
Realizing a Network Emulator System
with Intel IXP1200 Network Processor

Go Hasegawa, Haruki Tojo and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {hasegawa,h-toujou,murata}@nal.ics.es.osaka-u.ac.jp

Abstract—In this paper, we describe the design and implementation
issues of a network emulator system using a network processor. We first
describe the required functions for the network emulator system, which
include buffering algorithms, and network characteristics emulation.
We implemented several functions on the software simulator of the In-
tel IXP1200 network processor called WorkBench, and confirmed that
the implemented functions work correctly. We further obtained the es-
timated performance of the implemented functions, in order to confirm
the processing overhead introduced by those functions is limited when
compared with a simple packet-forwarding algorithm.

Keywords— Network Processor, Intel IXP1200, Network Emulator,
Experimental Network, Micro-engine

I. INTRODUCTION

Against the rapid growth of the Internet population and
the explosive increase of the network traffic, research on the
Internet has made remarkable progress, especially research
focused on increasing link bandwidth, dissolving network
congestion, the effective use of network resources, and so
on. Consequently, many algorithms, mechanisms and archi-
tectures have been proposed and evaluated. Some excellent
ones have been introduced into actual networks.

To evaluate the performance of the proposed mechanisms,
implementation experiments are necessary in addition to
mathematical analyses and computer simulations. However,
hardware implementation and experiments have many prob-
lems, such as low cost-effectiveness and lack of flexibility
and re-usability. Therefore, many researchers have utilized
software implementation and experimentation on personal
computers (PCs). For example, when evaluating packet
scheduling algorithms for the router buffer, PC routers such
as ALTQ [1] are often used. In these experiments, the re-
searchers construct a small experimental network and eval-
uate the proposed mechanisms, since it is very difficult to
utilize the large-scale networks that are now in actually op-
eration.

Network emulator systems are categorized into three
types: software-based system, hardware-based system, and
network processor-based system. Software-based systems
are usually implemented as kernel modules on computer
operating systems (OSs), such as ALTQ and NISTNet [2].
ALTQ provides various packet-buffering algorithms such as

Class-Based Queueing (CBQ) [3], Random Early Detection
(RED) [4], RED with In and Out (RIO) [5], and Hierarchical
Fair Service Curve (HFSC) [6]. NISTNet has mechanisms
that emulate periodical/probabilistic packet losses, link de-
lays, and so on. Although these systems have flexibility
in adding/changing implemented mechanisms due to their
software rewritability, their packet-processing speed is lim-
ited by the performance of central processing units (CPUs)
and/or network interface cards on the computers.

STORM [7] and MicroNET [8] systems are examples of
hardware-based systems. STORM can simulate up to 10 net-
work nodes and 10 wide area networks (WANs), and realize
packet losses, propagation delays, link errors in the network
and packet buffering algorithms at gateway buffers. These
systems can work much faster than software-based systems
since they are implemented by hardware. However, they
have little extensibility for adding new mechanisms because
of their non-universal design architectures.

On the other hand, network processor-based systems can
offer advantages of both the software and hardware-based
systems. Because network processors have the hardware
and instruction set designed specifically for packet process-
ing, we can construct high-speed network emulator sys-
tems. Furthermore, they have large flexibility and extensibil-
ity because the functions of the network processors are pro-
grammable. Therefore, the development task can be accel-
erated by sharing the program resources of the network pro-
cessors, which results in a cost-effective and useful network
emulator system for the experimental network. More impor-
tantly, the developed mechanism of, for example, a packet-
scheduling algorithm can be used in the network processor-
based routers with no changes.

In our work, we utilized an Intel IXP1200 network pro-
cessor [9], and constructed a network emulator system by
using IXP1200EB, which is an evaluation board of the
IXP1200 [10]. In this paper, we first discuss the functions
required for the network emulator system. These include
packet-buffering algorithms and an emulation mechanism of
network characteristics. We then illustrate the implemen-



. . 

. 
. . 
. 

Terminal Hosts
  

Terminal Hosts
  

Network Emulator System

  

RED

TD

RIO TD

TD
Delay

bit error

narrow

Drop

router

Fig. 1. Network Emulator System

tation designs for these functions on the IXP1200EB. As
a basis of our implementation, we used an SRD (Simpli-
fied Reference Design) provided by Intel for simple packet
forwarding on the IXP1200EB, and we implemented the
proposed functions by modifying the SRD implementation.
The effectiveness of our system was evaluated by Work-
Bench [11], which is a software simulator emulating the be-
havior of IXP1200 perfectly. Through benchmark tests, we
confirmed that the processing overhead by introducing pro-
posed functions is limited when compared with the simple
packet-forwarding algorithm, which will be reported in Sec-
tion III.

