
Scalable and Continuous Media Streaming on Peer-to-Peer Networks

Masahiro Sasabe Naoki Wakamiya Masayuki Murata Hideo Miyahara
Graduate School of Information Science and Technology, Osaka University, Japan

{m-sasabe, wakamiya, murata, miyahara}@ist.osaka-u.ac.jp

Abstract

With the growth of computing power and the prolifera-
tion of broadband access to the Internet, media streaming
has widely diffused. Although the proxy caching technique
is one method to accomplish effective media streaming, it
cannot adapt to the variations of user locations and diverse
user demands. By using the P2P communication archi-
tecture, media streaming can be expected to smoothly re-
act to network conditions and changes in user demands for
media-streams. In this paper, we propose efficient methods
to achieve continuous and scalable media streaming sys-
tem. In our mechanisms, a media stream is divided into
blocks for efficient use of network bandwidth and storage
space. We propose two scalable search methods and two
algorithms to determine an optimum provider peer from
search results. Through several simulation experiments, we
show that the FLS method can perform continuous media
play-out while reducing the amount of search traffic to 1/6
compared with full flooding.

1. Introduction

With the growth of computing power and the prolifera-
tion of broadband access to the Internet, such as ADSL and
FTTH, streaming services have widely diffused. A user re-
ceives a media stream over the Internet and plays it out on
his/her client system as it gradually arrives. However, in the
current Internet, only the best effort service, in which there
is no guarantee on bandwidth, delay and packet loss prob-
ability, is still a major transport mechanism. Henceforth,
streaming services cannot provide users with media streams
in a continuous way. As a result, the perceived quality of the
media stream played out at the client system cannot satisfy
the user’s demand, and the user experiences freezes, flick-
ers, and long pauses.

The proxy mechanism widely used in WWW systems
offers low-delay and reliable delivery of data by means of a
“proxy server.” The proxy server deposits multimedia data
that have passed through it in its local buffer, called the

“cached buffer,” and then it provides cached data to users
on demand in place of the original content server. By apply-
ing the proxy mechanism to streaming services, we expect
that high-quality and low-delay streaming services can be
accomplished without introducing extra load on the system.
However, the current proxy mechanism cannot adapt to the
variations of user locations and diverse user demands. In ad-
dition, it has been pointed out that the server–client model
lacks scalability and stability. All information is concen-
trated in a few designated servers that are statically located
at various points in the network, and they have to process
all requests coming in.

Peer-to-peer (P2P) is a new network paradigm to solve
these problems. In a P2P network, peers, entities that
constitute the P2P network, communicate with each other
and exchange information without the mediation of servers.
One typical example of P2P applications is a file-sharing
system, such as Napster and Gnutella, where a consumer
peer directly communicates with a provider peer to obtain
a file. Since there is no server, over-concentration of traffic
can be avoided.

By using the P2P communication technique, media
streaming can be expected to flexibly react to network con-
ditions and changes in user demands for media streams.
The P2P network is dynamically constructed by instances
of joining and leaving the network by peers. A consumer
peer searches a desired media stream by itself and retrieves
it from an appropriate provider peer. At this time, the con-
sumer peer can become a provider peer of the media stream
for other peers if the media stream is cached there. There
have been several research works on P2P media stream-
ing [1-6]. Most of these have constructed an application-
level multicast tree whose root is an original media server
while the peers function as intermediate nodes and leaves.
This architecture is effective when user demands are simul-
taneous and concentrated on a specific media stream, as in
live-media streaming services. However, when demands
arise intermittently and peers request a variety of media
streams, as in current P2P services, an efficient distribution
tree cannot be composed.

In this paper, we discuss methods for providing media

streaming with QoS considerations in a scalable way on
pure P2P networks, that is, there is no server. By taking
into account the network conditions and the timeliness of
data arrival, a peer finds a set of peers having a desired
media stream and then retrieves the media stream from the
most appropriate peer. First, we introduce segmentation of
media streams for efficient use of storage space and band-
width. Next, we propose two scalable methods to find a
desired media block. Finally, two algorithms to determine
an optimum provider peer from the search results are pro-
posed. Through several simulation experiments, we com-
pare several combinations of those methods and algorithms,
in terms of the amount of search traffic and the continuity
of media play-out.

