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SUMMARY The proxy mechanism widely used in WWW
systems offers low-delay data delivery by means of “proxy server”.
By applying proxy mechanisms to video streaming system, we
expect that high-quality and low-delay video distribution can be
accomplished without introducing extra load on the system. In
addition, it is effective to adapt the quality of cached video data
appropriately in the proxy if user requests are diverse due to het-
erogeneity in terms of the available bandwidth, end-system per-
formance, and user’s preferences on the perceived video quality.
In this paper, we propose proxy caching mechanisms to accom-
plish high-quality and low-delay video streaming services. In our
proposed system, a video stream is divided into blocks for effi-
cient use of cache buffer. A proxy cache server is assumed to be
able to adjust the quality of cached or retrieved video blocks to
requests through video filters. We evaluate our proposed mecha-
nisms in terms of the required buffer size, the play-out delay and
the video quality through simulation experiments. Furthermore,
to verify the practicality of our mechanisms, we implement our
proposed mechanisms on a real system and conducted experi-
ments. Through evaluations from several performance aspects,
it is shown that our proposed mechanisms can provide users with
a low-latency and high-quality video streaming service in a het-
erogeneous environment.
key words: video streaming service, proxy caching, quality ad-
justment, MPEG-2

1. Introduction

With the growth of computing power and the prolif-
eration of the Internet, video streaming services have
widely diffused. Then, a considerable amount of video
traffic injected by the services causes serious congestion
and, as a result, network cannot provide users with the
high-quality and interactive services.

The proxy mechanism widely used in WWW sys-
tems offers low-delay delivery of data by means of
“proxy server”. A proxy server caches multimedia data
which have passed through it in its local buffer, called
“cache buffer”, then it provides the cached data to
users on demand. By applying proxy mechanisms to
a video streaming system, high-quality and low-delay
video distribution can be accomplished without intro-
ducing extra load on the system [1]–[6]. In addition, it
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Fig. 1 Video streaming system

is effective to adapt the quality of cached video data in
the proxy if user requests are different and diverse due
to heterogeneity in terms of the available bandwidth,
end-system performance, and user’s preferences on the
perceived video quality [1]. Taking into account the
heterogeneity among clients is indispensable when we
want to provide users with a distributed multimedia
service of a satisfactory level of quality.

Mocha, proposed in [1], employs a layered video
coding algorithm to tackle the client-to-client hetero-
geneity. A proxy retrieves, deposits, and provides video
data on a block-by-block and layer-by-layer basis. The
system can provide a client with a video stream whose
level of quality fits for the client’s environment by
choosing an appropriate set of layered blocks. How-
ever, the number of layers is limited due to a coding
algorithm employed and, as a result, the layered-coding
based system lacks the scalability and adaptability to
rate and quality variations. Even if a satisfactory num-
ber of layers can be prepared at a video server, it intro-
duces an extra overhead in video coding and decoding,
cache management, and network bandwidth.

In this paper, we propose proxy caching mecha-
nisms to accomplish high-quality and low-delay video
streaming services in a heterogeneous environment. In
our proposed system illustrated in Fig. 1, a video
stream is divided into blocks for efficient use of a cache
buffer as in [2]–[5], which propose partial-caching-based
proxy mechanisms under a homogeneous environment.
A proxy cache server is assumed to be able to adjust
the quality of cached or retrieved video blocks to re-
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quests through video filters or transcoders. By em-
ploying video filters or transcoders, the system can
adapt a video stream to fit to dynamically and flexi-
bly changing demands. Video filters and transcoders
can directly generate a video stream of a lower level
of quality from a stream of a higher level of quality.
With the development of image processing technolo-
gies, such manipulations can be performed in a real-
time fashion [7]. We develop effective algorithms for
determining the quality of a block to retrieve from a
video server, replacing cached blocks with a newly re-
trieved block, and prefetching blocks in prior to re-
quests. These algorithms are important when we want
to suppress the possibility of cache misses, and decrease
the block transfer delay introduced by retrieving miss-
ing blocks from a distant video server.