The rest of this paper is organized as follows. In Sec-
tion II, we enumerate the functions required for the network
emulator system, and illustrate their implementation issues
on the IXP1200EB. Section III describes the evaluation re-
sults of our system, and discusses the performance of the
functions implemented in this work. Finally, we present con-
cluding remarks and discuss future work in Section IV.

II. NETWORK EMULATOR SYSTEM

Figure 1 depicts the network emulator system proposed
in this paper. The terminal hosts are connected to eight
10/100 base-T Ethernet ports on the IXP1200EB. The net-
work emulator system interconnecting the terminal hosts
emulates various network characteristics between the ter-
minal hosts as shown in Figure 1. For example, the prop-
agation delay and/or packet loss probability are set to the
link between certain terminal hosts, and a RED router is lo-
cated as a bottleneck router. The two major network compo-
nents of our system are packet-buffering algorithms and net-
work characteristics. In this section, we will summarize the
packet-buffering algorithms that we implemented. The net-
work emulation functions (such as packet losses and propa-
gation delays) will also be next described. Other features of
our network emulator system are also shown in this section.

A. Packet-Buffering Algorithm Emulation

A.1 TD (Tail Drop) Mechanism

In the current Internet, a TD (Tail Drop) mechanism is the
most popular as the packet-buffering algorithm at the router.
When packets arrive at the router buffer, the TD mecha-
nism simply stores the packets into the buffer in order of
arrival, and processes them according to the FIFO (First In
First Out) discipline. When the router buffer becomes full
because of network congestion, buffer overflow takes place
and newly arriving packets are simply discarded. In what
follows, we describe the detailed algorithm of the TD mech-
anism we have implemented on our network emulator sys-
tem. Note that the network emulator system can arbitrarily
set the buffer size for each output port i, which is denoted by
Bi.
• Receiver-side algorithm
1. Set the buffer size Bi for each output port i.
2. Prepare the variable qi, the current queue length (the

number of stored packets in the buffer).
3. When a packet arrives at output port j, check the buffer

occupancy by comparing qj with Bj .
4. When qj < Bj, the incoming packet is accepted to the

buffer. Increment qj .
5. When qj ≥ Bj, the TD mechanism determines that

buffer overflow takes place, and discards the incoming
packet. Packet dropping is achieved by releasing memory
space assigned to the packet.
• Sender-side algorithm
1. When a packet departs from the output port j, decrement

qj.

A.2 RED (Random Early Detection) Mechanism

RED (Random Early Detection) [4] is now going to be
employed to the Internet routers. Before the router buffer
becomes full, RED detects the beginning of congestion by
monitoring the average queue length at the router buffer and
discards incoming packets with a probability determined by
a function of the average queue length. More specifically, it
uses a low–pass filter with an exponentially-weighted mov-
ing average when calculating the average queue length;

q ←− (1 − wq) · q + wq · q (1)

where q is the current queue length at the router buffer, q

is the average queue length, and wq is a control parame-
ter. Then RED compares q with two thresholds: a mini-
mum threshold (minth) and a maximum threshold (maxth)
to determine the packet-discarding probability. The detailed
algorithm is as follows:



1. When q < minth, RED stores an incoming packet into
the router buffer.
2. When minth ≤ q < maxth an incoming packet is
discarded with probability pa determined by the following
equations:

pb←− q −minth

maxth −minth

·maxp (2)

pa ←− pb

1 − count · pb
(3)

where maxp is a control parameter to determine the degree
of the packet-discarding probability.
3. When maxth ≤ q, RED discards the packet.

To implement the above mechanism in our network em-
ulator system, we must treat the real numbers because wq,
q, pa, and pb are all real numbers. However, the micro-
engines provided by the IXP1200 can only handle integer
numbers. We therefore introduced the fixed point numbers,
where the upper 16 bits out of 32 bits are used for rep-
resenting the integer part of the variables, and the lower
16 bits are used for the decimal part. Thus, our system
can handle values ranging from 0.0000152587890625 to
65535.9999847412109375, which is enough to treat con-
trol parameters of the RED mechanism. Another problem
is that Eqs. (1) – (3) use arbitrary multiplication/division
calculations, which takes much more CPU time than ad-
dition/subtraction calculations. Therefore, we first convert
these equations as follows:

q ←− q + (q − q) ·wq (4)

pb ←− (q −minth) · maxp

maxth −minth

(5)

pa ←− pb

(1 − count · pb)
(6)