The rest of the paper is organized as follows. In Sec-
tion 2, we give an overview of our streaming system on P2P
networks and propose several methods to accomplish con-
tinuous and scalable media streaming. Next, in Section 3,
we evaluate our proposed methods through several simula-
tion experiments. Finally, we conclude the paper and de-
scribe future works in Section 4.

2. Media streaming on P2P networks

A peer participating in our system first joins in a logical
P2P network for the media streaming. Members of the P2P
logical network are peers that are being served. Some of
them may be watching media streams while the others are
not. Each peer maintains a part or the whole of one or more
media streams that it has watched or is watching. In our
system, a media stream is divided into blocks for efficient
use of network bandwidth and storage space. Since there is
no server that manages meta information such as locations
of peers and media data, a peer retrieves and stores a media
stream in a block-by-block basis [7-10]. Since the query
messages propagates in the P2P network in an exhaustive
way, we propose two scalable methods for searching a de-
sired block in Subsection 2.3. A peer that has the cor-
responding media stream sends a response message about
cached data. The new peer determines an appropriate peer
for retrieving the media stream on the basis of responses,
retrieves it from the peer, and plays it out. We will pro-
pose two algorithms for this purpose in Subsection 2.4. The
new peer repeats the same procedure until it successfully
receives and perceives the entire media stream. Thus, each
peer plays the roles of both consumer and provider. Mes-
sages and media streams are transferred over TCP and UDP
sessions, respectively.

2.1. Segmentation of media stream

For the efficient use of storage space and the retrieval of
necessary parts of a media stream, it is effective to divide a

AP

BP

CP

DP (1, 4, 5)

(none)

(1,3)

(2)

)1(pT)2(
p

T)3(pT)4(pT

Block1 Block2 Block3 Block4

)1(rT)2(rT)3(rT)4(rT

)1(fT)2(fT)3(fT)4(fT

CConsumer

AP

BP

CP

DP

Query (upward) and Response (donward)

Request (upward) and Transmit (downward)

Logical topology
Round1

)1(sT

Figure 1. Basic behavior of our mechanism

media stream into blocks [7-10].
A “block” is a processing unit that can be encoded and

decoded by itself. An example of a block unit is a multi-
ple of the GoP (Group of Pictures) of MPEG-2. A GoP can
be coded and decoded independent of the other GoP, when
the closed-GoP algorithm is employed. Since dividing a
two-hour media stream into one-second blocks apparently
makes it difficult to maintain cache buffer, to have a multi-
ple of GoP is reasonable for a MPEG-2 media stream. How-
ever, a longer block introduces the possibility that the net-
work condition drastically changes while retrieving a block
and, as a result, the continuous media play-out cannot be
attained. The number of blocks of a media stream affects
the system scalability in terms of the amount of search traf-
fic. In our experiments in Section 3, we use a block of 10
seconds. The details of appropriate block size are discussed
in Subsection 2.3.

2.2. Basic behavior of proposed system

A peer finds and obtains a desired block by itself with-
out the mediation of servers. Flooding is a powerful means
of finding media data in an ideal network where bandwidth
is unlimited and propagation delay is negligible. However,
a block-by-block exhaustive search by flooding apparently
consumes much bandwidth as the number of peers increases
and lacks scalability. Therefore, taking into account the
temporal order of reference in a media stream, our mech-
anism employs two methods to efficiently and effectively
search and retrieve blocks without deteriorating the scala-
bility of media streaming services.

The first method is based on a per-group search. A
consumer peer periodically sends out a query message for
N consecutive blocks. Figure 1 illustrates an example of
N = 4. The symbols on the horizontal axis in the figure
are for further use in the next subsection.PA, PB, PC , and

PD indicate candidates of provider peers that are within the
range of the propagation of query messages. Numbers in
parentheses besides peers stand for identifiers of the blocks
that a peer has. At timeTs(1), a query message for blocks
from 1 to 4 is sent out from a consumer peer to the clos-
est peerPA. SincePA has the second block out of four re-
quested blocks, it returns a response message. The response
message contains a list of identifiers of the blocks it has. It
also relays the query to the next neighboring peerPB. PB

also responses and relays the query. SincePC does not have
any of the four blocks, it only relays the query. Finally,PD

sends back a response message.

