
Design, Implementation and Evaluation of

Resource Management System for Internet Servers

Kazuhiro Azuma, Takuya Okamoto, Go Hasegawa and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

TEL:+81-6-6850-6863 FAX:+81-6-6850-6868

E-mail: {k-azuma, tak-okmt, hasegawa, murata}@ist.osaka-u.ac.jp

Abstract. A great deal of research has been devoted to solving the problem of network congestion posed

against the context of increasing Internet traffic. However, there has been little concern regarding improve-

ments in the performance of Internet servers such as Web/Web proxy servers in spite of the projections that the

performance bottleneck will shift from networks to endhosts. In this paper, we propose a new resource manage-

ment scheme for Web/Web proxy servers, which manages their resources for TCP connections, effectively and

fairly. In the proposed system, we focus on the effective use of server resources by assigning dynamically the

send/receive socket buffer according to the required size of each TCP connection, and terminating positively

the idol persistent connection. Also, we validate the effectiveness of our proposed scheme through simulation

and implementation experiments, and confirm conclusively that Web/Web proxy server throughput can be im-

proved by 25% at maximum, and document transfer delay perceived by client hosts can be decreased by up to

90%.

Keywords: System design, Simulations, Experimentation with testbeds

1 Introduction

The rapid increase of the Internet users has been the impetus for much research into solving network congestion

posed against the context of increasing network traffic. However, little work has been done in the area of

improving the performance of Internet servers despite the projected shift in the performance bottleneck from

1

networks to endhosts. There are already hints of this scenario emerging as evidenced by the proliferation of

busy Web servers on the present-day Internet that receive hundreds of document transfer requests every second

during peak volume periods.

Web document transfer requests on the current Internet are done directly from Web servers to client hosts,

or via Web proxy servers [1]. Needless to say, busy Web servers must have many simultaneous HTTP sessions,

and server throughput is degraded when effective resource management is not considered, even with large

network capacity. Web proxy servers must also accommodate a large number of TCP connections, since they

are usually prepared by ISPs (Internet Service Providers) for their customers. Furthermore, proxy servers must

handle both upward TCP connections (from proxy server to Web servers) and downward TCP connections

(from client hosts to proxy server). Hence, the proxy server becomes a likely spot for bottlenecks to occur

during Web document transfers, even when the bandwidth of the network and Web server performance are

adequate. It is the contention that any effort expended to study ways to reduce document transfer time of Web

documents must consider improvements in the performance of Internet servers.

In addition to the Web service, the service overlay networks in the current Internet often handle many TCP

connections, which include CDNs (Content Delivery Networks) [2,3] and P2P networks [4]. In those networks,

a busy server (peer) host has multiple TCP connections to other hosts in the heterogeneous environment and

it behaves as a TCP sender and a TCP receiver simultaneously. Therefore, the effective management of the

resources regarding TCP connections is an important issue for performance improvement of such networks.

In this paper, we first discuss several problems that arise from the handling of TCP connections at Internet

servers, especially Web and Web proxy servers. One of these problems involves the send/receive socket buffers

allocation for TCP connections. When a TCP connection is not assigned proper send/receive socket buffers

size based on its bandwidth-delay product, the assigned socket buffer may be left unused or have insufficient

capacity, which results in waste of the assigned resource and/or throughput degradation, especially on a Web or

Web proxy server with many TCP connections. Another problem considered in this paper is the management of

persistent TCP connections provided by HTTP/1.1 [5], which wastes resources at busy Web/Web proxy servers.

When Web/Web proxy servers accommodate many persistent TCP connections without effective management

schemes, their resources continue to be assigned to those connections even when they are inactive. This means

that new TCP connections cannot be established since there is a shortage of server resources.

In [6], the authors pointed out other shortcomings of HTTP/1.1. They evaluated the performance of a Web

server with HTTP/1.0 and HTTP/1.1 through three kinds of implementation experiments where the network

2

created the bottleneck, where CPU processing speed created the bottleneck, and where the disk system cre-

ated the bottleneck in the system. Through experimental results, they presented that HTTP/1.1 may degrade

Web server performance. This is because when memory is fully utilized by being assigned to mostly idle

connections and a new HTTP session requires memory, the Web documents cached in memory are paged out,

which means that subsequent requests for these documents will require disk I/O. They also proposed a new

connection management method, calledearly close, which establishes a TCP connection at every Web objects,

including embedded files. However, this does not provide a quintessential solution to resource management by

Web servers, since it does not consider the remaining server resources. However, most of the past reported re-

search on improving the performance of Web proxy servers has focused on cache replacement algorithms [7–9].

In [10], for example, the authors have evaluated the performance of Web proxy servers, focusing on the differ-

ence between HTTP/1.0 and HTTP/1.1 through simulation experiments, including the effect of using cookies

and aborting document transfer by client hosts. However, little work has been done on resource management at

the proxy server, and no effective mechanism has been proposed.

In order to overcome those problems, we propose socket buffer management scheme, which assigns the

send/receive socket buffer according to the required size of each TCP connection. We also integrate two

schemes for the send and receive socket buffer into a complete mechanism with considering their relationship.

We further propose a connection management scheme that prevents newly arriving Web document transfer re-

quests from being rejected at the proxy server due to lack of resources. The scheme involves the management

of persistent TCP connections, which intentionally tries to dynamically close them when the server resources

are shorthanded.

We verify the effectiveness of our proposed scheme through simulation and implementation experiments.

In the simulations, we evaluate its basic performance and characteristics by comparing these with those of the

original proxy server. Further, we discuss the results of implementation experiments, and confirm that Web

proxy server throughput can be improved by 50%, and document transfer time perceived by client hosts can be

decreased significantly.

The rest of this paper is organized as follows. In Section 2, we provide an outline of Internet servers,

such as Web servers and Web proxy servers, and discuss the advantages and disadvantages of persistent TCP

connections. In Section 3, we propose a new resource management scheme for Web/Web proxy servers, and

confirm its effectiveness by detailing the results we obtained in our simulation experiments and implementation

experiments in Sections 4 and 5. Finally, we present our concluding remarks in Section 6.

3

2 Background

In this section, we first describe the background to our research on Web servers and Web proxy servers in

Subsection 2.1. We then discuss the potential that persistent connections have to improve Web document

transfer times. However, as will be clarified in Subsection 2.2, it requires a careful treatment at the proxy

servers. Although we focus on the Web/Web proxy servers, the discussion can be applied to the other kind of

Internet services using many TCP connections such as CDNs and P2P networks.

