
Active Load Distribution Mechanism for P2P Application

Jiangang Shi Naoki Wakamiya Masayuki Murata Hideo Miyahara
Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
{shi,wakamiya,murata,miyahara}@ist.osaka-u.ac.jp

Abstract
The peer discovery and contents location usually consume
much resource in most of P2P applications. We therefore
propose a framework constructed on active network tech-
nology to deal with the problem in this study. Active nodes
at network layer are able to monitor and analyze P2P traf-
fics which coincide with the prescribed filtering conditions.
Then, an active node decides whether it is necessary to con-
duct some user defined services to improve QoS of P2P net-
work. Two examples of application of this framework are
further introduced. One is “Active Load-Balancing for P2P
Directory Servers”. When an active node considers a direc-
tory server is the bottleneck, it tries to redirect client peers
to other directory servers. The other is “Active Transparent
P2P Caching”, in which active nodes answer query requests
instead of actual P2P directory servers. We implemented
the latter and showed that our proposal was effective to
distribute load on P2P network depending on predefined
conditions. With the framework proposed here, ones can
easily operate desired services in P2P network with much
of flexibility.

1 Introduction
The attraction of peer-to-peer (P2P) is that users, called
peers in P2P applications, can exchange information di-
rectly between themselves, without mediation of servers.
As a result of direct communications among peers, we can
avoid the concentration of load on some specific point of a
network. The effectiveness and usefulness of P2P applica-
tions largely depend on how each peer discovers other peers
and how it locates the desired resources in a P2P network.

Several solutions have been proposed to deal with the
problem, such as “Centralized Directory” [1] as in Nap-
ster, “Decentralized Directory” as in KaZaA [2] and JXTA
search [3], “Query Flooding” as in Gnutella, and “Dis-
tributed Hash Table (DHT)” based mechanisms as in Chord
[4]. They are helpful for a peer to find neighbors and lo-
cate resources, but they still rely on some centralized nodes.
For example, Napster or KaZaA need directory servers to
maintain directories of contents shared by all of client peers
connecting to directory servers. Even in Gnutella, it still
needs a boot-strapping node to introduce new peers. In
order to place those centralized nodes dynamically to sat-
isfy the practical situation, some complex algorithms are
needed. In a cluster-based P2P network [5], at least one

leader peer is selected among peers in every cluster. When
the leader leaves off, a new leader peer is appropriately se-
lected. Such algorithms rely heavily on mutual trust and
often involve much communications among peers. Thus, it
consumes much network resource and takes a long time to
obtain desirable results.

This paper presents a framework based on Active Net-
work [6, 7] to dynamically distribute load on P2P servers
over an active network in a transparent way. Our frame-
work does not need overlying P2P applications to be aware
of underlying active networks. Furthermore, there is no
need for active nodes to communicate with each other to
attain the load-balancing. Each active node conjectures the
current load state of a P2P network from locally available
and passively gathered information. It monitors and ana-
lyzes P2P traffic which coincides with the prescribed con-
ditions. Then, it decides whether it should take some ac-
tions to contribute to the load-balancing on a P2P network,
without any message exchanging.

The rest of paper is organized as follows. First in sec-
tion 2, Active Network is introduced briefly. Then in sec-
tion 3, the framework we proposed is described in detail.
Two sample applications based on the proposed framework
are given at section 4 and one implementation is shown in
section 5. Finally section 6 summarizes the paper and de-
scribes some further research works.

2 Active Network Technology
Active Network technology provides a programmable in-
frastructure for a variety of network applications [6]. There
is not only one way to implement active network, but there
are still common features between those different architec-
tures. Active nodes, which constitute active networks, are
programmable and can be dynamically tailored to network
administrator’s, application’s, and even user’s demands.
Basically they process packets at network layer, but they
can apply application-specific manipulation to packet pay-
load if needed. Sample applications of active network tech-
nologies include DDoS defense mechanisms [8], multime-
dia broadcast [9], and so on.

Active nodes have three major components: the Node
Operating System (NodeOS), which manages the node re-
sources such as link bandwidth, CPU cycles, and storage;
the Execution Environments (EEs), each one of which im-
plements a virtual machine that interprets active packets



M
an

ag
er

State Database
Server

Packet filter

IP Traffic

Packet Processor

P2P Service
Active

P2P Packet Analyzer

Packet Capturer

Figure 1: Modules in Active Router

that arrive at the node; and the Active Applications (AAs),
which program the virtual machine on an EE to provide an
end-to-end service. End systems that host end-user appli-
cations are also considered as active nodes having the same
structure [9].