Through simulation experiments, it is shown that
our system with the above algorithms can provide users
with high-quality and low-delay video streaming ser-
vices. Furthermore, we implement proposed mecha-
nisms on a real system to verify their practicality and
usefulness. We conduct several experiments and evalu-
ate the traffic condition, the video quality variation,
and the overhead of quality adjustment. Then, we
confirm that our implemented system can continuously
provide users with a video stream in accordance with
the network condition.

The rest of the paper is organized as follows. In
section 2, we propose mechanisms for a proxy cache
server with a video-quality adjustment mechanism.
Next in section 3, we evaluate our proposed mecha-
nisms through several simulation experiments. In sec-
tion 4, we describe implementation of proposed mech-
anisms on a real system, then in section 5, we conduct
several experiments and evaluate our proposed mech-
anisms. Finally, we conclude the paper and describe
some future research works in section 6.

2. Proxy Caching Mechanisms with Video-
Quality Adjustment

2.1 Overview of Mechanisms

Figure 2 illustrates the basic behavior of our mecha-
nisms. Considering the re-usability of cached data, a
video stream is divided into N blocks [1]–[3].

A client periodically requests a designated proxy to
send a block. Each request expresses the desired level

of quality of the block, which is determined based on
the client-system performance, user’s preferences on the
perceived video quality, and the available bandwidth
specified by an underlying protocol, e.g., TFRC (TCP
Friendly Rate Control) [8] or the link capacity. We
assume that the desired level of quality changes block
by block due to changes in user’s preferences and the
available bandwidth. However, proposed mechanisms
can be applicable to the case where user’s preferences
and the available bandwidth are constant and stable.

The proxy maintains a table, called “cache table”,
for each of video streams and possesses informations on
cached blocks. Each entry includes the block number,
the size and quality of the cached block and the qual-
ity of blocks under transmission. The size and quality
become zero, if the block is not cached or not being
transmitted.

On receiving a request, a proxy compares it to a
corresponding entry in the table. If the quality of a
cached block can satisfy the request, i.e., cache hit, the
proxy reads out the cached block, adjusts the level of
the quality to the request, and transmits it to the client.
Video-quality adjustment is performed by QoS filtering
techniques such as frame dropping, low-pass, and re-
quantization filters [9]. In some cases, a block being
received can satisfy the request. To avoid introducing
extra delay in retrieving a block, the proxy waits for
the completion of the reception and provides it to the
client. Otherwise, when a cache misses the request, the
proxy retrieves a block of the appropriately determined
quality from the server on a session established to the
server for the client. Then, the newly obtained block is
stored in the cache. If there is not enough room, one
or more cached blocks are replaced with the new block.
Cached blocks are useful to reduce the response time,
but further reduction can be expected if the proxy re-
trieves and prepares blocks in advance using the resid-
ual bandwidth.

In the following subsections, we propose several
algorithms for the block retrieval, prefetching, and re-
placement mechanisms.

2.2 Block Retrieval Mechanism

When a cache cannot supply a client with a block of
the requested quality, a proxy should retrieve the block.
The quality of a block that a proxy can retrieve from
a server in time is determined in accordance with the
available bandwidth between the server and the proxy.
Thus, when the path between the server and the proxy
is congested, the proxy cannot satisfy the client’s de-
mand even if it retrieves the block from the server. We
introduce a parameter α which is given as;

α =
max(Qsp(i, j), Qcache(j))

Qpc(i, j)
. (1)

α is the ratio of the quality that the proxy can provide
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to the request. j (1 ≤ j ≤ N ) is the block number
that client i requires. Qsp(i, j) stands for the quality
of block j that can be transfered from the server to
the proxy within a block time. The block-time is given
by dividing the number of frames in a block by the
frame rate. For example, in our evaluations, the block
corresponds to 30 frames and it is played out at 30
frames per second. Thus, one block-time is equal to
one second. By multiplying the available bandwidth
by the block-time, the proxy obtains the size feasible
for block j. Then, assuming that the quality can be
determined from the size [10], Qsp(i, j) is derived. The
quality affordable on the path between the proxy and
the client is expressed as Qpc(i, j) and is regarded as the
client i’s request on block j. The quality of a cached
block j, Qcache(j), is obtained from a corresponding
entry of the cache table. In this subsection, since we
consider a case of the cache miss, Qcache(j) < Qpc(i, j)
holds.