Then, by setting the control parameters wq, maxp, and
(maxth − minth) to the power of 2, and approximating
(1 − count · pb) to the power of 2, these calculations can be
complemented only by bit-shift operations. The algorithms
of the RED mechanism implemented on our network emula-
tor system are as follows;
• Receiver-side algorithm

1. For each output port i, prepare the control parameters
for the RED mechanism (maxth,i, minth,i, maxp,i and
wq,i).

2. For each output port i, prepare the variables qi , counti
and qi and initialize them to 0.

3. When a packet arrives at output port j, increment
countj and check the average queue length qj.

4. When qj < minth,j, the packet is accepted to the buffer.
Then increment qj and calculate qj from Eq. (4).
5. When minth,j ≤ qj < maxth,j , the packet-discarding

probability is calculated from Eqs. (5) and (6). Then discard
the packet with the calculated probability. If the packet is
accepted, increment qj and calculate qj from Eq. (4).
6. When qj ≥ maxth,j , the packet is discarded.
7. When the arriving packet is discarded, countj is reset to

0.
• Sender-side algorithm
1. When a packet departs from the output port j, decrement

qj.

A.3 Other Mechanisms

Additionally, other kinds of packet-buffering algorithms
should be implemented to construct a useful network emu-
lator system; the variants of the RED mechanism such as
SRED (Stabilized RED) [12], FRED (Flow RED) [13] and
RIO (RED In and Out) for DiffServ architecture, for exam-
ple.

B. Network Characteristics Emulation

As the network characteristics, the following factors are
to be emulated by our system:

Packet Loss for introducing the packet losses caused by net-
work congestion
Propagation Delay for emulating physical distance between
hosts
Bit Error for introducing the bit error typically found on
wireless/satellite links
Link Bandwidth for emulating a smaller bandwidth link
than 10 Mbps, such as a 28.8 Kbps dialup link
Background Traffic Generation for introducing the traffic
load to the experimental networks
Packet Filtering for dropping/prioritizing packets from/to
specific IP addresses/port numbers

We implemented the emulation of packet loss and propaga-
tion delay with fixed control parameters (packet loss prob-
ability and delay time). In the following subsections, we
explain the detailed algorithms.

B.1 Packet Loss

Packet loss emulation simply discards an incoming packet
with a certain probability designated by the system. For the
packet loss probability, we can use a fixed value and a value
following an arbitrary probability distribution function. We
will describe the way to determine the probability distribu-
tion function in Subsection II-C.1. Here, we explain the



receiver-side algorithm of packet loss emulation. Note that
there is no special procedure required on the sender side.
1. Determine the packet-discarding probability (namely, a
fixed value or a probability distribution function) for each
output port i.
2. When a packet arrives at the output port, calculate the
packet discarding-probability of the packet from the fixed
value or the probability distribution function.
3. Determine whether the packet is discarded or not by using
the calculated packet discarding probability.
4. When the packet is accepted, store it to the buffer and
increment qi.
5. Otherwise, discard the packet by releasing the memory
space where the packet is stored.

B.2 Propagation Delay

In the propagation delay (link delay) emulation, the net-
work emulator system delays the emission of the arriving
packets during a certain time to emulate the link distance
between the hosts. As in the packet loss emulation, we
can use the fixed value or the value following an arbitrary
probability-distribution function for the delay time.

For achieving the link delay emulation, we prepare an ad-
ditional queue called the delay queue in the memory space.
Packets that require delay are stored in the delay queue with
the calculated delay time. Note that the delay time of each
packet is represented by the offset from that of the preced-
ing packet. At some intervals, the delay time in the queue
is checked from the beginning of the queue the packets are
output when it expires. The detailed algorithm is as follows:
1. Determine the delay time (a fixed value or a probability
distribution function) for each output port i.
2. When a packet arrives, calculate its delay time from the
fixed value or the probability distribution function.
3. The packet is stored to the delay queue with the calculated
delay time.
4. For each packet arrival, check whether the delay time has
expired or not from the beginning of the delay queue.
5. When the delay time expires, the packet is moved from
the delay queue to the output port buffer, and the next packet
is checked.

C. Other Features

C.1 Probability Distribution Function

As described in the previous subsections, out network em-
ulator system can use arbitrary probability-distribution func-
tions for determining the packet loss probability and the
packet delay time. However, probability-distribution func-
tions such as a Pareto distribution require complex mathe-

matical calculations, which cause a large overhead for the
processing of the IXP1200.