Mainly, there are two mechanisms to load a program
onto an active node. Capsule model uses ANEP (Active
Network Encapsulation Protocol) protocol [10] to encapsu-
late a program into IP packets and marks those IP packets
with a special IP Protocol ID. When such packet arrives at
an active node, the node interprets and applies a program
to the packet. Another is Programmable switchlet model.
It uses an additional communication channel to retrieve a
program from a deposit or a neighboring active node and
packets carry data and parameters for computations.

The proposal in this research needs to be implemented
on Programmable switchlet-based active network, because
usually an application in the P2P world is too large to fit in
a single packet.

3 Active Load Distribution Mechanism
Active nodes in our framework provide conventional rout-
ing functions to those packets that are irrelevant to the ac-
tive load distribution. Thus, we call them ”active routers”
in the rest of the paper. A router constituting an IP network
can be either of a conventional router, an active node, and
an active router. Hosts that participate in P2P applications
organize a P2P network.

As Fig. 1 illustrates, an active router consists of six mod-
ules. “Packet Processor” and “Packet Capturer” belong
to NodeOS functions. “P2P Packet Analyzer”, “Server
State Database”, and “Manager” are active applications.
EE (Execution Environment) provides those active applica-
tions with the interfaces to access “Packet Processor” and
“Packet Capturer” in NodeOS. “Active P2P Service” is also
an active application. It is a dynamic module loaded from
this active node or downloaded from remote active nodes.
An active router works in the following way.

First, a packet processor forwards incoming packets to
desired output ports. A packet capturer monitors all pack-
ets passing through the packet processor and copies some
out of them to a P2P packet analyzer. The packet filter-
ing policy depends on a P2P application. The easiest way

is to use well-known TCP port. For example, “6699” and
“8888” are widely used in OpenNap server and “9700” are
in JXTA application. We also need a self-study algorithm
to deal with other cases. Next, a P2P packet analyzer in-
vestigates P2P packets and obtains information such as IP
address, port number, packet type, and P2P message type.
That information is stored in a server state database.

Then, a manager identifies a bottleneck peer, to which
load concentrates on. Since there is no any direct way to
get information of load state on CPU, memory, bandwidth
on remote peers, an active router estimates the current load
state from the server state database which is constructed in
a passive way. Metrics of load include the response time,
the number of search results, and the query rate [11]. Al-
though they are not precise, they are practical. For exam-
ple, an active router can take the response time of a server
to measure the load. If it finds that response time becomes
much longer than before or it exceeds the pre-determined
threshold, it considers the server is now a bottleneck.

When the manager identifies a bottleneck based on pre-
defined policies, it introduces a corresponding active P2P
service to the active router. An active P2P service pro-
cesses packets in a transparent way. That is, client peers
and servers do not need to know the existence of active P2P
services on their communication channels. No static or dy-
namic configuration is required on client peers and servers
in order to benefit from active P2P services. In some cases,
packets are answered by an active P2P service and are not
sent to a server, but an overlying P2P application does not
notice such interception.

When the manager considers that a server is no longer
a bottleneck or underutilized, it stops the active P2P ser-
vice. The decision is based on some predetermined policy,
such as a threshold-based one. Since the active P2P service
communicates with a server instead of client peers, an ac-
tive router can obtain load state information of the server
after introducing the active P2P service.

4 Two Sample Applications
In this section, we briefly introduce two sample applica-
tions that benefit from our framework.

4.1 Active Load-Balancing for P2P Directory Servers
A directory server that maintains a list of resources and
their location information in P2P applications is a single
point of failure and a performance bottleneck. By intro-
ducing redundant servers or “Decentralized Directory”, the
server load can be distributed, but not evenly. OpenNap
[12] uses a “MetaServer” as a portal to direct peers to dif-
ferent OpenNap servers, but it is statically arranged and
peers must be configured to use a specific portal.

