A-bw

(b) ¶ =5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result
A-bw

(c) ¶ =8

Figure 6: Results of the proposed measurement algorithm (2)

40 Mbps; from 100 sec to 150 sec, increases to 60 Mbps; from 150 sec to 210 sec, decreases

to 20 Mbps; from 120 sec to 270 sec, increases to 60 Mbps; and from 270 sec to 300 sec the

available bandwidth is 60 Mbps. The simulation results are shown in Figure 6. When · = 3,

the estimation results are not accurate, but when · is 5 or 8, the results becomes acceptable.

From these simulation results, we can conclude that the proposed algorithm can measure well the

available bandwidth, independent of the degree of change in available bandwidth.

24

Application program

IP layer

Network interface

TCP

packets

ACK

packets

Measurement

program
ImTCP
buffer

Record

TCP layer

arrival times

Figure 7: Placement of measurement program at TCP sender

3 ImTCP: TCP with Inline Network Measurement

3.1 Overview

In traditional TCP, a sender transmits data packets to a receiver and the receiver sends correspond-

ing ACK packets back to the sender. Based on this characteristic, we apply the measurement

algorithm proposed in Section 2 to TCP by considering data packets as probe packets and ACK

packets as echoed packets.

Because the program for inline network measurement must know the current size of the TCP

congestion window, it should be implemented at the bottom of TCP layer as shown in Figure 7.

When a new TCP data packet is generated at the TCP layer and is ready to be transmitted, it is

stored in an intermediate FIFO buffer (hereafter called the ImTCP buffer) before being passed to

the IP layer. On the other hand, when an ACK packet arrives at the sender host, the measurement

program records its arrival time and passes it to the TCP layer for TCP protocol processing. When

ImTCP performs a measurement, the program creates packet streams; it waits until a sufficient

number of packets are in the ImTCP buffer then sends them at the transmission rate determined

by the measurement algorithm. This is repeated until all streams required for a measurement have

25

Control Unit

Measurement

Unit

ImTCP

Buffer

Queue length

Packet sending timing

Packet

sending

times

Search

ranges

Window size

ACK packet

seq. number

ACK packet

arrival times

Figure 8: Structure of the measurement program

been transmitted. When ImTCP is not performing a measurement, it passes all TCP data packets

immediately to the IP layer.

The program dynamically adapts to changes in the TCP window size. It stores no data packets

when the current window size is smaller than the number of packets required for a measurement

stream. This is because the TCP sender cannot transmit a number of data packets larger than the

window size. On the other hand, when the window size is sufficiently large, the program creates all

streams required for a measurement with every RTT. That is, one measurement result per RTT can

be obtained if the window size is large enough. When the window size is small, ImTCP may create

only one stream per RTT with the result that several RTTs are required for one measurement.

3.2 Packet storing mechanism

Figure 8 shows the structure of the measurement program. It consists of three units. The ImTCP

Buffer unit stores TCP data packets and passes each packet to the IP layer under control of the Con-

trol unit. It informs the Control unit when a new TCP packet arrives. The Control unit determines

when to send the packets stored in the buffer. It receives search ranges from the Measurement

unit and creates the measurement streams. The Measurement unit checks the arrival times of

26

STORE_PACKET PASS_PACKET

Finish sending

streams for

a measurement

ACK packets returned

SEND_STREAM EMPTY_BUFFER

Finish

Finish

Timeout or

Window size < N

Buffer

length

> N

Figure 9: State transition in the Control Unit

ACK packets and calculates measurement results using corresponding sent packet departure times

passed from the Control unit.

Details of the Measurement unit were introduced in Subsection 2.3. Here, we explain the

operation of the Control unit. The Control unit has four functional states, STORE PACKET, PASS

PACKET, SEND STREAM and EMPTY BUFFER, as shown in Figure 9. The Control unit is

initially in the STORE PACKET state. In what follows, we describe the detailed behaviors of the

Control unit in each state;� STORE PACKET state

– Start storing packets for the creation of measurement streams. Set the packet storing

timer to end packet storing after certain length of time. The timer value is discussed

in Subsection 3.3.

– Go to the EMPTY BUFFER state if the current TCP window size becomes smaller

than ? or the packet storing timer expires. ? , as mentioned in Subsection 2.3, is the

number of packets needed to create a measurement stream.

27

– Go to the SEND STREAM state if the number of stored packets becomes larger than? .

– Go to the PASS PACKET state if all packet streams for the current measurement have

been sent.� EMPTY BUFFER state

– Clear the timer if it is set.

– Pass currently stored packets to the IP layer until the buffer becomes empty.

– Return to the STORE PACKET state.

� SEND STREAM state

– Clear the timeout if it is set.

– Send a measurement stream. The transmission rate of the stream is determined ac-

cording to the measurement algorithm. During stream transmission, packets arriving

at the buffer are stored in the ImTCP buffer.

– Go to the STORE PACKET state.

� PASS PACKET state

– Pass every packet in the buffer immediately to the IP layer.

– Go to the STORE PACKET state when all ACK packets of the transmitted measure-

ment streams have arrived at the sender.

