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Abstract—In this paper, we introduce active network technologies
to a video multicast system that can satisfy heterogeneous client
requests in an efficient and effective way. We employ active nodes
that adapt incoming video streams at the user’s request by using
transcoders or filters and then dynamically re-organize multicast
sessions to accommodate clients. Simulation experiments demon-
strate that our methods can appropriately split, merge, and move
multicast groups to handle client-to-client heterogeneity.
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I. INTRODUCTION

In recent years, networked video applications like video streaming,
TV conferencing, and live broadcasting have become popular due to
increased access-link capacity and greater computing power of indi-
vidual PCs. IP multicast is one of the promising technologies through
which a video source distributes video streams to a number of clients
in an efficient way. To provide clients with video streams at a satisfac-
tory level of quality, we should take into account the client-to-client
heterogeneity [1]. The quality of a video stream that a client desires
differs from client to client according to the available bandwidth, pro-
cessing capability of the client’s system, and the user’s preferences
for the perceived video quality.

To cope with this problem, we proposed a method of video multi-
cast distribution with active network technology where highly intelli-
gent intermediate nodes, called active nodes, adapt incoming video
streams at the user’s demands and dynamically re-organize multi-
cast sessions [2]. In active networks, the behaviors of active nodes
toward packets can be easily and flexibly tailored according to the
demands of network administrators, applications, and users [3]. In
our paper [2], we introduced active nodes into a structured network
that consists of stub networks and a core network connecting them.
A video stream is distributed over an overlay network that consists
of a video server and active nodes. Active nodes in stub networks,
called local servers, receive requests from clients in the stub network,
organize multicast groups, and provide each multicast group with a
video stream whose level of quality is adjusted to the group. While
multicasting video streams, a local server dynamically re-organizes
multicast groups by splitting a multicast group where the variation in
clients’ reception conditions is too large and by merging two mul-
ticast groups whose reception conditions are similar. Though re-
organization, each client is accommodated in an appropriate multicast
group and receives a video stream with a desirable level of quality.

However, splitting and merging do not necessarily lead to the im-
provement of the reception conditions that clients experience, since
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Figure 1: Active video multicast

the root node of multicast groups is kept the same and paths from the
local server to clients do not change much. In this paper, to achieve
more efficient and effective video multicasting, we propose an addi-
tional method of re-organizing a multicast tree, i.e., a move opera-
tion. By delegating the management of a multicast group to another
local server in the same stub network, the topology of the multicast
tree changes so that it avoids the bottleneck links that disturbed video
multicasting on the previous tree. For this purpose, a local server first
investigates the possibility of improving the reception conditions and
tries moving the multicast group to a better local server.

The rest of the paper is organized as follows. In Section 2, we in-
troduce our framework of active video multicasting. In Section 3, we
first explain methods of dynamic tree re-organization on a single lo-
cal server. Then the move mechanism for inter-server re-organization
is described in Section 4. We show several simulation results in Sec-
tion 5. Finally, we give our conclusions and describe future work in
Section 6.

II. ACTIVE VIDEO MULTICAST

Our mechanism considers a hierarchically configured network that
consists of a core network and several stub networks as shown in
Fig. 1. Active nodes in a stub network behave as “local servers”
for clients in the domain. A local server is responsible for provid-
ing video streams of desired quality to clients, and it receives a video
stream of higher quality from the originating video server or another
local server through the so-called global video distribution tree. Then
the local server applies video-quality adjustment to the stream in ac-
cordance with client QoS requirements and the network conditions.
Local servers communicate with each other within the domain to dy-
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Figure 2: Layered structure of framework

namically organize appropriate local distribution trees.

First, a new video distribution service is initiated by a video server
and advertised over networks. A client that intends to receive the
service registers itself by sending a message to a local server in the
domain. To distribute a video server in the stub network, a local server
begins with only one multicast group composed of all clients that it
received requests from. Then, at a regular interval, it first tries to
split a multicast group into two, then attempts to merge two multicast
groups into one, and finally considers moving a multicast group.