The consumer peer first waits for a response for block 1.
However, if no response for block 1 arrives untilT s(1) + 4,
the consumer peer gives up watching the media stream.
Since it takes twice the response time to start the media
play-out as shown in Fig. 1 and we have the so-called eight-
second rule, we consider a time-out value of four seconds
as appropriate. On receiving the response, the consumer
peer immediately sends out a request message to retrieve
the first block from the provider peerPB for faster media
play-out. By observing the way that the response message
is received in regard to the query message, the consumer es-
timates the available bandwidth and the transfer delay from
the provider peer. The estimates are updated through re-
ception of media data. For more precise estimation, we can
use any other measurement tools as long as they do not dis-
turb media streaming. From estimations, the consumer peer
predicts the completion time of retrieval of the first block.
Since the received block is immediately decoded and dis-
played, deadlines of retrieval of all succeeding blocks are
determined at this time. For each of blocks 2 through 4,
the consumer chooses an appropriate peer to retrieve the
block in time on the basis of received response messages
and deadline. To efficiently utilize the bandwidth and avoid
congestion, the retrieval of a block is scheduled to start im-
mediately after the preceding block is completely retrieved.
We define the period of the retrieval ofblocks from1 to N
as round 1. A query message for the nextN blocks in round
2 is also scheduled appropriately so that the peer can receive
enough responses and the retrieval of blockN + 1 starts at
the desired instant. For the detailed scheduling algorithm,
refer to the following subsections.

Our per-group search spoils the freshness of responses.
Since a provider peer is also a customer of the media
streaming service, it may watch a media stream at the same
time, and the contents of its cache buffer may change. The
limited capacity of a cache buffer raises the possibility that
the required block, which is listed in the response, disap-
pears when the consumer peer decides to retrieve the block
from the peer and a request message arrives at the peer. To
solve this problem, the consumer peer takes into account the
probability of such disappearance in selecting the provider

peer from which to retrieve the block. For this purpose, we
employ LRU (Least Recently Used) as a cache replacement
algorithm, and the response message takes the form of a list
of all cached blocks in ascending order of referenced time.

The second method contributing to scalability is the sup-
pression of message exchanges. In a P2P framework, a peer
relays a query message to all of the logically neighboring
peers that it knows. A response message is reversely re-
layed backward on the same path that the corresponding
query message traversed. The number of relays is limited
by the same mechanism as in the IP protocol. When a query
is sent out, it is given a TTL (Time To Live) designation,
which specifies the maximum number of relays. When an
intermediate peer relays a query to neighboring peers, it de-
creases the TTL by one. If a peer receives a query with TTL
equal to zero, it ceases to relay the query.

This flooding with a large TTL costs much in the num-
ber of message exchanges and the bandwidth consumed, al-
though a peer can find many peers that have some of the
required blocks. When a query is given a TTL whose value
is H and a peer knowsD other peers, the number of query

messages relayed becomes
H∑

i=1

(D−1)i = O((D−1)H+1).

Each participant regularly sends queries to find and retrieve
media data.

Our second method decreases bandwidth consumption
and improves scalability. In the first search, where a newly
participating peer tries to find as many candidate providers
as possible, full flooding is conducted where a query mes-
sage is given a TTL whose value isH . For example, the
default value of Gnutella, i.e., 7, is used as TTL. For the
succeeding searches, the relay limit is decreased toH ′ < H
so that the peer can receive a sufficient number of response
messages without wasting bandwidth. This is called lim-
ited flooding. Furthermore, we consider a selective search
where query messages are directly sent from the peer to
a selected set of candidate peers in unicast sessions. De-
tailed discussions on how we combine these three types of
searches will be given in the next subsection.

2.3. Block search mechanism and algorithm

A new peer first tries full flooding by sending query mes-
sages to neighboring peers. A query message consists of a
query identifier, a media identifier, a pair of block identi-
fiers to specify the range of blocks needed, e.g.,(1, N), a
time stamp, and TTL. The query identifier and the media
identifier are each uniquely numbered.