Figure 10 shows an example of how ImTCP sends packets for a measurement operation. The

change in queue length (the number of packets stored in the ImTCP buffer) is also shown in

28

time

 Arrival timing of ACK packets

Sending timing of data packets in regular TCP

Sending timing of data packets in ImTCP

 STORE_

 PACKET PASS_PACKETPASS_PACKET

0

1

2

3

4

5

6

7

8

 #packets

 in

 ImTCP

 buffer

t
0

t
1 t

2
t
3

t
4

t
5

1st stream 2nd stream 3rd stream

 STORE_

 PACKET

Figure 10: ImTCP packet transmission

the figure. We assume that TCP sends a new data packets immediately after receiving an ACK

packet. Before ¸©¹ , ImTCP transmits packets in the normal TCP fashion since ImTCP is in the

PASS PACKET state. From ¸©¹ , ImTCP moves to the STORE PACKET state. In this state, ImTCP

data packets are stored and the queue length increases. At ¸�º , the queue length reaches » , set to 5

in this example, and ImTCP moves to the SEND STREAM state. The first packet stream is then

sent from ¸�º . After sending the first packet stream, ImTCP reenters the STORE PACKET state. At¸�¼ , the queue length again reaches » and ImTCP sends the second stream until ¸�½ . Note that the

average transmission rate of the second stream assumes the same ACK arrival rate, so the queue

length remains constant from ¸�¼ to ¸©½ . Therefore, the third stream starts sending immediately after

the second one, at ¸ ½ . At ¸�¾ , when the third stream is completely sent, ImTCP returns to the PASS

PACKET state (here, we have assumed that the measurement requires only three packet streams).

At ¸ ¾ some packets still remain in the buffer, so ImTCP may transmit those packets at a high rate

for some time in the period from ¸�¾ to ¸�¿ until the buffer becomes empty. From ¸�¿ , ImTCP returns

to sending packets in normal manner.

29

3.3 Parameter settings

3.3.1 Packet storing timer

We avoid degrading the TCP transmission speed, caused by storing data packets before they are

passed to the IP layer, by appropriately setting a timer to stop the creation of a stream. Obviously,

there is a trade-off between measurement frequency and TCP transmission speed when choosing

the timer value. That is, for large timer values, the program can create measurement streams

frequently so measurement frequency increases. In this case, however, because TCP data packets

may be stored in the intermediate buffer for a relatively long period of time, TCP transmission

speed may deteriorate. Moreover, long packet delays may lead to TCP timeout events. On the other

hand, for small timer values, the program may frequently fail to create packet streams, leading a

low frequency of measurement success. In the following discussion, we derive the appropriate

value for the packet storing timer by applying an algorithm similar to the RTO calculation in

TCP [28].

If we assume a normal distribution of packet RTTs with average � �1ÀCÀ and variance N �1ÀDÀ ,

then � �1ÀCÀ and N �&ÀDÀ can be inferred from the TCP timeout function [28]. We use the following

notation;�JÁ : RTT of a TCP data packet�JÂ : The time since the first of ? successive data packets is sent until the ACK of the last

packet arrives at the sender�>Ã : The time necessary for ? successive ACK packets to arrive at the sender

We illustrate Á , Â and Ã in Figure 11. We need to know the distribution of Ã to determine the

appropriate value for the packet storing timer. From Figure 11, we can see that:Ã � Â . Á (1)

30

Sender Router Receiver

K

Z

Y

X

Packet 1

Packet N

Ack 1

Ack N

Figure 11: Packets transmission times in TCP

From the assumption mentioned above, Á has a normal distribution ? � � �1ÀCÀ � N �1ÀDÀ � . Note thatÂ is the period of time from sending the first packet until the last packet is sent (we denote the

length of this period as Ä) plus the RTT of the last packet. That is, we can conclude that the

distribution of Â is ? � � �&ÀDÀ 3cÄ � N �1ÀCÀ � . From Equation (1) we then obtain the distribution ofÃ , as ? � Ä � ��Å}N �1ÀCÀ � .
Obviously, the ImTCP sender can record the departure times of data packets to calculate the

exact value of Ä . However, this will introduce additional overhead and a waste of memory. Here,

we provide a simple estimate of Ä . In a TCP flow, due to the self-clocking phenomenon, the TCP

packet transmission rate is a rough estimate of the available bandwidth of the network link. The

average time needed to send ? successive TCP data packets is

ÄÆ� G � � ? .) � (2)

where
G

is the packet size and � is the value of available bandwidth which can obtain from the

measurement results. From the distribution of Ã and Equation (2), we determine the waiting time

31

for ? ACK packets as below: G � � ? .) � 3 ´ ÅyN �1ÀDÀ
Using this value for the timer, the probability of successfully collecting ? packets reaches approx-

imately 98% due to the characteristics of the normal distribution. Thus, we are using a relatively

short timer length that reduces additional processing delays caused by the measurement program

but provides a high probability of collecting a sufficient number of packets for creating measure-

ment streams.

3.3.2 Number of packets in a measurement stream

In general, some packets will remain in the ImTCP buffer after sending streams for a measure-

ment, as shown in Figure 10. If the number is large, ImTCP transmission delays may occur. We

investigate the relationship between the number of remaining packets and ? , then determine an

appropriate value of ? to minimize leftover packets. ImTCP begins sending a new packet stream

when the queue length (the number of packets in ImTCP buffer) becomes larger than ? . If the

transmission rate of the packet stream is smaller than the arrival rate of ACK packets, the queue

length increases during stream transmission. This fact can be seen for the third stream of Figure

10.

If we examine the case when the upper bound of the search range is smaller than the ACK

arrival rate we can see that all measurement streams are transmitted at a rate lower than ACK

arrival rate. Therefore, the queue length is always increasing during the measurement. The effect

of ? on the number of packets left in the ImTCP buffer after a measurement is most obvious in

this case.