In our framework, we use TFMCC (TCP-Friendly Multicast Con-
gestion Control) [4, 5], which is a rate control protocol to make real-
time multicast applications behave in a fair manner with TCP ses-
sions. In TFMCC, a sender initially sets the sending rate at one
packet per RTT. While receiving a video stream, each receiver cal-
culates its TCP-friendly rate from observation of the loss event rate
and the RTT and reports it to the sender. The sender sets the sending
rate of the multicast group at the lowest reported rate. In the case of
video multicasting, a kind of video filtering method is applied to a
video stream to adjust its rate to the target rate. TFMCC has a feed-
back suppression mechanism to prevent feedback implosion. Feed-
back information that reports a higher rate than the current sending
rate is unnecessary for rate control. Therefore, a sender chooses a
receiver that reports the worst reception condition, as CLR (Current
Limiting Receiver), and allows it to send feedback preferentially at
least once per feedback round. Since an instantaneous and drastic
rate increase causes serious congestion, the rate of increase is lim-
ited to ��

����
[bps] every ���� seconds, where � and ���� stand for

the packet size in bytes and the maximum RTT among reported RTT,
respectively.

We consider an overlay to TFMCC as shown in Fig. 2. Being
a transport protocol, TFMCC relies on IP multicast for routing and
group join/leave mechanisms. The TFMCC protocol runs between
the local server and the receivers of each group. Each TFMCC re-
ceiver calculates its own TCP-friendly rate and then sends it to the
sender to define the rate of the group. The overlay layer runs between
a local server and its receivers. At the receiver side, it regularly sends
the calculated TCP-friendly rates to the local server at predetermined
feedback intervals as shown in Fig. 3. At the local server side, it
also regularly re-organizes group membership in accordance with the
received feedback at the re-organization interval. In contrast with
TFMCC, which basically needs information of the worst receiver, we
need rate information of all members of the group, and thus it is not
possible to use feedback suppression. Nevertheless, because the con-
trol interval is longer, feedback implosion can be controlled because
it is sent less frequently.
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III. MANAGEMENT OF GROUP MEMBERSHIP

For each multicast group, a local server applies video filtering to a
video stream and distributes it on a multicast tree. The quality of the
video stream is adjusted according to the worst reception condition
among clients so that all clients in the multicast group can receive
and play it out. Therefore, when the variation in reception conditions
is diverse, some clients that can potentially receive a video stream at
a higher rate would not be satisfied. Taking into account such hetero-
geneity with the goal of satisfying clients as much as possible, a local
server splits the multicast group into two so that clients with similar
reception conditions are accommodated in the same multicast group.
On the other hand, if there are two multicast groups whose sending
rates are close to each other, a local server merges them into a single
group to avoid waste in the bandwidth and reduce the server load.

In this section, we explain two methods for management of group
membership: split and merge.

A. Splitting the Multicast Group

A multicast group is split in two if the variation in the reported
TCP-friendly rate values is too large. For this purpose, we use the
variation coefficient �� �

��
��

of a multicast group �� (� � � � � ),
where �� is the standard deviation and �� is the average of the reported
rates �� (� � 	 � 
�) of the clients of the multicast group ��. First, a
local server calculates �� for all � multicast groups that it manages
and finds the largest �� � ���

����	
��. If it exceeds a split threshold

��, the local server divides the multicast group � into two.
To find the appropriate splitting, we assume that clients are ordered

in ascending order of reported rate �� . Thus, the first client is CLR
and the sending rate �� of group �� is equal to ��. The local server
defines the cutting point , which is the border between two multicast
groups. We first set the cutting point between the lowest client and
the second lowest,  � �, and calculate the coefficient variations for
both groups, i.e., client 1 and clients 2 through 
�, and derive their
average. We vary the cutting point  from 2 to 
� and find the point
that leads to the minimum average in all possible combinations. Fi-
nally, the multicast group � is split into two at the determined cutting
point. The local server assigns a new multicast address to a multicast
group of clients  through 
� and sends a video stream adjusted to
client .