When an intermediate peer receives the query, it first
refers to a table to avoid making a loop of query relays.
The forwarding table is composed of pairs of a query iden-
tifier and a peer identifier from which the peer received the
query. If the query identifier of the received query mes-

sage is already recorded in the table, the query is discarded.
A peer that has any of blocks in the specified range sends
back a response message by relaying backward on the same
path that the corresponding query message traversed. The
response message contains a list of all cached blocks in as-
cending order of referenced time, the TTL in the query, and
sum of the timestamp in the query and processing time of
the query. Each entry of the block list consists of a media
identifier, a block number, and block size. Then, the query
message is relayed to neighboring peers after decreasing the
TTL by one if TTL is not zero. When there are two or more
neighboring peers, the peer makes copies of the query mes-
sage and sends them to neighboring peers.

While retrieving the firstN blocks, the new peer
searches the nextN blocks. As mentioned in the previous
subsection, full flooding costs much in terms of the number
of messages exchanged and the bandwidth consumed. In or-
der to efficiently gather sufficient information about desired
blocks without introducing extra load on the network, it is
effective to restrict the number of peers to be searched by
carefully choosing TTL on the basis of the previous search
results. In limited flooding, TTL is determined so that all
peers that are expected to have any of blocks to retrieve in
the next round are within the range of search. As mentioned
in Subsection 2.2, the contents of a cache change as time
passes. Since a peer does not have any way to know the
contents of another peer’s cache at the time it determines
TTL, it conjectures the transition of the contents from an
obtained response. Assuming that a peer is watching a me-
dia stream without interactions such as rewinding, pausing,
and fast-forwarding, and that the cache buffer is filled with
blocks, the number of blocks removed can be estimated by
dividing the elapsed time from the arrival of the response
message by one block timeBt. For example,Bt is equal to
0.5 sec when a block corresponds to a GoP of 15 frames and
the media is played out at 30 frames per second. The peer
conjectures the contents of all peers that returned response
messages and obtains a setR of peers, which are expected
to have at least one of blocks fromN +1 to 2N . We should
note here that we do not take into account blocks cached
after a response message is generated, since we cannot pre-
dict which block of what media stream will be retrieved and
cached without up-to-date knowledge of a distant peer’s be-
havior. It is also risky to rely on a block that has not existed
but is expected to exist.

To further reduce the amount of search traffic, we pro-
pose a selective search method. The purpose of the flood-
ing scheme is to find potential peers that did not respond
to the previous query but newly obtains blocks of interest.
Flooding also finds peers that have newly joined the service.
However, the sufficient number of peers is already known,
and they are expected to have blocks in the next round. Ac-
cordingly, it is less efficient to use flooding to find only a

few new candidate peers while introducing a high load on
the network. In such a case, it is useful to directly send
queries to known peers to confirm the existence of desired
blocks.

We propose two scalable search methods by combining
full flooding, limited flooding, and selective search.

FL method
The FL method is a combination of full flooding and
limited flooding. For blocks of the next round, a peer
conducts (1) limited flooding if the conjectured con-
tents of cache buffers of peers inR satisfies all of the
next round’s blocks, or (2) full flooding, if one or more
blocks cannot be found in the conjectured cache con-
tents of peers inR.

FLS method
The FLS method is a combination of full flooding,
limited flooding, and selective search. For the next
round’s blocks, a peer conducts (1) selective search if
the conjectured contents of cache buffers of peers in
R contain all of the next round’s blocks, (2) limited
flooding if any one of the next round’s blocks cannot
be found in the conjectured cache contents of peers in
R, or finally, (3) full flooding if none of the provider
peers it knows is expected to have any block of the next
round, i.e.,R = φ.