2.1 Web/Web proxy servers

The network bandwidth of the current Internet has increased due to the previous researches, and the number of

Internet users has also risen rapidly. Consequently, a Web server has to accommodate many TCP connections

from Web client hosts, and especially as it receives hundreds of document transfer requests every second during

peak periods. A Web proxy server has to accommodate a large number of connections from Web client hosts

as well as to Web servers. Thus, even when the bandwidth of the network is efficiently large, data transfer

throughput is degraded since the Web/Web proxy servers have non-optimal performance.

In the past literature, a number of studies have characterized Web server performance [11–14]. Also,

some researchers have compared and evaluated the performance of Web/Web proxy servers for HTTP/1.0 and

HTTP/1.1 in [6, 10, 15]. Various studies have focused on cache replacement algorithms [7–9]. However, little

work has been done on the management of server resources regarding TCP connections. Server resources are

finite and cannot be increased when the server is running. If the remaining resources are limit, the server cannot

function fully and this results in degraded server performance.

The resources at the Web/Web proxy servers that we focus on in this paper arembuf, file descriptor, control

blocks, andsocket buffer. These are closely related to the performance of TCP connections when transferring

Web documents. Mbuf, file descriptor, and control blocks are resources for TCP connections. The socket

buffer is used for storing transferred documents through TCP connections. When there are few resources, the

Web/Web proxy servers are unable to establish a new TCP connection. Then, the client host has to wait for ex-

isting TCP connections to close and for their assigned resources to be released. If this cannot be accomplished,

these servers reject the request.

In what follows, we describe the resources of Web proxy servers and how they deal with TCP connections.

Although we have considered FreeBSD system [16] in our discussion, we believe that the results, in essence,

4

can be extended to other OSs, such as Linux.

Mbuf

Each TCP connection is assigned anmbuf, which is located in the kernel memory space and used to move the

transmission data between the socket buffer and the network interface. When the data size exceeds the size of

mbuf, the data is stored in another memory space, called thembuf cluster, which is listed to the mbuf. Several

mbuf clusters are used for storing data based on its size. The number of mbufs prepared by the OS is configured

in building the kernel; the defaults is 4096 in FreeBSD [17]. Since each TCP connection is assigned at least

one mbuf when established, the default number of connections the server can simultaneously establish is 4096.

This would be too small for busy servers.

File descriptor

A file descriptoris assigned to each file in a file system so that the kernel and user applications can identify

it. This is also associated with a TCP connection when it is established, and is called asocket file descriptor.

The number of connections that can be established simultaneously is limited to the number of file descriptors

prepared by the OS. The number of default file descriptors is 1064 in FreeBSD [17]. In contrast to mbuf, the

number of file descriptors can be changed after the kernel is booted. However, since user applications, such as

Squid [18], occupy memory space based on the number of available file descriptors when they are booted, it is

very difficult to inform the applications of the change in the number at run time. That is, we cannot dynamically

change the number of file descriptors used by the applications.

Control blocks

When establishing a new TCP connection, it is necessary to use more memory space for data structures that are

used in storing connection information, such asinpcb , tcpcb , andsocket . Theinpcb structure is used to

store source and destination IP addresses, port numbers, and other details. Thetcpcb structure is for storing

network information, such as the RTT (Round Trip Time), RTO (Retransmission Time Out), and congestion

window size, which are used by TCP’s congestion control mechanism [19]. Thesocket structure is used

for storing information about the socket. The maximum structures that can be built in the memory space is

initially 1064. Since the memory space for these data structures has been set in building the kernel and remains

5

unchangeable while the OS is running, a new TCP connection cannot be established as the amount of memory

spaces is limited.

Socket buffer

The socket buffer is used for data transfer operations between user applications and the sender/receiver TCP.

When the user application transmits data using TCP, the data is copied to the send socket buffer and is sub-

sequently copied in the mbufs (or mbuf clusters). The size of the assigned socket buffer is a key issue in the

effective data transfer by TCP. Suppose that a server host is sending TCP data to two client hosts; one a 64 Kbps

dial-up (say, client A) and the other a 100 Mbps LAN (client B). If the server host assigns equal size send socket

buffers to both client hosts, it is likely that the amount of assigned buffer will be too large for client A and too

small for client B, because of the differences in the capacity (more strictly, bandwidth-delay products) of their

connections. A compromise in buffer usage should be considered so that buffers can be effectively allocated to

both client hosts.

2.2 Persistent TCP Connection

In recent years, many Web/Web proxy servers and client hosts have supported apersistent connectionoption,

which is one of the most important functions of HTTP/1.1 [5, 15]. In the older version of HTTP (HTTP/1.0),

the TCP connection between the server and client hosts is immediately closed when document transfer is

completed. However, since Web document size have many in-line images, it is necessary to establish TCP

connections many times to download them in HTTP/1.0. This results in a significant increase in document

transfer time since the average Web documents at a typical Web servers is about 10 KBytes [11, 20]. The use

of the three-way handshake at each TCP connection establishment makes the situation worse.

In HTTP/1.1 the server preserves the status of the TCP connection, including the congestion window size,

RTT, RTO, and ssthresh, when it finishes document transfer. It then re-uses the connection and its status when

other documents are transferred using the same HTTP session (and corresponding TCP connection). The three-

way handshake can thus be avoided and latency reduced. However, the server maintains the established TCP

connection, irrespective of whether the connection is active (being used for packet transfer) or not. That is, the

resources at the server are wasted when the TCP connection is inactive. This results in a significant portion of

resources being wasted to maintain these numerous persistent TCP connections.

One possible solution to this problem may be to simply discard HTTP/1.1 and to use HTTP/1.0, as the latter

6

closes the TCP connection immediately after document transfer is complete. However, as HTTP/1.1 has other

elegant mechanisms, such as pipelining and content negotiation [5], we should develop an effective resource

management scheme. Our solution is that as resources become limited, the server intentionally closes persistent

TCP connections that are unnecessarily wasting them at the server. We will describe our scheme in detail in the

next section.

3 Algorithm

In this section, we propose a new resource management scheme that is suitable for Web/Web proxy servers,

which solves the problems identified in the previous section.