Suppose that K k'Ç ��

where K k is the arrival rate of the ACK packets and

�������	��

) is the

search range mentioned in Subsection 2.3. Using the notation of Subsection 2.3, V ! , the time

32

needed for packet stream
(

to be transmitted, is

V1!_� ÈÉ;�l � BC!A9 ; . BC!A9 ;�HC%� ÈÉ;�l � G� !$#&% 3 ��Ê H �³Ê�Ë �È Hµ% � 8 .) �
During the period V1! , the number of ACK packets arriving at the sender is K k ÅÌV&! . Since ImTCP

sends ? .) packets of the packet stream (excluding the first one at the beginning of the period),

the packets entered into the ImTCP buffer during period V1! becomes K k Å�V1! .Í� ? .) � . When all

streams have been transmitted, the number of packets remaining in the ImTCP buffer (Î�Ï) is

Î/ÏÐ� nÉ!$l1% ÑÒ ÈÉ;�l � G Å K k� !$#1%T3 ��Ê H ��Ê-Ë �È HC% � 8 .) � .J� ? .) �©ÓÔ 3�?
where is the number of packet streams for one measurement operation. Since ImTCP starts to

send the first stream when the buffer length reaches ? , ? is added at the right side of the equation.

Note that � !"� ��
/. ��
/.0��� ��(1.) �'��(�@) � +�+$+ � �34) �
Therefore,

Î/Ï � nÉ!$l1% ÑÒ ÈÉ;�l � G Å}K k��
/. � � H � �n Å (3 � � H � �n Å ;	Hµ%È HC%
.c� ? .) �©ÓÔ 3s?

� nÉ!$l1% ÑÒ ÈÉ;�l � � G ÅyK k��
/.q��� H � �n Å (3 ��� H � �n Å ;	HC%È HC%
.) �©ÓÔ 3s?

From the equation, we can see that when ? becomes large, the number of packets left in the

ImTCP buffer also becomes large. Therefore, we conclude that ? should be set to as small value

as possible.

According to the results of Subsection 2.4 is the smallest number of ? that the measurement

algorithm can accept. Therefore, unless explicitly stated otherwise, we will use ? = 5 in the

experimental simulations that follow.

33

3.3.3 Measurement frequency

As explained in Section 2, the measurement algorithm uses the previous measurement results to

determine a search range for the next measurement. Therefore, it seems natural that only one mea-

surement operation should be performed for one RTT. If the TCP window size is sufficiently large,

we can perform multiple measurements for one RTT by introducing a quite complex mechanism.

However, many difficulties must be overcome to accomplish this, including interaction of mea-

surement tasks, delays caused by multiple streams in one RTT as described in Subsection 3.3.2,

and so on. We therefore decided that ImTCP should perform at most one measurement operation

per RTT. One RTT is considered long enough for ImTCP to recover the transmission rate after a

measurement.

3.4 Other issues

3.4.1 Effect of Delayed ACK option

When a TCP receiver uses the delayed ACK option, it sends only one ACK packet for every

two data packets. In this case, the proposed algorithm does not work properly since it assumes

the receiver host will send back a probe packet for each received packet. To solve this problem,

Step 3 in Subsection 2.3 of the proposed algorithm should be changed so that intervals of three

packets are used rather than intervals of two packets. That is, we calculate the arrival intervals� B !:9 � ;�ÕÖ# � . B !A9 � ;�Õ �S�)c<\8 � <Ø×:?U���}Ù � for the probe packets in stream
(

in order to check its

increasing trend. This modification has almost the same effect as halving the number of packets in

one stream, resulting in a degradation in measurement accuracy. Therefore, the number of packets

in a stream should be increased appropriately.

34

3.4.2 Effect of packet fragmentation

In the case where TCP packets are transmitted through a queue or node for which the MTU (Max-

imum Transmission Unit) is smaller than the packet size, the packets will be fragmented into

several pieces in the network. The problem here becomes a question of whether measurement

result will still be accurate if the packets in measurement streams become fragmented somewhere

on the way to the receiver. We argue that fragmentation has little effect on the measurement re-

sults. The measurement algorithm is based on the increasing trend of the packet stream in order to

estimate available bandwidth. Even with fragmentation, the stream still shows an increasing trend

when and only when the transmission rate is larger than the available bandwidth. However, frag-

mentation does increase the packet processing overhead, which may in turn raise the increasing

trend of packet streams if it occurs at a bottleneck link. This may lead to a slight underestimation

in the measurement results.

3.5 Simulation results

3.5.1 Measurement accuracy

Our first simulation uses the same topology as described in Subsection 2.4 except that the UDP

sender and receiver are replaced by an ImTCP sender and an ImTCP receiver, respectively. Fig-

ures 12(a) and 12(b) show the measurement results of the proposed method when the number of

packets (?) in a measurement stream is five and eight, respectively. Comparing Figure 12(a) with

Figure 5(b) and Figure 12(b) with Figure 5(c), we observe that our measurement method can be

successfully applied to TCP with no degradation in measurement accuracy. Also, the effect of ?
on the accuracy of measurement results is the same as in the case of Figure 5. That is, ? =5 is

again found to be a good setting.

Figure 13 shows the change in throughput of ImTCP in this simulation. For comparison, we

also show the case of RenoTCP under the same network conditions. From the figure, we can see

35

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n
d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result
A-bw

(a) Ú =5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n
d
w

id
th

 (
M

b
p
s)

Time (s)

Search Range
Result
A-bw

(b) Ú =8

Figure 12: Measurement results of ImTCP

36

0

20

40

60

80

100

0 50 100 150 200 250 300

B
a
n
d
w

id
th

 (
M

b
p
s)

Time (s)

ImTCP N=5
ImTCP N=8

RenoTCP
A-bw

Figure 13: Throughput of ImTCP and RenoTCP

that ImTCP performs the measurement with a throughput almost the same as that of RenoTCP.

An important point we can take from Figure 12 and 13 is that ImTCP yields accurate results even

when the current throughput is lower than the available bandwidth. For example, from 0 sec to

50 sec in the simulation, although the throughput of ImTCP is less than 60 Mbps, the available

bandwidth value is still realized, as shown in Figure 12.