B. Merging Multicast Groups

After splitting multicast groups, a local server tries to merge a pair
of multicast groups that carry independent video streams of a similar



level of quality for efficient use of system resources. To avoid thrash-
ing, those multicast groups that are split on the same control timing
are excluded from sets of multicast groups to be merged. For a pair
of �� and ���� (� � � �� � �), a variation coefficient �� is calcu-
lated to quantify the similarity. Here we assume that multicast groups
are ordered in ascending order of the sending rate. The lowest vari-
ation coefficient is compared to the threshold ��. If the coefficient
is smaller than the threshold ��, the corresponding pair of multicast
groups is merged into one.

IV. MANAGEMENT OF MULTICAST GROUP
BETWEEN LOCAL SERVERS

Consider the case that congestion occurs on a link that constitutes a
multicast tree. Clients behind the congested link suffer from the con-
gestion. Under this condition, they experience longer RTT and higher
loss ratio. Furthermore, they report lower TCP-friendly rate values.
Consequently, all clients in the multicast group are forced to receive
and perceive a video stream of degraded quality. Knowing the diver-
sity of reception conditions, a local server splits the multicast group
into two. Those clients that are not affected by the congestion are
isolated from the others and receive a video stream of an improved
quality. However, the clients behind the congested link still suffer
from a low-quality video stream. This implies that the group mem-
bership management on a single local server does not contribute to
the improvement of reception conditions.

In this section, we propose moving a multicast group to another
local server in the same stub network, expecting that a newly estab-
lished multicast tree avoids the congested bottleneck link on the cur-
rent multicast tree. Since a local server does not have the means to di-
rectly obtain information on the available bandwidth, network topol-
ogy, and topology of multicast trees, it investigates the possibility of
improving the reception conditions through a probe phase. The local
server that intends to move a multicast group, called a current server
hereafter, chooses a multicast group whose sending rate is stable and
the lowest among all multicast groups that it manages. The reason is
that the video quality forms a monotonically increasing convex func-
tion of the coding rate and the same additional bandwidth leads to
a higher gain in the video quality for a session of the lower sending
rate than that of the higher rate. Then it selects a candidate server
among local servers in the same domain. The candidate server initi-
ates video multicasting on the multicast group to move. Members of
the multicast group simultaneously receive video streams from both
the current and the candidate servers and send feedback messages
to both servers. Based on the reported TCP-friendly rate, and the
sending rates, the current server decides whether the multicast group
should be moved.

A. Signaling Mechanism

The current server communicates with a candidate server and
clients as illustrated in Fig. 4. Detailed descriptions of signaling pro-
cedures are as follows. A current server sends a request (probe req)
to a candidate server to initiate a probe phase. The candidate server
receiving the request decides whether to accept it according to the
number of multicast groups that it manages and the load. In addi-
tion, if it has already been engaged in other probing, where it is the
current server or the candidate server, it rejects the request. When
the candidate server accepts the request, it sends back an acceptance
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Figure 4: Signaling in move

message (probe ok) to the current server and prepares a video stream.
On receiving the acceptance message, the current server sends mes-
sages (probe join) to all clients of the multicast group to inform them
of the multicast address for probing. A client that receives the mes-
sage joins the probing multicast group specified by the current server
and returns a ready message (probe ready). The current server re-
quests the candidate server to initiate video multicasting by sending
a message (probe start) that indicates the probing multicast address.
Then, the candidate server sends a video stream to the probing mul-
ticast group and sets a probing timer. In this paper, we empirically
set a probing timer to 1.5 seconds, which is three times as long as the
initial maximum RTT in each multicast group. The sending rate of
the probing session is controlled by TFMCC as in the other multicast
groups.