3.1 Socket Buffer Management Scheme

As explained previously, Web/Web proxy servers have to accommodate a numerous TCP connections. Con-

sequently, the performance of the servers is degraded when the proper size of send/receive socket buffers are

not assigned. Furthermore, when we consider Web proxy servers, resources of both of the sender and receiver

sides should be taken into account. We propose a scalable socket buffer management scheme, called Scalable

Socket Buffer Tuning (SSBT) in this paper, which dynamically assigns send/receive socket buffers to each TCP

connection.

3.1.1 Control of Send Socket Buffer

Previous research has assumed that the bottleneck in data transfer is not in the endhost but in the network. Con-

sequently, the allocation size of send socket buffer is fixed, for example in the previous version of FreeBSD [16],

this was 16 KBytes and it is 32 KBytes in the current version. The assigned capacity is not large enough for

the high-speed Internet or it is too large for narrow links. Therefore, it is necessary to assign a send socket

buffer to each TCP connection with considering its bandwidth-delay product. In [21], we proposed a control

scheme of the send socket buffer assigned to TCP connections and confirmed its effectiveness by simulation

and implementation experiments. In what follows, we summarize the scheme briefly.

The equation-based automatic TCP buffer tuning (E-ATBT) we proposed solves the above problem. In

E-ATBT, the sender host estimates the ‘expected’ throughput for each TCP connection by monitoring three

parameters (packet loss probability, RTT, and RTO values). It then determines the required buffer size of the

7

connection from the estimated throughput, not from the current window size of the TCP as the ATBT scheme

proposed in [22] does. The estimation method used to estimate TCP throughput is based on the analysis

results obtained in [23]. The parameter set (p, rtt and rto) is obtained at the sender host as follows.Rtt

andrto can be directly obtained from the sender TCP. Also, the packet loss ratep can be estimated from the

number of successfully transmitted packets and the number of lost packets detected at the sender host via

acknowledgement packets.

We denote the estimated throughput of connectioni by ρi. Fromρi, we simply determineBi, the required

buffer size of connectioni, as;

Bi = ρi × rtti

wherertti is the RTT value of connectioni. By this mechanism, a stable assignment of the send socket buffers

to TCP connections is expected to be provided if the parameter set (p, rtt, andrto) used in the estimate is stable.

However, in ATBT, the assignment is inherently unstable even when the three parameters are stable, since the

window size oscillates more significantly regardless of the stability of the parameters.

As in ATBT, our E-ATBT also adopts a max-min fairness policy for re-assigning excess buffers. Different

to the ATBT algorithm, however, E-ATBT employs aproportional re-assignment policy. That is, when an

excess buffer is re-assigned to connections requiring more buffer, the buffer is re-assigned proportionally to the

required buffer size calculated from the analysis. Whereas ATBT re-assigns excess buffers equally, since it has

no means of knowing the expected throughput for the connections.

3.1.2 Control of Receive Socket Buffer

As was case for the send socket buffer, most past research has assumed that the receive socket buffer at the

TCP receiver host is sufficiently large. Many current OSs assign a small, fixed-sized receive socket buffer to

each TCP connection. For example, the default size of the receive socket buffer is fixed at 16 or 56 KBytes in

FreeBSD systems. As reported in [24], however, this size is now regarded as small because network capacity has

dramatically increased on the current Internet, and the performance of servers has also increased. Furthermore,

similar to the send socket buffer for the sender TCP, the appropriate size for a receive socket buffer should be

changed based on network conditions involving available bandwidth and the number of competing connections.

Therefore, the receive socket buffer assigned to the TCP connection may be insufficient or remain unused when

8

it is not appropriately assigned.

In [25, 26], the authors proposed the control algorithm of the receive socket buffer, which is based on the

monitoring results of the received data packets for every RTT. However, it needs to estimate the RTT values at

the receiver side TCP, which may be quite difficult in bulk data transfer. Ideally, the receive socket buffer should

be set to the same size as the congestion window size of the corresponding sender TCP, to avoid performance

limitations. The problem is that the receiver cannot be informed of the congestion window size of the sender

host. Furthermore, the receiver TCP does not maintain RTT and RTO values as in the sender TCP and the

packet loss probability is very difficult to obtain. However, the sender TCP’s congestion window size can be

estimated by monitoring the utilization ratio of the receive socket buffer and the occurrence of packet losses in

the network as follows.

Suppose that the data processing speed of the upper-layer application at the receiver is sufficiently high.

In such a case, when the TCP packets stored in the receive socket buffer become ready to be passed to the

application, the packets are immediately removed from the receive socket buffer. Let us now consider changes

of the usage of the receive socket buffer, with or without packet loss in the network.

Case 1: Packet loss occurs

Here, the utilization of the receive socket buffer increases since the data packets successively arriving at the

receiver host remain stored in the receive socket buffer and wait for the lost packet to be retransmitted from the

sender. Assuming that the lost packets are retransmitted by the Fast Retransmit algorithm [27], it takes about

one RTT for the lost packet to be retransmitted. Therefore, the number of packets stored in the receive socket

buffer almost equals to the current congestion window size at the sender host, since the TCP sends data packets

within the congestion window size in one RTT. Consequently, the appropriate size for the receive socket buffer

should be a little larger than the maximum number of stored packets at that time. As a result, we controll the

receive socket buffer as follows:

• If the utilization of the receive socket buffer becomes close to 100%, e.g. 80%, the assigned buffer size is

increased since the congestion window size of the sender host is considered to be limited by the receive

socket buffer, not by network congestion.

• When the maximum utilization of the receive socket buffer is substantially lower than 100%, e.g. 40%,

the buffer size is decreased since excess buffer remains unused.

Case 2: No packet loss occurs

9

Different from the Case 1, the utilization of the receive socket buffer remains small. Two situations can be

considered: (a) the assigned size of the receive socket buffer is sufficiently large so that the congestion window

size of the sender host is not limited, and (b) the assigned size of the receive socket buffer is so small that it

limits the sender’s congestion window size. This depends on whether the bandwidth delay product of the TCP

connection is larger than the assigned receive socket buffer size or not. Since the receiver host cannot know

the bandwidth-delay product of the TCP connection, we distinguish between the two cases by increasing the

assigned receive socket buffer and monitoring the change in throughput for receiving data packets from the

sender as follows:

• When the throughput does not increase, it corresponds to case (a). Therefore, we do not increase the

assigned size of the receive socket buffer since it is already assigned enough.