Therefore, in the network emulator system proposed
in this paper, we prepare cumulative distribution function
(CDF) tables in the memory space for storing the pre-
calculated values (x,C(x)) of the CDF C(x) correspond-
ing to the designated probability distribution function, where
C(x) values in the table are evenly spaced from 0 to 1. When
using the probability distribution function, the index value y

(0 ≤ y ≤ 1) is first obtained from the random variable,
and the variable x that satisfies y = C(x) is obtained. By
this mechanism, the IXP1200 can treat the various kinds of
probability distribution functions without large calculation
overhead.

C.2 Parameter Setting Protocol

The implemented functions for the network emulator sys-
tem described above have many parameters to be set in ad-
vance of the actual experiment: the buffer size Bi for the
TD mechanism, maxth, minth, maxp and wq for the RED
mechanism, the setting of the CDF table, and so on. These
values may be set by modifying the source code of the micro-
engines in the IXP1200, but this is difficult for the users of
the network emulator system. Therefore, we prepared a sim-
ple protocol called NESP (Network Emulator Setting Proto-
col) for parameter setting, which is performed by injecting
the control packets to the IXP1200EB from an external host
connected to the IXP1200EB. Due to space limitation, we
omit the detailed descriptions of the protocol.

III. EVALUATION AND DISCUSSIONS

We have implemented some of the functions described in
Section II. As packet buffering algorithms, TD and RED
mechanisms have been realized. We have also implemented
the packet loss emulation and propagation delay emulation
explained in Subsections II-B.1 and II-B.2, respectively. Due
to space limitation, we only show the results of the TD and
RED mechanisms and the packet loss emulation in this sec-
tion. Note that we also confirmed the preciseness and small
processing overhead of the propagation delay emulation.

We used the software simulator called WorkBench [11] in
the implementation experiments in this section. WorkBench
is the development environment for programming on micro-
engines, which are the main CPUs in the IXP1200. It can
also simulate the detailed behavior of the IXP1200 and is
sufficient for evaluating the processing overhead of the pro-
gram codes. In this section, we show the evaluation results
of the above functions implemented by WorkBench.

For the input traffic to IXP1200 in the experiments, the



0
50

100
150
200
250
300
350
400
450

50 100150200250300350400450500550

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Size [Bytes]

SRD
TD

RED

Fig. 2. Packet Size vs. Throughput

packet size and inter-arrival time are fixedly set. Although
the IXP1200 has six micro-engines, we used only three
micro-engines for implementation simplicity. We assigned
one micro-engine to the sender-side functions, and two
micro-engines to the receiver-side functions. Note that the
main purpose of the evaluation in this section is to prove
the small processing overhead of our implemented functions,
and to confirm that the implemented functions work cor-
rectly. We can expect a higher throughput than the following
results when all six micro-engines are used, which is beyond
of the scope of this paper.

A. Processing Overhead of Packet-Buffering Algorithms

We first evaluated the performance of the TD and RED
mechanisms by focusing on the processing overhead of the
implementation. For comparison, we also show the experi-
mental results of the SRD, which simply forwards incoming
packets without other additional operations.

In Figure 2, we show the throughput values of the SRD,
TD, and RED mechanisms as a function of packet size
of the input traffic. Here, we used eight ports for packet
input/output, and the input rate of each port is fixed to
100 Mbps. Therefore, the total input rate is 800 Mbps. From
the results, we observe that all three mechanisms show al-
most the same throughput values regardless of packet size.
This means that our implemented TD and RED mechanisms
work well with small processing overhead. We further see
that the throughput values of the three mechanisms are all
bounded at about 430 Mbps, even when we use large-sized
packets. This is considered to be the performance limit of the
three mechanisms when we use three out of the six micro-
engines in the IXP1200.

We next evaluated the relation between the number of in-

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

M
bp

s]

Number of Used Ports

SRD
TD

RED

Fig. 3. Number of Input/output Ports vs. Throughput

0
20
40
60
80

100
120
140
160
180

50 100 150 200 250 300

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Input Rate [Mbps]

SRD
TD

RED

Fig. 4. Input Rate vs. Throughput

put/output ports and throughput. We fixed the packet size
to 256 KBytes, and the input rate of each port is set to
100 Mbps. Figure 3 shows the experimental results. As
shown in Figure 2, the three mechanisms have almost the
same throughput. This result again confirms the small pro-
cessing overhead of the TD and RED mechanisms, when
compared with the SRD mechanism.