When the sending rate of the probing session becomes stable or
the probing timer expires, the candidate server sends a message
(probe result) to the current server to report the sending rate. The
candidate server compares the sending rate to the reported rate. If it
considers it worthwhile to move the multicast group, it delegates the
management by sending a move message (group move) to the candi-
date server and clients. The candidate server continues multicasting,
and the clients stop receiving the video stream from the current server
and send confirmation messages (group ok) to the current server. Fi-
nally, the current server stops video multicasting. On the other hand,
if the current server considers that the reception condition cannot be
improved by a move, it sends stop messages (probe stop) to the can-
didate server and clients. The candidate server then stops video mul-
ticasting and the clients leave the probing multicast group.

B. Stability of Sending Rate

In the preceding subsections, we discussed the stability of the send-
ing rate. In our scheme, the stability of the sending rate of multicast
group � is expressed by the coefficient variation � � �


�
��

. Here, ��
stands for the standard deviation of sending rates that the local server
adopted and applied to the multicast group � during the preceding re-
organization interval, and �� is the average of them. If �� is higher
than the threshold �
, the multicast group � is considered unstable.

C. Decision Algorithm on Moving Multicast Group

A local server must decide whether to move a multicast group
based on limited information. At the time of decision, the local server
knows the sending rate of the current multicast group and that of the
probing multicast group. If multicast trees of those groups are com-
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pletely independent and there is no other session in the network, the
multicast group whose sending rate is higher than the other apparently
provides clients with a video stream of a higher quality. However, in
an actual situation, traffic on a multicast group directly and indirectly
affects the other multicast session. They might share the same link.
Even if trees are separatedly established, there might be a TCP ses-
sion that goes through both trees, thus bridging the influence of the
rate control on one multicast tree to the other tree.

To clarify the problem, we categorize possible situations by com-
binations of three conditions: before probe, during probe, and after
probe. For each condition, we then consider the locations of bot-
tleneck links of each multicast tree. As a result, we derive sixteen
patterns as possible situations. One simplified example is illustrated
in Fig. 5. We define �� [bps] and � [bps] as the sending rate from
the current server before and during a probe phase, respectively. We
also define � [bps] and �� [bps] as the sending rate from the can-
didate server during and after the probe phase, respectively. Each of
the three topologies in the figures corresponds to the condition before,
during, and after the probe phase, respectively, from left to right. In
each topology, the left square stands for the current server and the
right one for the candidate server. Ellipses are intermediate multicast
routers, and circles indicate clients. Curved lines originating from a
server to two clients illustrate multicast trees. A cross on a tree repre-
sents a congested link or a bottleneck link. To make the explanation
easier, three links are named A, B, and C as shown in the figures.

In Fig. 5, on a multicast tree from the current server to clients, link
A has the least available bandwidth due to congestion or small link
capacity before the probe phase. Thus, it dominates the sending rate
of the current multicast tree. During the probe phase, the available
bandwidth of link C is shared among two sessions. However, in this
scenario, the bottleneck of the current tree still remains link A, while
that of the candidate tree is link C. This occurs when the bandwidth
available to video multicasting on link A is smaller than half that on
link C and link B has plenty of bandwidth. When the current server
terminates the session and moves the multicast group, the available
bandwidth on link C is fully used by the new session, but it remains
the bottleneck as we assumed. Let us consider the relationship among
��, �, �, and �� in this scenario. �� is equal to � because the bot-
tleneck does not change on the current tree. During the probe phase,
� � � holds because the sending rate of the current tree is limited by
the bottleneck link A, and the remaining bandwidth on link C is used
by the probing session. Finally, since the current session is termi-
nated, �� is larger than �. In this case, we obtain �� � � � � � ��,
and consequently we can expect improvement in the reception condi-
tions by moving the multicast group.

We investigated all sixteen situations to find such relationships
among ��, �, and � that definitely lead to the improvement of recep-
tion conditions, i.e., �� � �. Our conclusion is that it is worthwhile
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Figure 6: Simulation environment

to move a multicast group to another local server if the sending rate
of the current group during the probe phase is higher than that of the
probing group.