• When the throughput increases, corresponding to case (b), the proxy server continues increasing the re-

ceive socket buffer, since it is considered that increasing the socket buffer size would allow the congestion

window size at the sender to be increased.

To precisely control the receive socket buffer, we should also consider the situation where the data process-

ing speed of the receiver application is slower than the network speed. Here, the utilization of the receive socket

buffer remains high even when no packet loss occurs in the network, because the data transmission rate of the

sender is limited by the data processing speed of the receiver application regardless of the receive socket buffer

size. That is, increasing the receive socket buffer size has little effect on the throughput of TCP connection.

Therefore, the assigned size of the receive socket buffer should remain unchanged.

Based on the above considerations, we can determine the appropriate size of the receive socket buffer using

the following algorithms. The receive socket buffer is resized at regular intervals. During thei th interval, the

receiver monitors the maximum utilization for the receive socket buffer (Ui) and the rate at which packets are

received from the sender (ρi). When packet loss occurs during thei th interval, the assigned receive socket

buffer (Bi) is updated through the following equations:

• Bi = α · Ui ·Bi−1 whenUi < Tu

• Bi = β ·Bi−1 whenUi < Tl

The value of these parameters used in the our simulation and implementation studies is explained in the fol-

lowing sections. On the other hand, when no packet loss occurs during thei th interval, we use the following

10

equations are used to updateBi:

• Bi = α ·Bi−1 whenUi < Tl andρi ≥ ρi−1

• Bi = β ·Bi−1 whenUi < Tl andρi < ρi−1

• Bi = Bi−1 whenUi > Tl

3.1.3 Handling the Relation between Upward and Downward TCP Connections

A Web proxy server relays a document transfer request to a Web server for a Web client host. Thus, there is a

close relation between an upward TCP connection (from the proxy server to the Web server) and a downward

TCP connection (from the client host to the proxy server). That is, the difference in expected throughput for

both connections should be taken into account when socket buffers are assigned to both connections. For

example, when the throughput of a certain downward TCP connection is larger than that of other concurrent

downward TCP connections, the larger socket buffer size should be assigned to the TCP connection using

E-ATBT. However, if the throughput for the upward TCP connection corresponding to the downward TCP

connection is low, the send socket buffer assigned to the downward TCP connection is not likely to be utilized

fully . When this happens, the unused send socket buffer should be assigned to the other concurrent TCP

connections with smaller socket buffers, improving their throughputs.

There is one problem that must be overcome in implementing the above method. Although TCP connections

can be identified with the control block, calledtcpcb , by the kernel, the relation between the upward and

downward connections cannot be determined explicitly. Therefore, we need to estimate the relation by using

the following algorithm. The proxy server monitors the utilization of the send socket buffer for downward TCP

connections, which is assigned by the E-ATBT algorithm. When the send socket buffer is not fully utilized, it

decreases the assigned buffer size, since the low utilization of the send socket buffer is considered to be caused

by the low throughput of the corresponding upward TCP connection.

3.2 Connection Management Scheme

As explained in Subsection 2.2, a careful treatment of persistent TCP connections on the Web server and Web

proxy server is necessary to efficiently use resources at the server that considers the amount of remaining

resources. The key idea is as follows. When the Web/Web proxy server is not heavily loaded and remaining

resources are sufficient, it tries to keep as many TCP connections open as possible. When resources at the

11

persistent connection list

(sfd, proc)

persistent connection list

NULL NULL

insert delete

(sfd, proc)

Fig. 1: Persistent connection list

server are going to be shorthanded, the server tries to close persistent TCP connections to free these resources,

so that they can be used for new TCP connections.

To achieve this control the remaining resources at the Web/Web proxy server should be monitored. The

resources for establishing TCP connections in our case arembuf, file descriptor, andcontrol blocks, which are

resources for TCP connections. When they are limited, no additional TCP connection can be established. The

amount of resources cannot be changed dynamically once the kernel and the server application are booted.

However, the total and remaining amounts of resources can be monitored in the kernel system. Therefore, we

introduced threshold values to utilize resources, and if one of the utilization levels for these resources reaches

its threshold, the server starts closing persistent TCP connections and releases the resources assigned to those

connections.

We also have to maintain persistent TCP connections at the server to maintain or close them according to

how resources are being utilized. Figure 1 has our mechanism for managing persistent TCP connections at

the server. When a TCP connection finishes transmitting a requested document and becomes idle, the server

records the socket file descriptor and the process number as a new entry in thepersistent connection list, which

is used by the kernel to handle the persistent TCP connections. Note that new entries are added to the end of the

list. When the server decides to close some persistent TCP connections, it selects connections from the top of

the list. In this way, the server can close the oldest persistent connections first. When a certain persistent TCP

connection in the list becomes active before being closed, or when it is closed by the expiration of the persistent

timer, the server removes the corresponding entry from the list. All operations on the persistent connection list

can be done with simple pointer manipulations.

To manage resources even more effectively, we add a mechanism where the amount of resources assigned to

12

the persistent TCP connections gradually decreases after the connection becomes inactive. No socket buffer is

needed when the TCP connection is idle. Therefore, we can gradually decrease the send/receive socket buffer

for persistent TCP connections by taking account of the fact that as the connection idle time continues, the

possibility that the TCP connection will be terminated becomes large.

4 Simulation Experiments

In this section, we evaluate the performance of our proposed mechanism through simulation experiments using

ns-2 [28]. We show the implementation overview of our proposed scheme and the results of implementation

experiments in Section 5.

4.1 Simulation Settings

Figure 2 shows the simulation model. It is used to simulate a situation where many Web client hosts and

Web servers in a heterogeneous environment communicate with a Web proxy server to send and receive Web

documents. To do that, we intentionally set the bandwidths, propagation delays, and packet loss probabilities of

the links between the proxy server and the Web clients/servers. The bandwidths of the links between the client

hosts and the proxy server are changed to 100 Mbps, 1.5 Mbps, and 128 Kbps, and those between the proxy

server and the Web servers are changed to 100 Mbps, 10 Mbps, and 1.5 Mbps. The packet loss probability on

each link between the Web proxy servers and client hosts is selected from 0.0001, 0.001, and 0.01, and that

between the proxy server and Web servers is selected from 0.001, 0.01, and 0.1. The propagation delay for

each link is set to 1, 0.1, and 0.01 secs. Both of the numbers of Web servers and client hosts are fixed at 432.