When α ≥ 1, that is, the proxy can provide the
client with the block of the desired quality, we have
three alternatives of determining the quality of block j
to retrieve for client i, Qreq(i, j).

method1: A possible greedy way is to request
the server to send block j of as high quality as possible.
This strategy seems reasonable because cached blocks
can satisfy the most of the future requests and proba-
bility of cache misses becomes small. Then, the request
Qreq(i, j) becomes

Qreq(i, j) = Qsp(i, j). (2)

method2: When the available bandwidth be-
tween the server and the proxy is extremely larger than
that between the proxy and the client, method1 cannot
accomplish the effective use of bandwidth and cache
buffer. Thus, we propose an alternative which deter-
mines the quality Qreq(i, j) based on prediction of de-
mands on block j, as follows;

Qreq(i, j) = min( max
k∈S,0≤l≤j

Qpc(k, l), Qsp(i, j)), (3)

where S is a set of clients which are going to require
block j in the future. The client i is also in S. Since
the affordable level of quality is strictly limited to the
capacity of a bottleneck link, we can expect that the
maximum quality requested by a client does not change
much during a session. The method2 avoids a future
cache miss on block j by preparing the block of the
highest quality among levels of quality requested by
clients on preceding blocks.

method3: To accomplish a further efficient use of
the cache, it is possible to request block j of the same
quality that the client requests, as follows;

Qreq(i, j) = Qpc(i, j). (4)

With this strategy, the number of cached blocks in-
creases and the probability of cache misses is expected

to be suppressed as far as future requests can be satis-
fied with them.

In some cases, both cached and retrieved blocks
cannot meet the demand (α < 1). One way is to request
a server to send a block of the desired quality, but it
may cause undesirable delay. The other is for a client
to be tolerant of the quality degradation and accept
a block whose quality is lower than the request. We
introduce another parameter β to tackle this problem.
β is defined as the ratio of the acceptable quality to
the demand, and it expresses the client’s insistence on
the video quality. Clients with β close to one want to
receive blocks in accordance with the request at the risk
of undesirable transfer delay. On the other hand, those
who value timeliness and interactivity of applications
will choose β close to zero.

First, we consider the case that the quality of a
cached block can satisfy the client, but is still lower than
the request (β ≤ Qcache(j)

Qpc(i,j) ≤ α < 1). In such a case, in
order to effectively reuse the cached block, the proxy
only sends the cached block to the client regardless of
the quality of the block that the server can provide,
Qsp(i, j). When the quality of the cached block is not
high enough (Qcache(j)

Qpc(i,j)
< β ≤ Qsp(i,j)

Qpc(i,j)
= α < 1), the

proxy requests the server to send block j whose quality
is equal to Qsp(i, j) as;

Qreq(i, j) = Qsp(i, j). (5)

Finally, if the proxy cannot provide the client with a
block of the satisfactory quality (α < β), it requests
the server to send the block of the minimum quality
which is expected not to cause a cache miss, that is,

Qreq(i, j) = β ·Qpc(i, j). (6)

The proxy requests the server to send block j of the
quality Qreq(i, j). The corresponding entry for client i
Qrec(i, j) for the quality of block j being received in
the cache table is set to Qreq(i, j). When the block
reception is finished, Qcache(j) is set to Qrec(i, j).