Here, we examine the scalability of each method in terms
of the amount of search trafficV that a peer induces per
media stream.V is defined as the total number of query
messages that are relayed and generated. First, in the case
of the full flooding scheme,V becomes

VF =
M

N
(D − 1)H+1, (1)

whereD is the average number of neighboring peers,H is
a default value of TTL, andM is the number of blocks in
a media stream. Next, in the case of the FL method, the
amount of search trafficV becomes

VFL =
(

M

N
− L

)
(D − 1)H+1 + L(D − 1)H′+1.(2)

H ′ is the average value of TTL in the case of the limited

flooding andL <
M

N
is the number of times that limited

flooding is chosen. Finally, in the case of the FLS method,
the amount of search trafficV becomes

VFLS =
(

M

N
− L−Q

)
(D − 1)H+1

+L(D − 1)H′+1 + Q|R|. (3)

|R| is the average number of peers inR andQ <
M

N
is the

number of times that the selective query is chosen. Since

the first search is the full flooding,L + Q <
M

N
.

)(kT
s

)1(+kT
s

Round k Round k+1

worst
RTT

worst
RTT2

Figure 2. Search start time (N = 4)

In the case of the full flooding scheme, the amount of
search traffic does not changes regardless of the popularity
of a media stream. On the other hand, the performance of
each proposed method is influenced by the media popular-
ity. For a popular media stream, the amount of search traffic
of each proposed method becomes the following:

VFL = (D − 1)H+1 +
(

M

N
− 1

)
(D − 1)H′+1,(4)

VFLS = (D − 1)H+1 +
(

M

N
− 1

)
|R|. (5)

For an unpopular media stream, the amount of search traffic
of the FL method is equal to that of the FLS method as
follows:

VFL = VFLS =
(

M

N

)
(D − 1)H+1 = VF . (6)

Independent of methods, the amount of search traffic is
proportional to the number of blocks in a media stream,M ,
and is inversely proportional to the number of blocks in a
round, N . Thus, to haveN = M is the most effective
to reduce the amount of search traffic since a peer conducts
search only once. When the block size is small,M becomes
large for a long media stream. IfN is set atM , information
available in retrievingM th block becomes out-of-date and
of no use because cached blocks listed in response messages
have been replaced with other blocks. Determination of ap-
propriate block size and group size in accordance with, for
example, the number of peers, the media size, and the net-
work conditions, remains as a future research work.

To accomplish continuous media play-out, it is indis-
pensable for the peer to emit a query while considering re-
sponse time. It takes one round trip time to receive a re-
sponse message from a peer. It also takes one round trip
time before the beginning of reception of a block after a
peer sends a request message. Thus, to efficiently utilize
the bandwidth without causing congestion by starting the
reception of the first block of the next round, a query mes-
sage for the nextN blocks should be issued two round trip
times earlier than the estimated completion time of receiv-
ing the last block of the current round (Fig. 2). Taking into
account the worst case that the first block of the next round
is found only in a cache buffer of the most distant peer, it is

necessary to consider RTT required by the most distant peer
among those peers at which a query message is expected to
arrive. Thus, the time to issue a query message for the next
roundk+1 is given asTs(k+1) = Tp(kN)−2RTTworst,
whereRTTworst is the RTT, which is estimated by observ-
ing the way that response messages are received or by mea-
surement tools, to the most distant peer among peers which
returned response messages withinkth round. The peer
gives up trying to retrieve blocks whose corresponding re-
quest messages have not been emitted in the current round
k atTs(k + 1).

2.4. Block retrieval mechanism and algorithm

The new peer sends a request message for the first block
of a media stream as soon as it receives a response message
from a peer that has the block without waiting for other re-
sponses. In some cases, for example, when the available
bandwidth to the closest peer is far smaller than that to the
next closest peer, it is worth waiting for other response mes-
sages to find a better peer. However, the new peer cannot
predict whether any better peers exist or not when it receives
the first response message for the first block. In addition, it
is indispensable for a low-delay and suitable media stream-
ing service to begin the media presentation as fast as pos-
sible. Thus, in our mechanism, the new peer retrieves the
first block from the peer that first answers and plays it out
immediately when the its reception starts. Of course, we
can defer the play-out to buffer some blocks preparing for
unexpected delays.

The deadlines for the retrieval of succeeding blocksj ≥
2, Tp(j), are determined as follows:

Tp(j) = Tp(1) + (j − 1)Bt, (7)

whereTp(1) corresponds to the time that the peer finishes
retrieving the first block andBt stands for the duration of
playing out one block. As far as the retrieval ofblock j is
completed beforeTp(j), QoS in terms of the continuity of
media play-out can be guaranteed.