In the simulation experiments, each client host randomly selects one of the Web servers and generates a

document transfer request to the proxy server. The distribution for the requested document size follows that

reported in [11]. That is, it is given by a combination of log-normal distribution for small documents and a

Pareto distribution for large ones. The access model for the client hosts also follows that in [11], where the

client host first requests the main document, and then requests some in-line images, which are included in the

document after a short interval (following [11], we call itactive off time), and then requests the next document

after a somewhat longer interval (inactive off time). Web client hosts transfer Web document requests to the

Web proxy server only when the resources at the proxy server are sufficient to accommodate that connection.

When the remaining amount of server resources is shorthanded, the client hosts have to wait for other TCP

13

connections to be terminated and for the assigned resource to be released. After the Web proxy server accepts

the request, the proxy server decides whether to transfer the requested document to the client host directly, or

to download it from the original Web server and then deliver it to the client host based on the cache hit ratioh,

which is fixed at 0.5 in our simulation experiments. As well as Web client hosts, the proxy server can download

the requested document only when the proxy server has sufficient resources to establish a new TCP connection.

The socket buffer that the proxy server can use is divided equally between the send socket buffer and

receive socket buffer. That is, when the system has 50 MBytes socket buffer, 25 MBytes are assigned equally

to each buffer. We did not simulate the other limitations of the proxy server resources precisely explained

in Subsection 2.1. Instead, we introducedNmax, the maximum number of TCP connections which can be

established simultaneously at the proxy server. In the proposed scheme, we use the following parameters for

the control of receive socket buffer;α = 2.0, β = 0.9, Tl = 0.4 andTu = 0.8.

In addition to the proposed mechanism, we conducted some simulation experiments with the traditional

mechanisms, where a fixed-size send/receive socket buffer is assigned to each TCP connection for compari-

son. The simulation time for each experiment was 1000 sec. We compare the performance of the proposed

mechanism and the traditional mechanism, focusing on the following aspects;

• Server-side proxy throughput: which is defined by the total transfer data size from Web servers to the

proxy server divided by simulation time.

• Client-side proxy throughput: which is defined by the total transfer data size from the proxy server to

client hosts divided by simulation time.

• Average document transfer time: which is defined by the average time from when client host sends

Web document request to when the client host finishes receiving it.

4.2 Simulation Results

First, we evaluate the performance of the Web proxy server when the total amount of the socket buffer is

changed. In this simulation, we change the total socket buffer size to 150 MBytes, 50 MBytes, 30 MBytes, and

10 MBytes, each of which is equally divided for send and receive socket buffers.Nmax is set to 846, meaning

that all the TCP connections both from Web client hosts and to Web servers are not rejected being established

due to lack of other resources. Figure 3 shows the server-side proxy throughput, client-side proxy throughput,

14

Client Hosts

Web proxy server

Web servers

h = 0.5

propagation delay : 0.01 1 sec
loss probability : 0.0001 0.01

of client hosts : 432 # of Web servers : 432

propagation delay : 0.01 1 sec
loss probability : 0.001 0.1

Fig. 2: Network model for simulation experiments

and document transfer time. Each graph in this figure shows the results for the traditional mechanisms with

various size of the send socket buffers and the receive socket buffers at the left 16 bar charts. For example,

(32 KB, 64 KB) means the traditional scheme assigns a fixed 32 KBytes for the send socket buffer and a fixed

64KBytes for the receive socket buffer. The results for the proposed mechanism at the right four bar charts.

Here, we did not use the connection management scheme explained in Subsection 3.2 since it shows no effect

on the performance of the proposed scheme. Note that we have confirmed that the connection management

scheme does not have any adverse effects in this case.

Figure 3 reveals that when the total amount of the socket buffer is small in the traditional schemes, the

average proxy server throughput decreases especially when the assigned buffer size for each TCP connection

is large. This is because some TCP connections do not use the assigned socket buffer when the assigned

size is large. This also causes newly arriving TCP connections to wait to become established until other TCP

connections have closed and released the assigned socket buffer. However, the throughput of the scheme we

proposed is high even when the total amount of the socket buffer is quite small. This is because we can assign

an appropriate size for the socket buffer for each TCP connection based on its estimated demand. Consequently,

the excess buffers of narrow-link users are re-assigned to wide-link users who request a large socket buffer.

One possible way to improve the throughput of the proxy server in the traditional schemes is to configure

the ratio of the send and receive socket buffers, instead of equally dividing send and receive socket buffer as

we did in the above simulation experiments. That is, if the ratio could be changed according to the capacity

15

0

200

400

600

800

1000

1200

(16KB, 16KB)

(32
KB, 64

KB)

(64
KB, 64

KB)

(25
6KB, 25

6KB)

T
hr

ou
gh

pu
t

[K
bp

s]

15
0M

B

10
M

B

30
M

B

50
M

B

Pro
pos
ed Sch

eme

Traditional Schemes

(a) Server-side proxy throughput

0

500

1000

1500

2000

2500

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

Pro
pos
ed Sch

eme

T
h
ro

u
g
h
p
u
t

[K
b
p
s]

(64
KB, 64

KB)

15
0M

B

10
M

B

30
M

B

50
M

B

Traditional Schemes

(b) Client-side proxy throughput

1

10

100

D
oc

um
en

t
T

ra
ns

fe
r

T
im

e
[s

ec
]

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

(64
KB, 64

KB)

15
0M

B

10
M

B

30
M

B

50
M

B

1000

Pro
pos
ed Sch

eme

Traditional Schemes

(c) Document Transfer Time

Fig. 3: Simulation results (1)

0

200

400

600

800

1000

1200

(16KB, 16KB)

(32
KB, 64

KB)

(64
KB, 64

KB)

(25
6KB, 25

6KB)

T
hr

ou
gh

pu
t

[K
bp

s]

(
1
:
1

)

(
1
:
2

)

(
4
:
1

)

(
2
:
1

)

Pro
pos
ed Sch

eme

Traditional Schemes

(a) Server-side proxy throughput

0

500

1000

1500

2000

2500

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

T
hr

ou
gh

pu
t

[K
bp

s]

(64
KB, 64

KB)

(
1
:
1
)

(
1
:
2
)

(
4
:
1
)

(
2
:
1
)

Pro
pos
ed Sch

eme

Traditional Schemes

(b) Client-side proxy throughput

1

10

100

1000

D
oc

um
en

t
T

ra
ns

fe
r

T
im

e
[s

ec
]

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

(64
KB, 64

KB)

(
1
:
1

)

(
1
:
2

)

(
4
:
1

)

(
2
:
1

)

Pro
pos
ed Sch

eme

Traditional Schemes

(c) Document Transfer Time

Fig. 4: Simulation results (2)

required, the utilization of the socket buffer would increase, resulting in improved proxy server throughput.