We next changed the packet size to 128 KBytes, the num-
ber of used ports was fixed to one, and the input rate of the
port was changed from 50 Mbps to 300 Mbps. Figure 4
shows the relationship of the input rate and the throughput
of the SRD, TD and RED mechanisms. Although they can
provide equal throughputs when the input rate is small, the
TD and RED mechanisms show slightly smaller throughput
values than the SRD when the packet input rate is larger than
150 Mbps. The maximum throughput is about 130 Mbps,
which may be the performance limit of packet forwarding



0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

A
ct

ua
l P

ac
ke

t L
os

s 
R

at
io

Chosen Packet Loss Ratio

Ideal
Our mechanism

Our mechanism (Average)

Fig. 5. Preciseness of Packet Loss Emulation

by one port in the TD and RED mechanisms implemented
in this work. However, it can fill up the 10/100 Mbps Eth-
ernet port on the IXP1200EB, and we can expect the higher
throughput corresponding to the 1000base-SX ports on the
IXP1200EB by using all of six micro-engines.

From these results, we conclude that we can provide the
TD and RED mechanisms, as packet buffering algorithms, at
little expense of the overall packet forwarding performance.

B. Preciseness of Packet Loss Emulation

Lastly, we show the evaluation results of the packet loss
emulation explained in Subsection II-B.1. Here we used
only one port for packet input/output, and the input rate was
set to 100 Mbps. Figure 5 shows the relation between the
chosen packet-discarding probability and the actual packet-
loss ratio observed from the number of dropped/successfully
transmitted packets. From this figure, we can say that the im-
plemented packet loss emulator drops the incoming packets
with precise probability. We also confirmed that the packet
loss emulation can be implemented with almost the same
processing overhead as the TD mechanism, which means
that we can introduce packet loss emulation with little per-
formance degradation.

IV. CONCLUSION

In this paper, we have constructed a network emulator sys-
tem using the Intel IXP1200 network processor. We have
first described the required functions for the network em-
ulator system, and implemented some of them on Work-

Bench, the software simulator of the IXP1200. We have con-
firmed that our implemented functions have a small process-
ing overhead, and that they can work without large perfor-
mance degradation. We have also proposed the additional
features for the network emulator system, specifically the
way to use probability distribution functions for parameter
setting and the protocol for parameter setting of the system
from an external host.

We are now implementing the other functions described in
this paper. For future work, we also plan to implement our
system on the IXP1200EB, and evaluate it through practical
experiments.

ACKNOWLEDGEMENTS

This work was partly supported by the University Program
performed by Intel Corporation. We also thank Mr. Akio
Tomobe of Intel Corporation for his kind support.

REFERENCES

[1] ALTQ (Alternate Queueing for BSD UNIX) ,, ,” available from
http://www.csl.sony.co.jp/˜kjc/software.html.

[2] NISTNet Home Page, ,” available at http://www.itl.nist.
gov/div892/itg/carson/nistnet/.

[3] Sally Floyd and Van Jacobson, “Link-sharing and resource manage-
ment models for packet networks,” IEEE/ACM Transactions on Net-
working, vol. 3, no. 4, pp. 365–386, Aug. 1995.

[4] Sally Floyd and Van Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol.
1, no. 4, pp. 397–413, Aug. 1993.

[5] D. D. Clark, and W. Fang, “Explicit allocation of best effort packet
delivery service,” IEEE/ACM Transaction on Networking, vol. 6, no.
4, pp. 362–373, August 1998.

[6] T. S. Eugene Ng Ion Stoica, Hui Zhang, “A hierarchical fair service
curve algorithm for link-sharing, real-time and priority services,” in
Proceedings of ACM SIGCOMM ’97, September 1997.

[7] STORM, ,” available at http://www.quality-net.co.jp/
images/PDF/STORM_web.pdf.

[8] MicroNET, ,” available at http://www.adsystems.co.jp/
products/micronet/micro_1.html.

[9] Intel IXP1200 Network Processor Family, ,” available at
http://www.intel.com/design/network/products/
npfamily/ixp1200.htm.

[10] Intel IXP1200 Evaluation Kit, ,” available at http://www.
intel.com/design/network/products/npfamily/
eval_kit.htm.

[11] Intel IXA Software Developers Kit 2.0 for IXP1200, ,” available at
http://www.intel.com/design/network/products/
npfamily/sdk2.htm.

[12] Teunis J. Ott, T. V. Lakshman, and Larry Wong, “SRED: Stabilized
RED,” in Proceedings of IEEE INFOCOM’99, Mar. 1999.

[13] D. Lin and R. Morris, “Dynamics of random early detection,” ACM
Computer Communication Review, vol. 27, no. 4, pp. 127–137, Oct.
1997.