3.5.2 Effect of ImTCP on other traffic

To investigate the effect of inline measurement on other traffic sharing the network, we compare

the case of ImTCP to that of RenoTCP using the network model depicted in Figure 14. We activate

ImTCP and RenoTCP in turn in the network involving a large number of active Web document

accesses. There are 220 Web clients downloading Web pages from 20 Web servers through a 50

Mbps shared link. We use a Pareto distribution for the Web object size distribution. According to

previous studies in [29], we use 1.2 as the Pareto shape parameter with 12 KBytes as the average

object size. The number of objects in a Web page is eight. The TCP sender and TCP receiver

37

 Sender

Receiver

 ImTCP/RenoTCP

 connection

100 Mbps

10 ms

20 Web servers

220 Web clients

100 Mbps

10 ms

10..100 Mbps

10..100 ms

10..100 Mbps

10..100 ms

50 Mbps

10 ms

Web traffic

buffer=1000 pkts

Figure 14: Network model for evaluation of ImTCP’s effect on Web traffic

38

0

10

20

30

40

50

200 250 300 350 400 450 500

B
a
n
d
w

id
th

 (
M

b
p
s)

Time (s)

Available bandwidthMeasurement result

Figure 15: Measurement result of ImTCP in Web traffic environment

connect to a shared link through 100 Mbps links. We use a large buffer (1000 packets) in the

router at the shared link to help ImTCP/RenoTCP connections achieve high throughput because,

here, the effect of ImTCP/RenoTCP connections on Web traffic is the focus of the simulation.

We run the simulation for 500 sec and find that the average throughput of ImTCP is 22.3

Mbps while that of RenoTCP 23.1 Mbps. The results therefore show that data transmission speed

of ImTCP is almost the same as that of RenoTCP. Measurement results of ImTCP are also shown

in Figure 15. In the figure, we round the measurement results using this function:Û d ��§C� �qL,+-�SÅ�dÜ �}¢ d¤¦ �Ý�¤£ � ¢�� Ü (��¤§CÞ Üßd ��§C�}Þ 3sL,+ ´ Å � §C¢¤¢¤�y�D� Üßd ��§C�
Figure 15 confirms that the ImTCP measurement result reflects the change in available bandwidth

very well.

We compare the effect of ImTCP and RenoTCP on Web page download time in Figure 16.

This figure shows cumulative density functions (CDFs) of the Web page download time of Web

clients. We can see that ImTCP and RenoTCP have almost the same effect on the download time

of a Web page. This indicates that inline measurement does not affect other traffic sharing the link

39

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D
F

Web page download time (s)

Web only

RenoTCP

ImTCP background

Figure 16: Comparison of Web page download times

with ImTCP.

3.5.3 Bandwidth utilization and fair share

Two important characteristics of the Internet transport protocol are full utilization of link band-

width and fair sharing of bandwidth among connections. We use the following simulation to show

that ImTCP has these two characteristics.

We use the network topology shown in Figure 17 with many ImTCP connections sharing a

bottleneck link. Using a small buffer (200 packets) in the router at the bottleneck link to force

conflict among connections, we vary the number of ImTCP connections while observing total

throughput and fairness among the connections.

Figure 18(a) shows the Jain’s fairness index [30] for the connections. This index takes a value

from 0 to 1; a share is considered fair as its index is near 1. We can see that the ImTCP connections

share the bandwidth link fairly. Figure 18(b) shows the link utilization of ImTCP as we vary the

number of connections. Also shown are the results when ImTCP is replaced by RenoTCP. We can

40

 50 Mbps

 50 ms

100 Mbps

 10 ms
100 Mbps

 10 ms

ImTCP senders
TCP receivers

Buffer = 200 packets

Figure 17: Network model for investigating bandwidth utilization and fair share

see that ImTCP and RenoTCP have almost the same link utilization regardless of the number of

connections. Due to the small buffer size of the bottleneck link, when the number of connections

are small the total throughput is not very high. However, when the number of connections is large,

total throughput increases.

We next replace half of the ImTCP connections with RenoTCP connections in the above sim-

ulation and calculate the fairness index of each connection. Figure 19 shows the results. We also

show the results when » is set to eight. The results show that ImTCP may not share fairly with

RenoTCP. The reason for this is that ImTCP connections, due to its packet storing-and-forward

mechanism, may lose bandwidth when conflicting with RenoTCP connections. The unfairness

between ImTCP and RenoTCP may limit the scope where ImTCP can be used. We argue that

the inline measurement mechanism may limit the application of TCP in some cases, but can en-

hance TCP performance in other environments where traditional TCP is not effective. In Section

5 we present two examples where TCP performance is improved with the inline measurement

41

0

0.2

0.4

0.6

0.8

1

2 4 6 10 16 24 40 50

J
a
in

’s
 f

a
ir

n
e
s
s
 i

n
d

e
x

#flows

(a) Fairness between ImTCP conections

0

10

20

30

40

50

2 4 6 10 16 24 40 50

T
o

ta
l

th
ro

u
g

h
p

u
t

(M
b

p
s)

#flows

RenoTCP
ImTCP

Link capacity

(b) Link utilization of ImTCP

Figure 18: Fairness and link utilization of ImTCP

mechanism.