To investigate this further, let us look at the results when we change the ratio for the send and receive socket

buffers. In this simulation, we setNmax to 846 and total amount of the socket buffer is fixed to 50 MBytes.

We then divide the socket buffer for send and receive socket buffers in the ratios of 1:1, 2:1, 4:1, and 1:2.

Figure 4 shows that in the traditional schemes, the most appropriate value of the division ratio changes when

the assigned size of the socket buffer changes. It is also affected by the various factors such as the cache hit

ratio, the total number of TCP connections at the proxy server, and so on. That is, it is very difficult to find

the best setting of the division ratio of the send/receive socket buffer. However, proxy server throughput in our

scheme still remains high even if we set the ratio incorrectly or the total socket buffer is very small. That is,

we can say that our proposed scheme has good robustness against the setting of the division ratio of the socket

16

0

200

400

600

800

1000

1200

(16KB, 16KB)

(32
KB, 64

KB)

(64
KB, 64

KB)

(25
6KB, 25

6KB)

SSBT

SSBT
+C
onn
.

T
h
ro

u
g
h
p
u
t

[K
b
p
s]

1
5
0
M

B

1
0
M

B

3
0
M

B

5
0
M

B

Traditional Schemes Proposed Schemes

(a) Server-side proxy throughput

0

500

1000

1500

2000

2500

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

SSBT

SSBT
+C
onn
.

T
h
ro

u
g
h
p
u
t

[K
b
p
s]

(64
KB, 64

KB)

1
5
0
M

B

1
0
M

B

3
0
M

B

5
0
M

B

Traditional Schemes Proposed Schemes

(b) Client-side proxy throughput

1

10

100

D
o
cu

m
en

t
T

ra
n
sf

er
 T

im
e

[s
ec

]

(16KB, 16KB)

(32
KB, 64

KB)

(25
6KB, 25

6KB)

SSBT

SSBT
+C
onn
.

(64
KB, 64

KB)

1
5
0
M

B

1
0
M

B

3
0
M

B

5
0
M

B

1000

Traditional Schemes Proposed Schemes

(c) Document Transfer Time

Fig. 5: Simulation results (3)

buffer.

Let us now discuss the results we obtain from the evaluating the connection management scheme. Here,

we setNmax to 600, which is sufficiently small to accept all TCP connections arriving at the proxy server. The

other parameters are the same as in Figure 3. Figure 5 shows the simulation results for our scheme with and

without the connection management scheme (SSBT, which means when only SSBT is used, and SSBT+Conn,

which means when SSBT and our proposed connection management are used). From this figure, it is obvious

that in the traditional schemes, both proxy server throughput and document transfer time are worse than those

in Figure 3. This small value forNmax means some TCP connections must wait to become established because

of the lack of proxy server resources, even if most TCP connections at the proxy server are not used for data

transmission and only waste the proxy server resources. This phenomena can be seen even in our scheme

without the connection management scheme. On the other hand, when the connection management scheme is

used, the proxy server throughput increases and document transfer time decreases. The connection management

scheme proposed in this paper terminates persistent TCP connections which do not transfer any data, and the

released resources are used for newly arriving TCP connections, which can start transmitting Web documents

immediately. This improves the resource utilization of the proxy server, which also reduces document transfer

time perceived by Web clients.

5 Implementation and Experiments

In this section, we explain the implementation overview of the proposed mechanisms. We also discuss the

results we obtain in implementation experiments and confirm the effectiveness of our proposed scheme within

17

an actual system.

5.1 Implementation Overview

Our scheme consists of two algorithms; the socket buffer management scheme discussed in Subsection 3.1,

and the connection management scheme described in Subsection 3.2. We implement them on a PC running

FreeBSD 4.6, by modifying the source code of the kernel system and the Squid proxy server [18]. The total

number of added source code is about 1000.

The socket buffer management scheme is composed of two mechanisms: control of send socket buffer and

receive socket buffer. To control the send socket buffer, we have to obtain the ‘estimated’ throughput of each

TCP connection established at the proxy server from the three parameters in Subsection 3.1.1. These parameters

can easily be monitored at a TCP sender host, such as a Web server or a Web proxy server. We monitor these

parameters in a kernel system at regular intervals. In the following experiments, we set the interval at 1 sec. We

then calculate the estimated throughput of a TCP connection and assign a send socket buffer using the algorithm

in Subsection 3.1.1. To control the receive socket buffer, we monitor the utilization of the receive socket buffer

as described in Subsection 3.1.2. We modify the kernel system to monitor the utilization of the receive socket

buffer at regular intervals, which is set to 1 sec in our implementation. Note that it should be careful to treat the

receive socket buffer when the assigned buffer size is decreased in our scheme. This is because if we decrease

the receive socket buffer size without sending ACK packets with a new value for the advertised window size

to the TCP sender host, transferred packets may be lost due to lack of receive socket buffer. Therefore, we

decrease the receive socket buffer size 0.5 sec after informing the sender host of the new advertised window

size by sending an ACK packet. Also, when the advertised window size is decreased rapidly, Window Shrink

problem [29,30] may occur. However, we believe that the problem never occurs in the proposed scheme, since

we decrease the receive socket buffer only when it is assigned too large to the TCP connection, based on the

monitored results of the utilization of the receive socket buffer.

To implement the connection management scheme, we have to monitor the utilization of server resources

and maintain an adequate number of persistent TCP connections which have been concurrently established at

the proxy server, as described in Subsection 3.2. We therefore have to monitor the remaining server resources

in the kernel system every second and compare them with their threshold values for the resources. Furthermore,

to manage persistent TCP connections at the proxy server, we have to establish thepersistent connection list

explained in Subsection 3.2 in the kernel system.