2.3 Block Prefetching Mechanism

To reduce the possibility of cache misses and avoid
the delay in obtaining missing blocks from a server,
a proxy prefetches blocks that clients are going to re-
quire in the future. After checking the cache table for
block j being requested by client i, a proxy compares
the minimum requirement β · Qpc(i, j) to the quality
of cached blocks Qcache(k) and that of receiving blocks
Qrec(i, k) (for ∀i, j + 1 ≤ k ≤ j + P ≤ N ). Here, P
is the size of a sliding window called a prefetching win-
dow, which determines the range of examination for
prefetching. If there exists any block whose quality is
lower than the minimum, a block retrieval mechanism is
triggered. The mechanism is the same as one explained
in subsection 2.2 except that the available bandwidth
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to prefetching is the remainder of bandwidth between
the server and the proxy. Prefetch requests have a
lower priority than requests for retrieving cache-missed
blocks at the server in order not to disturb urgent block-
retrieval.

2.4 Cache Replacement Mechanism

Since a cache has a limited capacity, the replacement
of cached blocks should be considered to accomplish
the effective use of a storage. When the quality of a
newly retrieved block is lower than that of a cached
block, the new block is not to be cached. Otherwise, a
proxy first removes a cached block of the lower quality
if exists. Then, it tries to deposit the new block in
the cache. If there is not sufficient room to store the
new block, some cached blocks must be removed. We
propose a replacement algorithm with consideration of
size, quality, and re-usability of blocks.

First, the proxy assigns priority to cached blocks.
Blocks requested by clients at the moment of the re-
placement have the highest priority and are never re-
moved from the cache. The block resides at the begin-
ning of the stream is also assigned the highest priority
to provide potential clients with a low-latency service.
The second important blocks are those in the prefetch-
ing windows following the most important blocks. The
other blocks are with no priority.

Then, blocks candidate for replacement are chosen
one by one until the sufficient capacity becomes avail-
able. In Fig. 3, we show an example of victim selection.
A cached block, which locates at the end of longest suc-
cession of un-prioritized blocks, is regarded as the least
important and becomes the first victim as indicated
as “1” in the figure. Among successions of the same
length, one closer to the end of the stream has a lower
priority.

The proxy first tries the quality adjustment to de-
crease the size of the victim if it is larger than the new
block. Since it is meaningless to hold a block whose
quality is smaller than Qreq(i, j) determined by the
method chosen in the block retrieval mechanism, no
further adjustment is performed and the victim is re-
moved from the cache. The proxy repeatedly chooses
the next victim and applies the same techniques un-

Server Router Router Router RouterProxy

Client

150 Mbps 50 Mbps

TCP sessions TCP sessions

UDP sessionsUDP sessions

Fig. 4 Simulation system model

til the capacity for the new block becomes sufficient.
When all un-prioritized blocks are removed but it is still
insufficient, the proxy gives up storing the new block.

3. Simulation Experiments

In this section, we conduct simulation experiments to
evaluate performance of the proposed caching mecha-
nisms in terms of the required buffer size, the play-out
delay, and the video quality.

Figure 4 illustrates our simulation system model.
A video stream of two hours long is coded using the
MPEG-2 video coding algorithm. It is segmented into
GoPs (Group of Pictures) and a GoP corresponds to
a one-second block. The video-quality adjustment is
performed by a re-quantization filter which regulates
the quantizer scale, that is, the degree of the quanti-
zation. The size of entire video stream ranges from
8.6 Gbits to 194.5 Gbits according to the applied quan-
tizer scale. Ten clients are connected to the proxy on
the same path and watch the same video stream from
the beginning to the end without interactions such as
rewinding, pausing, and fast-forwarding. The inter-
arrival time between two successive client participa-
tions follows the exponential distribution whose average
is 1,800 seconds. The propagation delay between the
server and the proxy is 200 msec and that between the
proxy and the client is 50 msec. The simulation runs for
29,000 seconds in simulation time unit. It is assumed
that all sessions employ TFRC as an underlying rate-
control protocol. TFRC is a rate control algorithm for
non-TCP based applications to react against network
congestions and regulate data sending rate in a TCP-
friendly fashion. A sender estimates the TCP-friendly
rate based on feedback information on RTT and packet
loss ratio observed at a receiver. By adjusting the send-
ing rate to the estimated TCP-friendly rate, network
bandwidth is expected to be fairly shared among TCP
and non-TCP sessions. For further details of a mech-
anism, please refer to the implementation described in
subsection 4.2. We conduct simulation experiments on
TFRC with ns-2 [11] and obtained results are used as
the available bandwidth of sessions. An enlarged view
of the available bandwidth between the server and the
proxy is shown in Fig. 5 and that between the proxy
and the client is shown in Fig. 6.