V. SIMULATION RESULTS

In this section, we show some simulation results of our approach.
Figure 6 illustrates the topology of the network we used in simulation
experiments. It is generated by a Waxman algorithm with parameters
� � ����, which represents the average node degree, and � � ���,
which represents the ratio of the number of long edges to that of short
edges. Each link has a capacity of 5 Mb/s and a propagation delay of
10 ms. Among fifty nodes, nodes 0 and 49 are local servers, which
are indicated as square. Fifteen nodes have a client, and they are in-
dicated as double circles. Initially, the local server 0 has eight clients,
i.e., 2, 3, 6, 8, 17, 20, 21, and 24, and the local server 49 has the
remaining seven clients. Both local servers start video multicasting
with a single multicast group at time 0 second and complete it at 600
seconds. Throughout the video sessions, each node randomly initi-
ates a TCP session to a randomly chosen node. The time that a TCP
session lasts follows an exponential distribution whose average is 100
seconds, and the time between the end of a session to the next ses-
sion on a node follows an exponential distribution whose average is
200 seconds. From 150 seconds to 400 seconds, in addition to the
above mentioned sessions, each node from 0 to 12 randomly initiates
a TCP session to a node randomly chosen from nodes 0 to 12 to in-
tentionally cause congestion. Both session duration and inter-session
time follow an exponential distribution whose average is 100 seconds.
The thresholds for splitting �� and merging �� are both 0.2 and �
,
which is the threshold for stability of the sending rate at 0.25, and the
re-organization interval is 10 sec.

Figure 7 illustrates the variation in the sending rate of local servers
without re-organization from 100 to 450 seconds. When the network
is congested from 150 seconds to 400 seconds, only three clients,
i.e., 2, 3, and 8, out of eight are affected in the multicast group of
local server 0. However, the other five clients also suffer from the
congestion since they are in the same multicast group throughout the
simulation experiment.

When we conduct splitting and merging, multicast groups are dy-
namically re-organized in accordance with network conditions on lo-
cal server 0 as shown in Fig. 8. Each line corresponds to a multi-
cast group. From 160 seconds, the local server 0 separates clients
6, 17, 20, 21, and 24 from those affected by congestion by splitting
the initial multicast group. As a result, those clients can receive a



Figure 7: Sending rate variation without re-organization

Figure 8: Sending rate variation of local server 0 with split/merge

video stream of an improved quality from 180 seconds. On the other
hand, three clients continue to be affected by the congestion, and the
sending rate of their multicast group is similar to that in Fig. 7. We
observe that unintended and occasional re-organizations occur. For
example, at 240 seconds, those split multicast groups are merged into
one again. This is because additional TCP sessions cause fluctuation
in the sending rates of both multicast groups.

Finally, we show results of the case where inter-server re-
organization is carried out in Figs. 9 and 10. In Fig. 9, the multicast
group affected by the congestion is moved to the local server 49 at
230 seconds. The moved multicast group introduces fluctuations of
reception conditions on multicast trees from the local server 49 and
then several re-organizations occur as shown in Fig 10. Finally, client
3, which cannot avoid congestion by re-construction of a multicast
tree, organizes a dedicated multicast group. The other nine clients
that are free from the congestion are accommodated in another mul-
ticast group and receive a video stream of a higher level of quality.

To summarize the section, we conclude that our re-organization
scheme dynamically manages multicast groups and provides clients
with video streams of a quality corresponding to the network condi-
tions that individuals experience.

Figure 9: Sending rate variation of local server 0 with split/merge/move

Figure 10: Sending rate variation of local server 49 with split/merge/move

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method to effectively delegate the
management of a multicast group between local servers in the same
domain to improve the reception conditions that are degraded by
congestion. Combined with splitting and merging, a video distribu-
tion service that takes into account client-to-client heterogeneity can
be provided to users. To avoid the unintended and unnecessary re-
organization observed in the simulation experiments, future research
should include a way to carefully choose threshold values and other
parameters.
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