18

5.2 Implementation Experiments

We next show the results of implementation experiments. Figure 6 outlines our experimental system. The

Web proxy server host has dual Intel Xeon Processor 2 GHz CPUs and 2 GBytes of RAM, the Web server

host has one 2 GHz Xeon CPU and 2 GBytes of RAM, and each of the five client hosts has one 1.13 GHz

PentiumIII CPU and 512 MBytes of RAM. The server machines run a FreeBSD 4.6 system, and the client

hosts a FreeBSD 4.8 system. The amount of proxy server resources is intentionally set such that the proxy

server can accommodate up to 1000 TCP connections simultaneously. The propagation delay between the

Web proxy server and the Web server is set to 300 ms and those between the Web proxy server and the client

hosts are 500 ms, 150 ms, 50 ms, 10 ms and 1 ms. The threshold value, at which the proxy server begins to

close persistent TCP connections in the proposed scheme, is set to 800 connections, and the parameters for the

control of receive socket buffer are set as follows;α = 1.25, β = 0.75, Tl = 0.4 andTu = 0.8. We set the

size of the proxy server cache to be 1024 KBytes, so that the cache hit ratio becomes about 0.5. The length of

the persistent timer used by the proxy server is set to 15 seconds. The client hosts use httperf [31] to generate

document transfer requests to the Web proxy server. It can emulate multiple users making Web accesses to the

proxy server. The total number of emulated users in the experiments is set to 100, 300, 500, 700, 900, 1000,

1500 and 2000, which means that each client host emulates 20, 60, 100, 140, 180, 200, 300 and 400 users by

using httperf. In the traditional system, therefore, all TCP connections cannot be accepted when the number

of TCP connections at the Web proxy server is larger than 1000 due to lack of server resources. As in the

simulation experiments, the access model for each user at the client hosts (the distribution for the requested

document size and think time between successive requests) follows that reported in [11]. When the request

is rejected by the proxy server due to lack of resources, the client host resends the request immediately. We

compare the proposed scheme and the traditional scheme in which no mechanism proposed in this paper is

used. Each of the experimental results below has an average value of five experiments.

Figure 7 shows the average throughput of the proxy server and the average document transfer time perceived

by the each client host as a function of the number of emulated users at the client hosts. Here, we define the

average throughput of the proxy server as the total size of the transferred documents from the proxy server to

client hosts and those from the Web server to the proxy server divided by the experimentation time (500 sec).

The document transfer time is defined as the time from when the client host sends a document transfer request

to the proxy server to when the client host receives the requested document completely, which includes the

19

of users in each Client host
20, 60, 100, 140,
180, 200, 300, 400

upper limit : 1000 connections
threshold : 800 connections
persistent timer : 15 seconds
cache hit rate : 0.5

Web proxy server Web server

Client hosts

Fig. 6: Implementation experiment system

request retransmission due to the proxy server congestion. These graphs include the 95% confidence intervals

of the experimental results, which are depicted by the errorbars.

From Figure 7(a), we can observe that the traditional scheme (16 KB, 16 KB) in HTTP/1.1, which means

the traditional scheme assigning a fixed 16 KBytes for the send socket buffer and a fixed 16 KBytes size for the

receive socket buffer, shows the lowest throughput regardless of the number of users. This is because 16KB of

the send/receive socket buffer is too small for TCP connections to provide enough throughput. Furthermore,

when the number of users becomes larger than 700, the proxy server throughput degrades as the number of

users increases. It means that the proxy server rejects the document transfer requests from the client hosts due

to lack of server resources, even when most of the resources are wasted by the idle persistent TCP connections.

Furthermore, Figure 7(b) shows that the document transfer time increases rapidly as the number of users be-

comes large. This is because the number of connections at the proxy server reaches 1000 and most of document

transfer requests are often rejected by the proxy server.

When we increase the assigned socket buffer size to (256 KB, 256 KB) for each TCP connection, we can

see that the proxy server throughput increases significantly compared with (16 KB, 16 KB) case in HTTP/1.1.

This is because each TCP connection can provide enough throughput by using the large socket buffer. However,

the document transfer time remains large, as shown in Figure 7(b). In this case, the proxy server assigns the

very large socket buffer to each TCP connection, regardless of the condition of the connection. This results

20

0

10

20

30

40

50

60

70

80

200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

ug
hp

ut
 [M

bp
s]

of Users

Proposed-HTTP/1.0
Traditional (256KB,256KB)-HTTP/1.0

Proposed-HTTP/1.1
Traditional (256KB,256KB)-HTTP/1.1

Traditional (16KB,16KB)-HTTP/1.1

(a) Average Throughput of Proxy Server

0

5

10

15

20

25

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 T
ra

ns
fe

r T
im

e
[s

]

of Users

Proposed-HTTP/1.0
Traditional (256KB,256KB)-HTTP/1.0

Proposed-HTTP/1.1
Traditional (256KB,256KB)-HTTP/1.1

Traditional (16KB,16KB)-HTTP/1.1

(b) Average Document Transfer Time

Fig. 7: Experimental results (1)

in lack of socket buffer for the proxy server to accept newly arriving TCP connections and the rejection of the

document transfer requests.

On the other hand, our proposed scheme in HTTP/1.1 provides the highest throughput of the proxy server

regardless of the number of users. This means that the proposed scheme can assign the send/receive socket

buffer according to the required size by each TCP connection. Furthermore, our scheme shows quite a small

document transfer time even when the number of users increases. This is because the connection manage-

ment scheme successfully closes idle TCP connections wasting the resources, and accepts newly arriving TCP

connections.

As we described in Subsection 2.2, one possible way to improve the performance of the traditional scheme is

to discard HTTP/1.1 and use HTTP/1.0, which can avoid the persistent connection problem. From Figure 7(b),

in the traditional scheme (256 KB, 256 KB) in HTTP/1.0, the document transfer time is quite smaller than

the case of HTTP/1.1. However, from Figure 7(a), we can see that the proxy server throughput is much lower

than the HTTP/1.1 case. This is because the overhead of three-way handshake in the continuous document

transmission becomes large since the connection is terminated immediately after each document transmission.

We conclude that only the proposal scheme with HTTP/1.1 which can keep the persistent connection’s merit

and avoid its demerit as much as possible can improve both the proxy server throughput and the document

transfer time.

Furthermore, we exhibit the pretty good performance of the proposed scheme in terms of the resource

utilization at the proxy server. Figure 8 shows the average size of the assigned socket buffer to all TCP con-

21

0

50

100

150

200

250

300

350

400

450

500

200 400 600 800 1000 1200 1400 1600 1800 2000

As
sig

ne
d

Bu
ffe

r S
ize

 [M
B]

of Users

Proposed-HTTP/1.0
Traditional (256KB,256KB)-HTTP/1.0

Proposed-HTTP/1.1
Traditional (256KB,256KB)-HTTP/1.1

Traditional (16KB,16KB)-HTTP/1.1

Fig. 8: Experimental results (2)

nections. It clearly shows that our proposed scheme can save the socket buffer amazingly at the proxy server.