Although requests are sent to the proxy at the
regular interval of a block-time, inter arrival times of
blocks at the client fluctuate due to cache-hit, cache-
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Fig. 6 Available bandwidth between the proxy and the client

miss, and available bandwidth. In any types of stream-
ing services, it is necessary for a client to defer the
play-out and buffer some amount of video preparing
for expected or unexpected delay jitter (See Fig. 2).
We define the time that client i waits and buffers video
blocks at the beginning of the session in order to en-
sure regularity and smoothness of video play-out as the
play-out delay W (i). W (i) is derived as;

W (i) = max
1≤j≤N

(T (i, j) − I(i, j)), (7)

where j stands for the block number, and N is the num-
ber of blocks in the stream. The arrival time of block
j at client i is denoted as T (i, j). I(i, j) corresponds
to the ideal arrival time of block j and those condi-
tions hold that I(i, j)−I(i, j−1) = one block-time and
I(i, 1) = T (i, 1).

Next, we define the degree of user’s satisfaction
with video quality as;

S(i) =
1
N

N∑
j=1

Qact(i, j)
Qpc(i, j)

, (8)

where Qact(i, j) is the quality of block j provided to
client i whose request on the block is Qpc(i, j).

In Figs. 7 through 9, we summarize simulation re-
sults on the amount of cached blocks and the play-out
delay. The proxy is assumed to have an infinite cache
buffer. Prefetching window size is set to zero, i.e., no
prefetching, in Figs. 7 and 8, and 30 in Fig. 9. Client’s
insistence on the quality β is set to 1. Those results
labeled “traditional” correspond to the case that the
proxy does not have capability of neither quality ad-
justment or prefetching. In such a case, a cache hits
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a request only when it has a video block of the same
quality as the request. Otherwise, the proxy retrieves
the block of the requested quality from the server. The
traditional proxy tries to store every blocks it retrieves
even if it already has a block of the same number and
the higher quality. Figure 7 shows that the required
buffer size of proposed methods is down to one forth
of the traditional method while providing clients with
video blocks of the requested quality. In addition, even
if clients insist on the quality, the play-out delay is sup-
pressed by introducing the quality adjustment and the
prefetching mechanism as shown in Figs. 8 and 9. In
the case of method3, the prefetching mechanism is not
so effective in comparison with the others because the
proxy retrieves and caches blocks of the minimum qual-
ity.

Next, we show simulation results for the case where
the proxy is equipped with the cache of 20 Gbits, which
is smaller than the half of that required (see Fig. 7).
Since we cannot expect an efficient use of cached blocks
with obstinate clients, we assume that they are tolerant
of quality degradation, that is, β = 0.6.

The lower β leads to the higher cache-hit probabil-
ity. Consequently, regardless of methods, the play-out
delay becomes small enough while the amount of cached
blocks is limited to 20 Gbits as shown in Fig. 10. Fur-
thermore, since method3 requests the server to send
blocks of the lowest quality among three methods, the
block transfer time in method3 becomes small and the
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number of cached blocks increases. As a result, perfor-
mance improvement of method3 becomes high. Due to
a limited cache buffer, the degree of satisfaction S(i)
slightly decreases but is still higher than 0.6 as shown
in Fig. 11.