42

0

0.2

0.4

0.6

0.8

1

2 4 6 10 16 24 40 50

J
a
in

’
s
 f

a
ir

n
e
s
s
 i

n
d

e
x

#flows

N=8

N=5

Figure 19: Fairness between RenoTCP and ImTCP

4 Implementation Issues

4.1 Storage system for measurement results

4.1.1 Time scale problem

Available bandwidth is a dynamic value, that is, the value depends strongly on its time scale. De-

pending on the characteristics of applications in the overlay network, the required time scale for

measurements results varies. To be generally useful, ImTCP must provide measurement results for

any time scale that applications require. As explained in Section 3, ImTCP can yield a measure-

ment result for several RTTs. In other words, several RTTs is the smallest measurement time scale

ImTCP can provide. The problem, however, is that it is impossible to store every measurement

result when building values for larger time scales due to limitations in memory space and data

processing time. In the following discussion, we first define the requests for measurement results

that an application may make to ImTCP. We then introduce a data storage system that can solve

the abovementioned problems.

43

Measurement results

of network link from host A to B

1-minu te

scale

1-day

scale

Other

scale

Idle time= 1 sec Idle time = 10 sec

Collecting data for

current minute

Data of

previous minute

Data of

2 minute before

Collecting data for

today

Data of

yesterday

Figure 20: ImTCP storage database for measurement results

4.1.2 Application request

We assume an application will provide the following information with every request for measure-

ment results.� Time scale: the time interval between two measurement results.� Number of measurement results.

For example, a replica selection service in a data Grid network may request for measurement

results in the past 1 hours, in every 1 minute (time scale=1 minutes, number of results=60), or an

ISP traffic investigation center may request measurement results of every days in the past 5 days

(time scale=1 day, number of results=5).

4.1.3 Storage system

Because the most recent requests have a high probability of being repeated, the system stores

measurement results in the time scale appropriate to the latest requests. Thus, the system can

successfully reply to many requests without requiring a large amount of memory space. The

44

database shown in Figure 20 stores measurement results for an ImTCP connection between host

A and host B. The primary functions of the system are:� For every request in a time scale not currently available in the database, a queue is created in

the database. This queue is used to store data in the time scales requested with the number

of data in each queue the same as the number of required measurement results.� For a request in a time scale not currently available in the database, the system first re-

turns the most nearly suitable result from the currently available data (for example, an av-

erage of results for three weeks is returned when the result for one month is requested but

unavailable) then starts collecting data appropriate to the request. The system will return

increasingly accurate values for subsequent requests of the same type.� When ImTCP produces a new measurement result, all entries in all queues are updated with

the result.� Each queue records its idle time (the time elapsed from the last request for data in the queue

to the current time). When the storage space limit is reached, the queue with the longest idle

time is discarded.

4.2 API for ImTCP

So that upper-layer applications can use ImTCP easily, we added new functions to the TCP socket

interface with the following objective:� Application can request measurement results from ImTCP.� Applications can use some ImTCP special transmission modes.

Note that measurement results, in addition to being passed to applications, can also be used to

control ImTCP transmission. In Section 5 we introduce two examples of transmission modes. The

45

socket interface allows an application to select the ImTCP transmission mode. Details of the new

functions are given below.

New functionsà á
void measure control (tcp Socket *

Þ
,int

�	���
)Þ

: Pointer to socket data structure�	��� �@) : ImTCP executes the measurement�	��� �FL or other values: ImTCP does not execute the measurement

void measure (tcp Socket *
Þ
,int

£
)Þ

: Pointer to socket data structure£Q� �@)7â	�,+$+$+ � : ImTCP transmission modes

double* measure result (tcp Socket *
Þ
,double

Þ}�
,int

¢¤� �
)Þ

: Pointer to socket data structureÞy�
: time scale¢¤� �

: number of measurement results

returned value:
¢�� �

measurement resultsã ä

46

5 Transmission Modes of ImTCP

Here we introduce two examples in which ImTCP controls the transmission using measurement

results to obtain performance that is not realizable with traditional TCP.

5.1 Background transmission

In a CDN service such as Akamai [18] or Exodus [19], originating Web servers and Web proxy

(caching) servers are deployed in the network in a distributed manner [31, 32]. When a proxy

server receives a document transfer request from a Web client, it checks the document cache

and, if the requested document is not present, redirects the request to the originating Web server.

In addition, some proxy servers perform Web prefetching, that is, transferring in advance those

documents that Web clients are expected to request in the near future [33, 34]. These two types of

transmission are referred to as foreground transfer and background transfer, respectively. Since

foreground transfers should be completed as soon as possible, background transfers should not

affect foreground transfer performance. Such prioritization mechanisms may be realized by an

additional mechanism in the underlying IP network such as Diffserv [35]. However, this appears to

violate the ”end-to-end principle” and considerably limits the service deployment. Rather, service

differentiation (between foreground and background transfers in the current context) should be

performed at end hosts (corresponding to original Web servers and Web proxy servers in this case)

by assuming that no such IP network mechanisms exist.

One possible way to deploy such mechanisms is to use network measurement techniques to es-

timate available bandwidth and regulate the sending rate of background transfers to avoid degrad-

ing the performance of foreground traffic. Here, we introduce an example showing that ImTCP

successfully performs the background transfer role using its measurement results. We call this

type of ImTCP data transmission background mode.

The main idea is to set an upper bound on the congestion window size according to estimated

47

values so that the transmission rate does not exceed the available bandwidth. This reduces the

effect ImTCP has on other traffic in the same network links. We use the following control mecha-

nism. When ¦åÅyK�V�V4Å � Ç [æÅy?
we set G d�Cç�è �1¨ �c¦RÅ K�V�V>Åy�
where � is the estimated value of available bandwidth,

G d�Cç�è �1¨ is the upper bound of the

congestion window size and ? is the number of packets for a measurement stream. The parameter¦ can range from 0 to 1. When ¦ is small, ImTCP uses less bandwidth and interferes only very

slightly with foreground traffic. When ¦ is near 1, ImTCP uses more bandwidth and its effect on

foreground traffic grows. We set the upper bound of the congestion window size (
G dß�Dç/è �1¨) to¦�Å�K�V�V2Å�� only when the value is large enough for ImTCP to continue performing measurements

well. We do not use the value to restrain the window size when it becomes smaller than [\Å¤? ,

where [is set to 5. (Note that up to four packet streams are needed for a measurement. Therefore,

when the congestion window size is smaller than ²SÅ}? , the measurement task becomes difficult.)