Although block retrieval should follow a play-out order,
the order of request messages does not. We do not wait for
completion of reception of the preceding block before issu-
ing a request for the next block because this introduces an
extra delay of at least one round-trip, and the cumulative
delay affects the timeliness and continuity of media play-
out. In our block retrieval mechanism, a request message
for a block is sent out early enough for the block retrieval to
finish in time without causing congestion and to efficiently
utilize bandwidth as shown in Fig. 1. Every time a peer
receives a response message, the instant that it emits a re-
quest message and the peer from which it receives a block
are determined. The detailed algorithm is given below.

Provider peer determination algorithm
Notation
r: Maximum block number among blocks that have

already been requested.
S: Set of peers having blockj.
Tf(j): Estimated completion time of retrieval ofblockj.
Tp(j): Deadline for retrieval of blockj
S′: Set of peers from which a peer can retrieve blockj

by the deadlineTp(j).
R(i): Round-trip times to peeri.
B(j): Size of blockj.
A(i): Available bandwidth from peeri.
Tnow: Time when this algorithm is performed.
P (j): Provider peer for blockj.
Tr(j): Time to request blockj.
k: Round number.

Step 1 Setj to r.
Step 2 Calculate setS, a set of peers having blockj. If

S = φ, that is, there is no candidate provider, set
Tf (j)← Tp(j), j ← j + 1 and repeat Step 2 for
the next block. Otherwise, proceed to Step 3.

Step 3 Derive setS ′, a set of peers from which a peer
can retrieve blockj by deadlineTp(j), from S.
Time required to retrieve blockj from provider
peeri becomes the sum of the round trip times
R(i) to peeri and the transfer time of blockj
obtained by dividing the block sizeB(j) by the
available bandwidthA(i) from peeri. For each
peer i in S, the estimated completion time of
the retrieval of blockj from peeri is derived as
max(Tf (j − 1), Tnow + R(i)) + B(j)

A(i) , consider-
ing the case that the retrieval ofblock j − 1 lasts
more thanR(i) and the request for blockj is de-
ferred. If the estimated completion time is smaller
thanTp(j), the peer is put inS ′. If S ′ = φ, set
Tf (j)← Tp(j), j ← j+1 and go back to Step 2.

Step 4 Determine provider peerP (j) of blockj fromS ′.
We propose the following two alternative meth-
ods for determining the provider peer.
SF (Select Fastest) Method
Select a peer whose estimated completion time is
smallest among peers inS ′.
By retrieving blockj as fast as possible, the re-
mainderTp(j) − Tf(j) can be used to retrieve
the succeeding blocks from distant peers or peers
with insufficient bandwidth.
SR (Select Reliable) Method
Select a peer with the lowest possibility of block
disappearance among those inS ′.
Since the capacity of a cache buffer is limited,
block j may be replaced by another block before
a request for blockj arrives at the provider peer.
The list of block identifiers in a response message

is in ascending order of referenced time. Thus, a
block located closer to the head of the list is likely
to be removed in the near future. In SR method,
in order to perform reliable retrieval, weconsider
the peer with a buffer in which blockj has the
largest number among those of peers inS ′.

Step 5 Derive the estimated completion time of retrieval
Tf(j) and the timeTr(j) to send a request mes-
sage for blockj as follows.
Tf (j) = max(Tf (j − 1), Tnow + R(P (j)))

+
B(j)

A(P (j))
(8)

Tr(j) = Tf(j)−R(P (j))− B(j)
A(P (j))

(9)

Step 6 Ifj = kN , finish the algorithm and wait for re-
ception of the next response message. Otherwise,
setj ← j + 1 and go back to Step 2.

A peer emits a request message for blockj to peerP (j)
atTr(j) and setsr to j. On receiving the request, peerP (j)
initiates block transmission. If it replaces blockj with an-
other block since it returned a response message, it informs
the peer of a cache miss. When a cache miss occurs, the
peer determines another provider peer based on the above
algorithm. However, if it has already requested any block
after j, it gives up retrieving blockj in order to keep the
media play-out in order.