In this proposal, active routers act as brokers to distribute
load among several servers. Using our framework, client
peers do not need to know which server it is actually con-
nected with. Furthermore, load distribution is performed in
accordance with server load states. First, an active router
captures and analyzes those P2P traffic passing though it



to find servers and estimate their loads. The response time
can be chosen as a parameter to measure the quality of ser-
vices of a directory server in this case. If the response time
at a server becomes longer than before, an active router
forwards queries to another unloaded server. A manager
activates a load-balancing service and redirects P2P pack-
ets to the service by, for example, rewriting the destination
address of incoming packets. The load-balancing service
decides a server to which packets are forwarded. For re-
sponse messages to reach client peers through the active
router, the source address is also changed to IP address of
the load-balancing service.

4.2 Active Transparent P2P Caching
Contents popularity in P2P networks follows a Zipf-like
distribution [13], which implies that caching in P2P net-
work is still a very efficient way to avoid redundant traffic
as being proved its power at the web-based Internet. How-
ever, to take advantage of caching, cache servers should
be carefully placed in a P2P network taking into account
the distribution of peers, resources, and their popularity.
P2P traffic can be categorized into two: protocol messages
such as queries, responses, and other commands messages,
and object data themselves such as music and video files.
Therefore, caching can also divided into two classes: cache
of P2P protocol messages and cache of contents.

In this example, an active router first monitors P2P traf-
fic directed to a peer that holds resources or a server that
answers query messages. When it considers that the load
on the peer or the server is too high based on, for example,
the number of messages, it initiates a virtual cache proxy
as an active P2P service. Messages originating from the
peer or the server are investigated and their contents are
deposited in the cache. Then, the active router redirects all
incoming messages for the peer or the server to the local
virtual cache, so that the cache can answer requests in a
transparent way.

In the following section, we implemented this type of
application as an example.

5 Implementation of Active OpenNap Cache
Proxy

In this section, we implemented an application to inves-
tigate the practicality and the effectiveness of our frame-
work.

5.1 Model
OpenNap [12] [14] follows Napster’s protocol. There is
a directory server for a cluster of peers. A peer connects
to a server and notifies it with peer information, including
user name, link type, incoming port number, and a list of
files that the peer shares with the others. Based on regis-
tered information, the server maintains a user information
database. When a peer searches a file, it sends a query mes-
sage to the server with parameters, such as keyword and
the maximum number of results that it desires. Receiving
a query, the server examines the user information database.

IP Layer
IP Stream

NetFilter

Pcap

M
an

ag
er

Server

DNAT policy

Packet Filter
Analyzer

State Database

Socket/TCP

Cache Proxy
Virtual

Figure 2: Active Router on Linux

If there are one or more records that match the query, the
server returns those records to the requesting peer as a re-
sponse message. Communications between peer and server
are “keep-alive TCP session” based. When the connection
is broken out by peer or because of some network prob-
lems, a server releases resource used by the peer by delet-
ing the peer’s record in its database.

Active OpenNap cache proxy is a proxy server that an-
swers query messages in behalf of OpenNap servers. In
this implementation, an active router monitors P2P traffic
belonging to OpenNap sessions. When it considers that a
server is overloaded, it activates a cache proxy as an active
application to undertake some portion of query traffic. The
cache proxy maintains the local cache of directory infor-
mation and answers queries based on the cache.

Figure 2 illustrates the architecture of an active router in
our implementation. NetFilter in Linux 2.4 kernel was cho-
sen to realize the function of the packet processor module
in Fig.1. Usually, it only passes incoming packets to an out-
put network interface based on routing policy. Those pack-
ets that need to be answered by the active router are redi-
rected to the locally initiated virtual cache proxy based on
a DNAT (Destination Network Address Translators) pol-
icy [15]. “PCAP” [16] and its Java’s wrapper “jpcap” [17]
were used as a packet capturer. A thread of “Analyzer”
in Fig. 2 acts as P2P packet analyzer and it manipulates
“Server State Database”. The database consists of two
types of tables. Server list is a list of IP address of servers
that an active router finds. Each server in a server list is
related to a “Query-Response Timestamp Table”. Each en-
try in a query-response timestamp table consists of the se-
quence number of the query, the timestamp of the query,
and the timestamp of the first packet of the corresponding
response message. “Manager” is in charge of controlling
all of the other modules.