Note that the traditional scheme (256 KB, 256 KB) uses about 5 times larger socket buffer, but its throughput

is lower than our proposed scheme. Also, compared with the traditional scheme (16 KB, 16 KB), our proposed

scheme does not use so large socket buffer.

From the above results, we can conclude that our proposed scheme works effectively on the actual system,

providing quite better performance than the traditional scheme.

6 Concluding Remarks

In this paper, we proposed a new resource management mechanism for TCP connections at Internet servers. Our

proposed scheme has two algorithms. The first is a socket buffer management scheme which effectively assigns

the send/receive socket buffers to heterogeneous TCP connections based on their expected throughput. It takes

into account for the dependency between the upward and downward TCP connections at proxy servers. The

second is a scheme for managing persistent TCP connections. It monitors server resources, and intentionally

closes idle TCP connections when the remaining server resources are shorthanded. We have evaluated the our

scheme through various simulation and implementation experiments, and confirmed that it can improve the

proxy server performance, and reduce the document transfer time for Web client hosts.

As noted before, the application of our proposed scheme is not limited to the Internet servers. In P2P

networks, for example, the maximum number of connections which can be accommodated by each peer host

will increase by introducing the socket buffer control scheme proposed in this paper. Therefore, the same degree

of the performance improvement shown in Section 4 and 5 can be expected.

22

References

[1] Proxy Survey, available athttp://www.delegate.org/survey/proxy.cgi.

[2] G. Peng, “CDN: Content distribution network,” Computer Science Department, Stony Brook University, Tech. Rep.

Research Proficiency Exam report, Jan. 2003.

[3] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek, “The measured performance of content distribution

networks,” inProceedings of the 5th International Web Caching and Content Delivery Workshop, May 2000.

[4] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer

Computing,” HP Laboratories, Tech. Rep. HPL-2002-57, Mar. 2002.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,”Request

for Comments (RFC) 2068, Jan. 1997.

[6] P. Barford and M. Crovella, “A performance evaluation of Hyper Text Transfer Protocols,” inProceedings of ACM

SIGMETRICS ’99, Oct. 1998.

[7] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead replacement cache,” inProceedings of 2nd

USENIX Conference on File and Storage Technologies (FAST 03), Mar.-Apr. 2003.

[8] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,”IEEE/ACM Transactions on Networking, vol. 8,

no. 2, Apr. 2000, pp. 158–170.

[9] B. D. Davison, “The design and evaluation of Web prefetching and caching techniques,” Ph.D. dissertation, Depart-

ment of Computer Science, Rutgers University, Oct. 2002.

[10] A. Feldmann, R. Caceres, F. Douglis, G. Glass, and M. ael Rabinovich, “Performance of Web proxy caching in

heterogeneous bandwidth environments,” inProceedings of IEEE INFOCOM ’99, June 1999, pp. 107–116.

[11] P. Barford and M. Crovella, “Generating representative Web workloads for network and server performance evalua-

tion,” in Proceedings of the 1998 ACM SIGMETRICS International Conference on Meas urement and Modeling of

Computer Systems, July 1998, pp. 151–160.

[12] R. Fonseca, V. Almeida, M. Crovella, and B. Abrahao, “On the intrinsic locality properties of Web reference

streams,” Boston University Computer Science Department, Tech. Rep. TR 2002-022, July 2002.

[13] M. Arlitt and C. Williamson, “Web server workload characterization: The search for invariants,” inProceedings of

the ACM SIGMETRICS ’96 Conference, Apr. 1996.

[14] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The state of the art in locally distributed Web-server sys-

tems,”ACM Computing Surveys, vol. 34, no. 2, June 2002, pp. 263–311.

23

[15] B. Krishnamurthy, J. C. Mogul, and D. M. Kristol, “Key differences between HTTP/1.0 and HTTP/1.1,” inProceed-

ings of Eighth International World Wide Web Conference, May 1999.

[16] FreeBSD Home Page, available athttp://www.freebsd.org/.

[17] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman,The Design and Implementation of the 4.4 BSD

Operating System. Reading, Massachusetts: Addison-Wesley, 1999.

[18] Squid Home Page, available athttp://www.squid-cache.org/.

[19] W. R. Stevens,TCP/IP Illustrated, Volume 1: The Protocols. Reading, Massachusetts: Addison-Wesley, 1994.

[20] M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of World Wide Web traffic for capacity dimension-

ing of Internet access lines,”Performance Evaluation, vol. 34, no. 4, Dec. 1999, pp. 249–271.

[21] This reference is blind because of self-citation.

[22] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,” inProceedings of ACM SIGCOMM ’98, Aug.

1998, pp. 315–323.

[23] This reference is blind because of self-citation.

[24] M. Allman, “A Web server’s view of the transport layer,”ACM Computer Communication Review, vol. 30, no. 5,

Oct. 2000, pp. 10–20.

[25] M. Fisk and W. Feng, “Dynamic right-sizing: TCP flow-control adaptation,” inProceedings of High-Performance

Networking and Computing Conference (SC 2001), Nov. 2001.

[26] M. Gardner, W. Feng, and M. Fisk, “Dynamic right-sizing in FTP (drsFTP): An automatic technique for enhancing

Grid performance,” inProceedings of IEEE Symposium on High- Performance Distributed Computing (HPDC-

11/2002), July 2002.

[27] W. Stevens, “TCP slow start, congestion avoidance, fastretransmit, and fast recovery algorithms,”Request for Com-

ments (RFC) 2001, Jan. 1997.

[28] The VINT Project, UCB/LBNL/VINT network simulator - ns (version 2), available athttp://www.isi.edu/nsnam/

ns/.

[29] J. Postel, “Transmission control protocol (TCP),”Request for Comments (RFC) 793, Sept. 1981.

[30] R. Braden, “Requirements for internet hosts – communication layers,”Request for Comments (RFC) 1122, Oct.

1989.

[31] D. Mosberger and T. Jin, “httperf: A tool for measuring Web server performance,”Performance Evaluation Review,

vol. 26, no. 3, Dec. 1998, pp. 31–37.

24