We first examine the behavior of the background mode of ImTCP when the foreground traffic

is persistent TCP connections. We generate foreground traffic from four TCP connections, each of

which passes through a 10 Mbps bottleneck link before passing the 50 Mbps share link, as shown

in Figure 21. Therefore, in case when there is no background traffic, the total transmission rate in

the foreground is approximately 40 Mbps, as can be seen for 0-30 sec in Figure 22. At 30 sec in

the simulation, we activate the background flow through the shared link. The background traffic

does not pass through any link with smaller bandwidth than the shared link. In the simulation, ¦
is set to L,+�� .

Figure 22 shows the change in throughput of foreground transfer and background transfer as a

function of simulation time. In the case where we use RenoTCP for the background transfer, we

48

éTê�ë0ì«íÌîµï�ï{ð«ñ

òEó,ôßõ÷öDøyùDúQû÷üýrþåÿJô,ù&û�û�� ô����«ù&û
� �7ûaü���ø �	�,ô
������7ø

����� ���������������

�������������
�������

������� �����
���!���

����� �����
�����"�

#Tý�ÿ$�%�7û÷ü&�7ø'�
#Tý�ÿ ø(� ô
�)����7ø'�

òåú�*+*,�7ø.-
�����/� ó,ôßõ����+�

Figure 21: Network model for evaluation of ImTCP background mode

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Foreground

Reno TCP

(a) RenoTCP

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Foreground

ImTCP background

Measurement result

(b) ImTCP background

Figure 22: Comparison of ImTCP background and RenoTCP performance

49

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D
F

Web page download time (s)

Web only

RenoTCP

ImTCP background

(a) CDF

0

2

4

6

8

10

12

14

16

18

10 30 100 300 500 1000

W
eb

 p
ag

e
d

o
w

n
lo

ad
 t

im
e

(s
)

Page size (KB)

Web only

RenoTCP

ImTCP background

(b) Average

Figure 23: CDF and average of Web page download time

find that the background traffic greatly affects the foreground, as can be seen in Figure 22(a), where

the average throughput of foreground traffic becomes 30 Mbps and that of the background is 16

Mbps. When we use ImTCP background mode for background transfer, we find that ImTCP can

exactly estimate the available bandwidth in the shared link (10 Mbps) and successfully prevent its

transmission rate from exceeding the estimated values. The average throughput of the foreground

traffic is 39 Mbps total and that of the background traffic about 9 Mbps (Figure 22(b)), which

matches well with the setting of the value of 0 (=0.9).

We also examine the behavior of ImTCP in background mode when foreground traffic is origi-

nated with Web document transfers. We replace the ImTCP connection in the simulation in Figure

14 with a background mode ImTCP connection. Figures 23(a) and 23(b) compare the download

time for Web pages under ImTCP and RenoTCP. We find that ImTCP has only a very small effect

on the download time of the foreground Web traffic. The average throughput of ImTCP in this case

is about 70% that of RenoTCP. Figure 24 shows the measurement value and throughput of ImTCP

connection as a function of simulation time in this case. Note that the throughput of ImTCP does

not approach the actual value of available bandwidth. This indicates that ImTCP background mode

is successfully avoiding interference with Web traffic. And we can also say that the measurement

50

0

10

20

30

40

50

320 340 360 380 400

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Available bandwidth
Measurement result

ImTCP background throughput

Figure 24: Throughput and measurement result of ImTCP background mode

results in this case confirm that ImTCP in background mode performs the measurement very well.

5.2 Full-speed transmission

Finally, we introduce another example of a modified congestion control mechanism to show that

ImTCP can enhance link utilization using its measurement results.

TCP considers packet loss events as indicators of bandwidth starvation and consequently de-

creases the transmission rate whenever packet losses occur. Therefore, in wireless networks where

packets may be lost due to channel noise, TCP tends to use the available bandwidth ineffec-

tively [36]. Similarly, in satellite networks and high-speed networks, where the bandwidth-delay

product of an end-to-end path is extremely large, TCP with traditional congestion avoidance re-

quires a long time and an extraordinarily low packet loss probability to fully utilize the link band-

width [25].

To improve TCP throughput in wireless networks, aggregation of multiple TCP connections

[37] can be used. Our approach is similar to the approach introduced in [23] in which the band-

51

width measurement results are used to improve the TCP performance. For high bandwidth-delay

product networks, one study based on real network experiments [25] proposes a more aggressive

mechanism for increasing window size to achieve higher utilization of the network link bandwidth.

Our approach introduces a more available-bandwidth-aware window size adjustment.

We modify only the congestion avoidance phase of the TCP congestion control mechanism

because the slow-start phase is fast enough to obtain the link bandwidth. The idea is to use the

measurement result to adjust the increasing speed of the congestion window size. When the avail-

able bandwidth is large, the window size increases quickly to make full use of available bandwidth,

and when the available bandwidth is small due to the existence of other traffic, the window size

increases slowly. We call this type of ImTCP data transmission full-speed mode.

In the congestion avoidance phase, we do not increase the congestion window size (ç/è �&¨) by

one in every RTT. Instead, we use the adjustment given in the following equations.