After receiving blockj, the peer replacesTf(j) with
the actual completion time. In the algorithm, the estimated
completion time of retrieval of blockj depends on that of
block j − 1, as in Eq. (8). Therefore, if the actual comple-
tion timeTf (j) of the retrieval of blockj changes, the peer
applies the algorithm and determines provider peers.

3. Simulation experiments

In this section, we conduct simulation experiments to
evaluate our proposed methods in terms of the amount of
search traffic and the continuity of media play-out.

3.1. Simulation model

We use a P2P logical network with 100 peers, which is
randomly generated by the Waxman algorithm [11] whose
parametersα, β are 0.15, 0.3, respectively. An example of
generated networks is shown in Fig. 3. The round trip time
between two contiguous peers is also determined by the
Waxman algorithm and ranges from 10 ms to 660 ms. To
investigate the ideal characteristics of our proposed mecha-
nisms, the available bandwidth between two arbitrary peers
does not change during a simulation experiment and is given
at random between 500 kbps and 600 kbps, which exceeds
the media coding rate of CBR 500 kbps.

34

33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

20

19

2

91

18

1

89

90

17

0

88

16

87

15

86

14

85

13

84

12

83

11

82

10

81

79

80

78

77
76

75

74

73

72

71

69

70

68

67

66

65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42

41

40

39

38

37

36

35

Figure 3. Random network with 100 peers

At first, all hundred peers participated in the system, but
nobody watched media. One peer begins to request a me-
dia stream at a randomly determined time. The inter-arrival
time between two successive requests for the first media
stream follows the exponential distribution whose average
is 20 minutes. Forty media streams of 60 minute length are
available. Media streams are numbered from 0 (the most
popular) to 39 (the least popular), whose popularity follows
a Zipf-like distribution withα = 1.0. Each peer watches a
media stream without such interactions as rewinding, paus-
ing, or fast-forwarding. Thus, LRU algorithm used for
cache replacement becomes identical to FIFO. When a peer
finishes watching a media stream, it becomes idle for the
waiting time, which also follows the exponential distribu-
tion whose average is 20 minutes. A media stream is di-
vided into blocks of 10-sec duration and amounts to 625
KBytes. Each peer sends a query message for a succession
of six blocks, i.e.,N = 6, and retrieves blocks. Blocks ob-
tained are deposited into a cache buffer of 675 MB, which
corresponds to three media streams. In the first time of the
simulation, each peer stores three whole media streams in
its cache buffer. The population of each media stream in the
network also follows a Zipf-like distribution whose param-
eterα is 1.0. To prevent the initial condition of the cache
buffer from influencing system performance, we only use
the results after the initially cached blocks are completely
replaced with newly retrieved blocks for all peers. We pro-
pose six possible combinations of search methods, i.e., full
flooding only, FL, and FLS, and two block retrieve meth-
ods, i.e., SF and SR. We conducted 90 set of simulations
for each of six methods and show averaged values in the
following figures.

3.2. Evaluation of scalability of search mechanism

First, we evaluate the scalability of our P2P streaming
system in terms of the number of queries. Figure 4 illus-
trates transitions of the average number of queries that a
peer receives during the simulation. As shown in Fig. 4,
the FL method can slightly reduce the number of queries

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10000 20000 30000 40000 50000 60000 70000 80000

A
m

ou
nt

 o
f Q

ue
rie

s

Time [sec]

Full flooding FL method

FLS method

SF Method
SR Method

Figure 4. Number of queries

compared with full flooding. This is because the average
number of relays in limited flooding, TTLH ′, is relatively
large in our simulation experiments, independent of block
retrieval method. Limited flooding restricts the number of
relays to reduce the overhead of searches. Since TTL is de-
termined in accordance with the previous search results, the
number of relays chosen for limited flooding immediately
after full flooding tends to remain large. The FL method
tries full flooding in the first round. Thus, the number of
queries cannot be effectively reduced with the FL method.
On the other hand, selective search can considerably reduce
the number of queries.

3.3. Evaluation of continuity of media play-out

First, we define the waiting time as the time between the
emission of the first query message for the media stream
and the beginning of reception of the first block. Through
simulation experiments, we observe that, independent of
method, the waiting time decreases as the popularity in-
creases, and, independent of popularity, all media streams
successfully found can be played out within 3.5 sec.