4. Implementation of Proposed Mechanisms

In this section, we describe our implementation of pro-
posed mechanisms on a real system. Figure 12 illus-
trates modules constituting our video streaming sys-
tem. The implemented system consists of a video
server, a proxy cache server, and several clients. We
employ well-known and widely-used protocols for inter-
system communications. For example, the video
streaming is controlled through RTSP (Real Time
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Fig. 12 Modules constituting system

Streaming Protocol) / TCP sessions. Video blocks are
transferred over RTP (Realtime Transport Protocol)
/ UDP sessions as being segmented into 1 K bytes-
long RTP packets. The video stream is coded using
the MPEG-2 video coding algorithm in the PS (Pro-
gram Stream) format. The available bandwidth, that
is taken into account in three mechanisms explained in
section 2, is determined by TFRC. The video-quality
adjustment is performed by a low-pass filter [9]. In the
following subsections, details of our implementation are
given.

4.1 Demultiplexing MPEG-2 PS Blocks

MPEG-2 PS is one of formats for multiplexing video
and audio streams. As the quality adjustment is ap-
plied only to video data, a block received through a
proxy’s RTP Receiver is divided into a pair of video
and audio blocks by Demultiplexer. The divided blocks
are stored in a cache separately. In our implemented
system, each block corresponds to a GoP (Group of Pic-
tures) of MPEG-2, which consists of a series of frames.

The block to request and its quality are specified in
the header of an RTSP PLAY message using the Range
field and Bandwidth field, respectively. In a case of
a cache hit, a proxy reads out both video and audio
blocks from its cache, and it applies the quality adjust-
ment only to the video block. Then, those blocks are
multiplexed and transmitted to the requesting client.

4.2 Rate Control with TFRC

TFRC is a protocol that enables a non-TCP session
to behave in a TCP-friendly fashion. TFRC sender
estimates the throughput of a TCP session sharing the
same path using the equation (9).

X =
s

R
√

2bp
3

+ tRTO(3
√

3bp
8

)p(1 + 32p2)
(9)

X is the transmit rate in bytes/second. s is the packet
size in bytes. R is the round trip time in seconds. p is
the loss event rate, between 0 and 1.0, of the number
of loss events as a fraction of the number of packets
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transmitted. tRTO is the TCP retransmission timeout
value in seconds. b is the number of packets acknowl-
edged by a single TCP acknowledgement. Those infor-
mations are obtained by exchanging RTCP (Real-Time
Control Protocol) messages between a sender and a re-
ceiver. In our implemented system, we can use RTSP
as a feedback mechanism where a client calculates the
TCP-friendly rate and informs a proxy of the rate using
the Bandwidth field of a RTSP PLAY message.

4.3 Video-Quality Adjustment

We employ the low-pass filter as a quality adjustment
mechanism. We compared several video filters such as
the low-pass, re-quantization, and frame dropping [7].
Through experiments, it was shown that the low-pass
filter is the most suitable as an MPEG-2 video filter
for its flexibility in rate adaptation, faster processing,
and video quality. The low-pass filter adjusts the video
quality to the desired level by discarding some portion
of less influential information in video blocks.

4.4 Cache Manager

A proxy maintains information about cached blocks as
Cache Table. On receiving a request, Cache Manager
examines the table. When a cache miss occurs, it de-
termines the quality of a block to retrieve from a video
server in accordance with the available bandwidth and
requests using methods explained in section 2. Then,
it requests the server to send the block via an RTSP
session established between them.

The server reads out a pair of a video block of
the highest quality and a corresponding audio block
through Disk Manager, adjusts the quality of the video
block to the request using Filter, rebuilds a PS block
by Multiplexer, and finally sends the block to the proxy
via an RTP session in a TCP-friendly fashion.

Cache Manager obtains a pair of blocks through
RTP Receiver and Demultiplexer. The block is sent to
the client in a similar way to the block transfer from
the video server to the proxy. At the same time, a
pair of blocks is stored in Hard Disk. TFRC calculates
TCP-friendly rate while receiving RTP packets from
the server.

Cache Manager is also responsible for prefetching
blocks and replacing cached blocks with new blocks.

5. Experimental Evaluation

In this section, we conduct experiments to evaluate the
rate variation, the video quality variation, and the over-
head of quality adjustment.