Virtual cache proxy is loaded as an active P2P service
module illustrated in Fig. 1. Basically, a virtual cache
proxy is built on a basic OpenNap server. It provides di-
rectory service to all of its client peers transparently. At the
same time, it is a general client peer to a remoter OpenNap
server. It queries the remote OpenNap server instead of
client peer redirected to this cache proxy. A virtual cache
proxy consists of four modules as illustrated in Fig. 3. Lo-
cal searcher receives queries from client peers through a
TCP socket and examines the local directory database. The



Local Directory
Database

T
C

P 
So

ck
et Local Searcher Query

Forwarder

Cache

T
C

P 
So

ck
et

Figure 3: Modules in Virtual Cache Proxy

database is updated when it receives registration messages
from client peers. The database consists of user name, link
type, and a list of files to share. Request forwarder is used
to forward query messages to a remote OpenNap server
through a TCP socket. Cache is used to store those re-
sponse messages received from the remote server. They
are further explained in detail in the next section.

5.2 Mechanisms
To evaluate the load state of an OpenNap server, we em-
ployed query rate and response time as metrics. Query
messages and corresponding response messages are cap-
tured and examined at an active router. Each message of
OpenNap protocol [12] to or from a server are in the form
of < length>< type>< data>, where< length> and
< type> are 2 bytes-length each.< length> specifies the
length in bytes of the< data> portion of the message.
< type> specifies the command type. For example, “200”
means a query message, “201” is a response search result,
and “202” is a notification of the end of a series of “201”
messages from server.

First, PCAP captures those packets matching the filtering
policy “protocol is TCP and destination port is 8888”, in
which “8888” is the port number in our OpenNap server.

Next, an analyzer thread distinguishes message types
based on< type> in a packet. If it is “200”, then it is
a query message sent from a client peer and the destination
IP is the address of a server. If< type> is “201” or “202”,
the message is a response. Therefore, the destination IP of
the packet indicates the address of the peer that sent an in-
quiry to the server, whose address appears as the source IP
of the packet. If the server IP is new to the server list, a
new entry and a corresponding query-response timestamp
table are created. If the message is a query, its timestamp
is stored in the table with a new sequence number. The
sequence number is initialized to one when a new table is
created for a new server.

When the message is a response, the analyzer module in-
vestigates the entry of the corresponding query message in
the query-response timestamp table. If the response times-
tamp field is zero, i.e., the initial value, it is filled with the
timestamp of the packet. Otherwise, the packet is ignored.
In OpenNap query-response communications, it is guaran-
teed that, for a peer, a series of response messages that a
server generates and sends follows that of query messages
that it received. Thus, we can easily identify the query mes-
sage that the response message corresponds to.

Then, the manager investigates the server state database.
If a server satisfies some predefined conditions, it is re-
garded as a bottleneck or over-loaded. Two schemes were
supported to make decisions.

1. Response-Time Metric

Response timeRT of every query is calculated with
the following function:

RT = Tf r −Tq , (1)

in which Tq is the timestamp of a query packet, and
Tf r is the timestamp of the first response packet. Aver-
age ofRT, asRTav, is periodically calculated for each
server in the server table. Then it is compared with
the predefined high thresholdRTthH. If RTav exceeds
RTthH, a virtual cache server for the server will be in-
voked in the next step.

2. Query-Rate Metric

The manager counts the number of query packets for
each of servers. Every time the count reaches the pre-
determined thresholdN, it is initialized to zero and the
query rate of the server is derived. The query rate is
calculated as,

QR= N/(Tf q−Tlq) , (2)

whereTf q is the timestamp of the first query packet
amongN andTlq is the timestamp of theN-th query
packet. Average query rateQRavg is computed period-
ically and compared with high thresholdQRthH as in
the response-time metric.

Finally, a virtual cache server is loaded for the server by
manager as a JAVA thread. It is built on an OpenNap server
program, but it has caching and forwarding functions addi-
tionally. For a newly activated virtual cache server to deal
with query messages sent to the original server, the man-
ager introduces a new DNAT rule into Netfilter. IPTables
[15] are used as an interface to insert a DNAT rule. DNAT
can direct client peers to a different server peer transpar-
ently. However, for some keep-alive session-based appli-
cations, it will destroy the on-going connections. In our
experiments, peers redirected to the virtual cache server
first disconnect their connections and re-establish them as
shown later.