ç�è �1¨ �qç/è �&¨ 3�['d� �) �21 Å �) . ç�è �1¨Û � �
Û �q�4ÅyK�V�V

In the equation,
1E�31/4) � is a parameter that determines how fast the window size increases. If

1

is large, ImTCP can successfully utilize the bandwidth link, but it may encroach bandwidth share

of other connections and cause unfairness in the network. When
1

is small or equal to 1, ImTCP

behaves the same as RenoTCP.

We use the topology in Figure 25 to investigate the performance of ImTCP in full-speed mode.

The ImTCP sender and ImTCP receiver is connected by two routers with Gigabit links. Therefore,

the 500 Mbps link between the two routers becomes the bottleneck link in the path. We assume

the buffer of the TCP receiver is large so the TCP throughput can achieve 500 Mbps. The buffer

size of the router at the bottle neck link is also large (2000 packets). We compare the throughput

obtained when using ImTCP in full-speed mode, High-Speed TCP (HSTCP) [25] and RenoTCP

52

TCP Sender

TCP Receiver

1 Gbps

 10 ms

500 Mbps

50 ms

1 Gbps

 10 ms

Buffer size

 = 2000 packets

Figure 25: High speed network topology

for data transmission in the network.

Figure 26(a) shows the changes in the congestion window size of TCP connections. RenoTCP

requires a long time to reach a large window size. HSTCP increases the window size quickly

to fully use the free bandwidth, however, the increasing speed is non-sensitive to the available

bandwidth such that packet loss events occur frequently. Therefore, overall, the throughput of

HSTCP is not as large as expected. ImTCP increases the window size quickly when the window

size is small and decreases the speed when its transmission rate reaches the available bandwidth to

avoid packet losses. Therefore, the throughput of ImTCP is better than the others, as can be seen

in Figure 26(b).

Finally, we compare the throughput of ImTCP in full-speed mode with RenoTCP in a wireless

network. We insert a 2 Mbps network link in the path between a TCP sender and TCP receiver to

simulate a wireless link, as shown in Figure 27. We vary the packet loss rate of the network links

and find that ImTCP can achieve a larger throughput than RenoTCP when the loss rate is high, as

53

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

#
p
k
ts

Time (s)

HSTCP
RenoTCP

ImTCP full-speed

(a) Window sizes

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

HSTCP RenoTCP

ImTCP full-speed

(b) Throughputs

Figure 26: Comparision of TCP window sizes and throughputs

shown in Figure 28. Parameter 5 is set to 100 in this case. When the packet loss rate is high, a

higher value for parameter 5 can help ImTCP obtain higher available bandwidth. When the packet

loss rate is low, the value of 5 should be low so that ImTCP will share bandwidth fairly with other

traffic. We will investigate an appropriate adaptive control mechanism for 5 in future works.

54

TCP Sender

TCP Receiver

10 Mbps

 10 ms

2 Mbps

100 ms

10 Mbps

 10 ms

Buffer size

 = 200 packets

Figure 27: Wireless network topology

0

0.5

1

1.5

2

2.5

1 0.1 0.01 e-02 e-03 e-05 e-06 e-07

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Packet loss ratio

RenoTCP

ImTCP

 full-speed

Link Capacity

Figure 28: TCP throughput in wireless network

55

6 Conclusion

In this thesis, we introduced a method for measuring the available bandwidth in a path between

two endhosts using an active TCP connection. We first constructed a new measurement algorithm

that uses a relatively small number of probe packets and yet provides periodic measurement results

quickly. We presented a number of simulation results in order to validate the effectiveness of the

proposed algorithm. We then applied the proposed algorithm to an active TCP connection and in-

troduced ImTCP, a version of TCP that can perform measurement of the available bandwidth. We

evaluated ImTCP through simulation experiments and found that the proposed measurement algo-

rithm works well in TCP with no degradation in TCP data transmission speed. We also discussed

some implementation issues of ImTCP and introduced examples of ImTCP special transmission

modes. The implementation of ImTCP is currently in progress and has achieved some of the

expected results in the initial steps [38].

In future projects, we will develop new transmission modes for ImTCP as well as evaluate the

performance of those introduced in this thesis. We will also consider a bandwidth measurement

algorithm that can be deployed at the TCP receiver. Moreover, we intend to develop inline network

measurement tools that can be applied not only to available bandwidth but to other characteristics

of network links as well, such as bottleneck link capacity and packet loss rate.

56

Acknowledgements

I would like to express my sincere appreciation to Prof. Masayuki Murata of Osaka University.

His guidance and inspiration have provided an invaluable experience that has helped me to fulfill

this research.

I would like to express my deepest gratitude to Associate Professor Go Hasegawa of Osaka

University. He has been a constant source of encouragement and advice throughout my studies

and in the preparation of this manuscript.

I am also indebted to Associate Professors Hiroyuki Ohsaki, Naoki Wakamiya and Research

associates Shinichi Arakawa and Ichinoshin Maki of Osaka University who gave me helpful com-

ments and feedback.

Finally, I want to thank my many friends and colleagues in the Department of Information

Networking of the Graduate School of Information Science and Technology of Osaka University

for their support.

57

References

[1] R. L. Carter and M. E. Crovella, “Measuring bottleneck link speed in packet-switched net-

works,” Tech. Rep. TR-96-006, Boston University Computer Science Department, Mar.

1999.

[2] B. Melander, M. Bjorkman, and P. Gunningberg, “A new end-to-end probing and analysis

method for estimating bandwidth bottlenecks,” in Proceedings of IEEE GLOBECOM 2000,

Nov. 2000.

[3] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement methodology, dy-

namics, and relation with TCP throughput,” in Proceedings of ACM SIGCOMM 2002, Aug.

2002.