Figure 13 illustrates a configuration of our experi-
mental system. Two clients are connected to the proxy
and watch the same video stream of 10 minutes from
the beginning to the end without interactions such as
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Xeon
2.2GHz Dual

HUB
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Pentium III 
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Fig. 13 Configuration of experimental system
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Fig. 14 Reception rate variation

rewinding, pausing, and fast-forwarding. The video
server has the whole video blocks of the highest quality
of 8 Mbps. The proxy also has the whole video blocks,
but the quality is 3 Mbps and a cache buffer capacity
is limited to 450 MBytes. The proxy determines the
quality of a block to retrieve from a video server using
method3 which does not need to adjust the quality of
a newly retrieved block at the proxy. The prefetching
window size P is set to 5. There exists a TCP ses-
sion for the file-transfer as a disturbance that competes
with video sessions for the bandwidth. The client’s in-
sistence on the video quality, β, is set to 1. Clients
defer playing the video until video data of 4 MBytes
are stored in play-out buffer.

For purpose of comparison, we also conducted ex-
perimental evaluation of the traditional method where
users persistently request blocks of the quality of
6 Mbps. The proxy has the whole video blocks of the
quality of 6 Mbps in the cache buffer. Thus, in the case
of the traditional method, there is no cache miss.

Figure 14 illustrates variations in reception rates
observed at the clients’ RTP Receiver. At time 180,
the client2 begins a video session. From 360 to 420, the
TCP session transfers a file. As shown in the figure,
the video rate is regulated as the network condition
changes, to avoid unexpected transfer delay and quality
degradation that would be caused by congestions.

Figure 15 illustrates variations in the perceived
video quality in terms of the coding artifact measured
by VP2000A of KDD Media Will Corporation. A
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higher coding artifact value means that quality degra-
dation is higher. These figures show that the perceived
video quality changes in accordance with the network
condition.

Through experiments, the maximum processing
time of adjusting the quality of a video block was less
than 0.5 second. Since the proxy is required to pro-
cess each block faster than one second, i.e., the interval
between two consecutive requests in our experiments,
more than 0.5 second can be devoted to the other tasks
including retrieving a block from the video server. Fig-
ures 16 and 17 illustrate trajectories of the cumulative
amount of received data for the proposed system and
the traditional system, respectively. Solid lines stand

for the ideal and expected amount of data to be re-
ceived, which gradually increases by the size of a frame
at the time when the frame is to be played-out. Dashed
lines stand for the actual and observed amount of data
received at clients. Gaps between the ideal line and the
actual line in our system are apparently smaller than
those in the traditional system. In the case of our sys-
tem, since we carefully regulate the quality of a video
block in order not to violate the deadline, a major rea-
son of the gap is packet loss. On the other hand, the
gaps are caused by the delay and packet loss in the
case of the traditional system, because clients persis-
tently request blocks of 6 Mbps quality regardless of
the available bandwidth. As a result, we observed only
several freezes during 10-minutes video play-out in the
case of our system and we could not have continuous
and in-time video play-out in the case of the traditional
system. Thus, we can conclude that our mechanisms
can accomplish a low-latency and high-quality video
streaming service under a heterogeneous and dynami-
cally changing environment.

6. Conclusions and Future Work

In this paper, we proposed several caching mechanisms
for the video streaming system with the proxy server
capable of video-quality adjustment. Simulation results
show that our system is effective enough in suppress-
ing the play-out delay and reducing the required cache
size while providing users with a video stream of the
desired quality. Especially for the limited buffer, it is
shown effective for clients to be tolerant in order to
accomplish the low-delay and efficient video streaming
service. Furthermore, we implemented and evaluated
our proposed mechanisms on a real system. Through
the experiments, it is shown that our implemented sys-
tem can continuously provide users with a high-quality
and low-delay video service in accordance with the net-
work condition.

As future research works, we consider improve-
ment of our proposed mechanisms. For example, we
tackle the case that several video streams are requested
by clients in a larger network environment. We also
propose mechanisms for interactive controls and algo-
rithms for further stable video quality.
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