When a virtual cache server receives a queryQ, it pro-
cesses the query in the following steps.Q consists of sev-
eral search parameters such askey, Rmax, linktype, and
f ilesize. Here we only considerkey, i.e., keyword, and
Rmax, i.e., the maximum number of results desired.

Step 1: The virtual cache proxy first examines the lo-
cal directory database using the given keywords.
If the number of files that match the keywords
is non-zero, their filenames and properties are
recorded in a response message.



Step 2: If the number of files locally found cannot satisfy
the maximum number of results desiredRmax,
the virtual cache proxy next examines the cache.
Then, results are merged together, it is fit toRmax,
and finally it is sent to a requesting peer as a re-
sponse message.

Step 3: Virtual cache proxy maintains a list of keywords
that it has searched. The keywords are then com-
pared with the history list. If they are new, the
queryQ is forwarded to the server that it is orig-
inally directed to. However, the requesting peer
does not wait for the response from the original
server to avoid the extra delay. As a result, peers
receive a small result until the virtual cache proxy
collects sufficient amount of information in its lo-
cal database and cache. It will be shown in sec-
tion 5.3. When the virtual cache proxy receives a
response message from the server, it investigates
the results. If there are one or more search results,
the virtual cache proxy deposits them in its local
cache for the further use.

A TTL-based mechanism was introduced to keep the
contents of the cache up-to-date. Since peers might leave
from a P2P network without any notification, the directory
database cached at an active router contains meaningless
records. The instant when a new record is deposited in the
cache is also kept in the cache. For each item of search re-
sult from cache, the local searcher will compares its times-
tamps with the current time. If more thanT, a predefined
threshold, has passed, that item of result will be ignored
and the corresponding record is removed from the cache.

5.3 Experiments
We conducted experiments on the system illustrated in
Fig. 4 and verified the practicality and effectiveness of
our framework from viewpoints of load-balancing and the
quality of service. When the number of queries that a server
receives decreases, we consider that load is moved to the
active router. The quality of service in OpenNap applica-
tion is evaluated in terms of the number of files that a re-
sponse message contains and the response time that a peer
experiences.

The network consists of two sub-networks that are con-
nected with each other by an active router. Network A has
one OpenNap server and seven clients, Peer 1 - 7. Net-
work B has six clients, Peer 8 - 13. Each peer sent query
messages to server once every two seconds. A server has
information of 120 files that the P2P network has. We pre-
pare a keyword list for those files. The number of files that
a keyword matches follows the Zipf-like distribution. In
our experiments, we first defined a list of keywords. Then,
120 file names were generated based on those keywords.
As a result, each of six major keywords matched twenty
files, each of ten matched twelve, each of twenty matched
six, each of thirty matched four, and finally each of sixty
matched two. Then, files were randomly divided into two

OpenNap Server
Virtual Cache Server

Link

HUBHUB

Active Router

Peer 1 Peer2 Peer 3

Peer 4 Peer 5 Peer 6

Peer 8 Peer 9 Peer 10

Peer 11 Peer 12 Peer 13

Network A: 10.10.10.0/24 Network B: 192.168.200.0/24

DNAT

Peer 7

Figure 4: Experimental Environment

groups. Peers in network A shared files in one group and
peers in network B did in the other group.

The query rate was used as a metric of load state. We em-
pirically employedQRthH = 10.0 in the experiments, and
we took the maximum search resultsRmax= 100 in each
query request as default. Before 160 seconds, the active
router behaves as a conventional router. It becomes active
at 160 seconds.

Figure 5 depicts the variations of the number of queries
that the OpenNap server and the virtual cache server re-
ceived. At 170 seconds, the active router decided to initiate
a virtual cache proxy and introduced a new DNAT policy to
Netfilter. As a result, the OpenNap server received queries
only from peers in Network A and the cache proxy in the
active router. All peers in network B first lost connections
to the OpenNap server. At 220 seconds, they re-established
connections to the same OpenNap server, but actually their
connections were directed to the virtual cache proxy.

Figure 6 illustrates the variation in the number of files in
a response message. Although there are variations due to
keywords chosen, we observe that the quality of search re-
sults becomes insufficient after the load-balancing as we
mentioned in section 5.2. However, as time passes, the
virtual cache proxy retrieved information from the original
server through forwarding query messages, and the quality
of service was improved.