[4] M. Allman, “Measuring end-to-end bulk transfer capacity,” in Proceedings of ACM SIG-

COMM Internet Measurement Workshop 2001, ACM SIGCOMM, Nov. 2001.

[5] S. Seshan, M. Stemm, and R. H. Katz, “SPAND: Shared passive network performance dis-

covery,” in Proceedings of the 1st Usenix Symposium on Internet Technologies and Systems

(USITS ’97), pp. 135–146, Dec. 1997.

[6] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link bandwidth,” in Pro-

ceedings of the USENIX Symposium on Internet Technologies and Systems, Mar. 2001.

[7] V. Jacobson, “Pathchar-A tool to infer characteristics of Internet paths,” http://www.

caida.org/tools/utilities/others/pathchar/, 1997.

[8] A. B. Downey, “Using Pathchar to estimate internet link characteristics,” in Proceedings of

ACM SIGCOMM ’99, pp. 241–250, 1999.

[9] S. Savage, “Sting: A TCP-based network measurement tool,” in Proceedings of USITS ’99,

Oct. 1999.

58

[10] B. Hu, A Daniel and P. David, “Topology discovery by active probing,” in Proceedings of

the Symposium on Applications and the Internet (SAINT 2002), Jan. 2002.

[11] K. Matoba, S. Ata, and M. Murata, “Capacity dimensioning based on traffic measurement in

the Internet,” in Proceedings of IEEE GLOBECOM 2001, pp. 2532–2536, Nov. 2001.

[12] A. Rao, K. Lakshminarayanan, S.Surana, R.Karp and I.Stoica, “Load balancing in structured

P2P systems,” in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS ’03), Feb. 2003.

[13] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz and I. Stoica, “Towards a common API

for structured peer-to-peer overlays,” in Proceedings of the 2nd International Workshop on

Peer-to-Peer Systems (IPTPS ’03), Feb. 2003.

[14] Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, “Grid information services for distributed

resource sharing,” in Proceedings of the tenth IEEE International Symposium on High-

Performance Distributed Computing (HPDC-10), IEEE Press, Aug. 2001.

[15] Y. Zhao and Y. Hu, “GRESS - a Grid replica selection service,” in Proceedings of the 16 In-

ternational Conference on Parallel and Distributed Computing Systems (PDCS-2003), Aug.

2003.

[16] ZB. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder,

V. Nefedova, D. Quesnal, S. Tuecke, “Data management and transfer in high performance

computational Grid environments,” Parallel Computing Journal, vol. 28, May 2002.

[17] S. Vazhkudai and S. Tuecke and I. Foster, “Replica selection in the globus data Grid,” in

Proceedings of International Workshop on Data Models and Databases on Clusters and the

Grid (DataGrid 2001), May 2001.

[18] Akamai Home Page, http://www.akamai.com/.

59

[19] Exodus Home Page, http://www.exodus.com/.

[20] G. Pierre and M. van Steen, “Design and implementation of a user-centered content delivery

network,” in Proceedings of the third IEEE Workshop on Internet Applications, June 2003.

[21] J. Jha and A. Sood, “An architectural framework for management of IP-VPNs,” in Proceed-

ings of the 3rd Asia-Pacific Network Operations and Management Symposium, Sept. 1999.

[22] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell, “Pathchirp: Efficient available

bandwidth estimation for network paths,” in Proceedings of Passive and Active Measurement

Workshop 2003 , 2003.

[23] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti and S. Mascolo, “TCP Westwood:

Congestion window control using bandwidth estimation,” in Proceedings of IEEE Globecom

2001, pp. 1698–1702, Nov. 2001.

[24] H. Balakrishnan, N. Padmanabhan, S. Seshan and H. Katz, “A comparison of mechanisms for

improving TCP performance over wireless links,” IEEE/ACM Transactions on Networking,

vol. 5, no. 6, pp. 756–769, 1997.

[25] S. Floyd, “Highspeed TCP for large congestion windows,” RFC 3649, Dec. 2003.

[26] NS Home Page, http://www.isi.edu/nsnam/ns/.

[27] NLANR web site, http://moat.nlanr.net/Datacube/.

[28] R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[29] A. Feldmann, C. Gilbert, P.Huang and W.Willinger, “Dynamics of IP traffic: A study of the

role of variability and the impact of control,” in Proceedings of SIGCOMM ’99, pp. 301–313,

1999.

60

[30] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental

Design, Measurement, Simulation, and Modeling. Wiley-Interscience, 1991.

[31] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like distribu-

tions: Evidence and implications,” in Proceedings of IEEE INFOCOM ’99, Mar. 1999.

[32] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich, “Performance of Web

proxy caching in heterogeneous bandwidth environments,” in Proceedings of IEEE INFO-

COM ’99, Mar. 1999.

[33] M. Crovella and P. Barford, “The network effects of prefetching,” in Proceedings of INFO-

COM ’98, Apr. 1998.

[34] L. Fan, P. Cao, and Q. Jacobson, “Web prefetching between low-bandwidth clients and prox-

ies: Potential and performance,” in Proceedings of ACM SIGMETRICS ’99, May 2000.

[35] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An architecture for

Differentiated Services,” IETF Request for Comments 2475, Dec. 1998.

[36] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The impact of multihop wireless

channel on TCP throughput and loss,” in Proceedings of IEEE INFOCOM 2003, Mar. 2003.

[37] R. Chakravorty, S. Katti, I. Pratt and J. Crowcroft, “Flow aggregation for enhanced TCP over

wide area wireless,” in Proceedings of IEEE INFOCOM 2003, Mar. 2003.

[38] I. Leuth, “Implementation and evaluation of an inline network measurement mechanism for

service overlay networks,” Bachelor thesis. Osaka University. Japan, Feb. 2004.

61