Figures 5(a) and 5(b) illustrate the completeness with
95 % confidence interval of each media stream. We de-
fine the completeness as the ratio of the number of retrieved
blocks in time to the number of blocks in a media stream.
As shown in Figs. 5(a) and 5(b), independent of method,
media streams from 0 to 9 are played out almost continu-
ously from the beginning to the end. On the other hand, as
the media popularity decreases, the completeness also dete-
riorates. Especially in the FLS methods, where query mes-
sages are directly sent to a set of peers that are expected to
have desired blocks, the completeness is lower than that of
the other methods by 0.3 at most. In our experiments, most
of the blocks that cannot be retrieved in time are blocks that
have already been replaced by blocks of other more popular
streams. Since the selective search inquires of the less num-
ber of peers cached blocks than that of the other two meth-
ods, it is difficult to follow the changes in cached blocks in

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

C
om

pl
et

en
es

s

Media

Full flooding SF method
FL method SF method

FLS method SF method

(a) SF method

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

C
om

pl
et

en
es

s

Media

Full flooding SR method
FL method SR method

FLS method SR method

(b) SR method

Figure 5. Completeness

the network. Comparing Figs. 5(a) and 5(b), we find that
there is little difference between SF and SR. The reasons
are that the remaining time is not used effectively and unex-
pected cache miss hardly occurs in our experiments.

4. Conclusions

In this paper, we proposed two scalable search methods
and two algorithms for block retrieval inscalable and con-
tinuous media streaming on P2P networks. Through sev-
eral simulation experiments, we have shown that the FLS
method can provide users with continuous media play-out
without introducing extra load on the system.

Several issues still remain to be solved. It was shown that
the completeness of unpopular media streams is not high
enough. We are now considering an effective cache replace-
ment algorithm that increases the possibility that blocks of
unpopular media streams can be found. One candidate is to
take into account demand/supply ratio that can be estimated
from messages received and relayed. To buffer some of ini-
tial blocks and defer the media play-out also contribute to
the completeness. We should further consider the trade-off
among several QoS requirements such as the completeness,
the continuity, and the low-latency of media play-out. For
example, at the sacrifice of the continuity, the completeness
can be improved. The search mechanism can devote much
time to finding blocks by being tolerant with freezes and
deferring media play-out. Furthermore, we should eval-
uate proposed methods in more realistic situations where
network conditions dynamically change toward the imple-
mentation.

Acknowledgement

This research was supported in part by “The 21st Cen-
tury Center of Excellence Program” and Special Coordina-

tion Funds for promoting Science and Technology of the
Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan, and Telecommunication Advancement Or-
ganization of Japan.

References

[1] AllCast. available athttp://www.allcast.com.
[2] vTrails. available athttp://www.vtrails.com.
[3] Share Cast. available athttp://www.scast.tv.
[4] D. A. Tran, K. A. Hua, and T. T. Do, “Zigzag: An efficient

peer-to-peer scheme for media streaming,” inProceedings
of IEEE INFOCOM2003, (San Francisco), Mar. 2003.

[5] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava,
“On peer-to-peer media streaming,” inProceedings of
ICDCS2002, vol. 1, (Vienna), pp. 363–371, July 2002.

[6] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient
peer-to-peer streaming,”Microsoft Research Technical Re-
port MSR-TR-2003-11, Mar. 2003.

[7] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy
caching of multimedia streams,” inProceedings of the 10th
International WWW Conference, pp. 36–44, 2001.

[8] J. Shudong, B. Azer, and I. Arun, “Accelerating inter-
net streaming media delivery using network-aware partial
caching,” Technical Report BUCS-TR-2001-023, October
2001.

[9] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy
cache allocation for efficient streaming media distribution,”
in Proceedings of IEEE INFOCOM 2002, (New York), June
2002.

[10] W. Jeon and K. Nahrstedt, “Peer-to-peer multimedia stream-
ing and caching service,” inProceedings of ICME2002,
(Lausanne), Aug. 2002.

[11] B. M. Waxman, “Routing of multipoint connections,”IEEE
Journal on Selected Areas in Communications, vol. 6,
pp. 1617–1622, Dec. 1988.