Peers in network B suffered from the longer response
time after the redirection, as Fig. 7 illustrates. One of rea-
sons is that only one thread managed a cache table for
all queries that the active router receives. In addition, to
avoid the competition and inconsistency, the cache table
was locked when a new record was deposited in. It dis-
turbed local searcher in investigating the cache. We can
expect the response time can be reduced when programs
are fully optimized, and more powerful equipment is em-
ployed. We also need to consider further efficient architec-
ture in the next stage of the proof of concept.

6 Conclusion and Future Work
We proposed a framework to distribute load on dynami-
cally changing P2P network in an active way. A sample
application has been implemented with OpenNap protocol
at Linux platform. The results of experiments showed that



0

2

4

6

8

10

12

14

16

100 150 200 250 300

Q
ue

ry
 R

at
e 

[q
ue

rie
s/

se
c]

Time [seconds]

Original OpenNap Server
Virtual Cache Proxy at Active Router

Figure 5: Variation of query rates at
original OpenNap server and virtual
cache proxy

0

5

10

15

20

25

100 150 200 250 300

N
um

be
r o

f F
ile

s 
[it

em
s]

Time [seconds]

Peer 8
Peer 9

Figure 6: Variation in the number of
files in response messages on network
B

0
200
400
600
800

1000
1200
1400
1600
1800
2000

100 150 200 250 300

R
es

po
ns

e 
Ti

m
e 

[m
ill

is
ec

on
ds

]

Time [seconds]

Peer 8
Peer 9

Figure 7: Variation of the response
time on network B

our framework can successfully distribute the load on the
server in a transparent way. However, we need to further
consider the efficient implementation that attains the load
distribution while keeping the level of the quality of ser-
vice. Furthermore, we will consider other types of appli-
cations of our framework, and investigate methods to ef-
ficiently and effectively measure the performance of P2P
network.

Acknowledgment
This work was partly supported by the Special Coordina-
tion Funds for Promoting Science and Technology of the
Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan.

References
[1] J. F. Kurose and K. W. Ross,Computer networking

(Second Edition). Addison-Wesley, 2002.

[2] “KaZaA.” available at http://www.kazaa.
com/ .

[3] “JXTA Search Project.” available athttp://
search.jxta.org/ .

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and
H. Balakrishnan, “A scalable peer-to-peer lookup ser-
vice for Internet applications,” inProceedings ACM
SIGCOMM, 2001.

[5] B. Krishnamurthy, J. Wang and Y. Xie, “Early mea-
surements of a cluster-based architecture for P2P
systems,” inACM SIGCOMM Internet Measurement
Workshop, Nov. 2001.

[6] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wether-
all and G. Minden, “A survey of active network re-
search,” IEEE Communications Magazine, vol. 35,
pp. 80–86, Jan. 1997.

[7] D. Wetherall, U. Legedza and J. Guttag, “Intoducing
new Internet services: why and how,”IEEE NET-
WORK Magazine Special Issue on Active and Pro-
grammable Networks, July 1998.

[8] J. Ioannidis and S. M. Bellovin, “Implementing push-
back: router-based defense against DDoS attacks,” in
Proceedings of Network and Distributed System Se-
curity Symposium, 1997.

[9] H. Akamine, N. Wakamiya and H. Miyahara, “Het-
erogeneous video multicast in an active network,”IE-
ICE Transactions on Communications, vol. E85-B,
pp. 284–292, Jan. 2002.

[10] S. Alexander, B. Braden, C. Gunter, A. Jack-
son, A. Keromytis, G. Minden and D. Wetherall,
“Active network encapsulation protocol (ANEP),”
1997. available athttp://www.cis.upenn.
edu/?switchware/ANEP/ .

[11] B. Yang and H. Garcia-Molina, “Efficient search in
peer-to-peer networks,” inProceedings of the 22nd
IEEE International Conference on Distributed Com-
puting Systems (ICDCS), 2002.

[12] “OpenNap.” available athttp://opennap.
sourceforge.net/ .

[13] R. Gunther, L. Levitin, B. Shapiro and P. Wagner,
“Zipf’s law and the effect of ranking on probabil-
ity distributions,” International Journal of Theoreti-
cal Physics, vol. 35, pp. 395–417, 1996.

[14] “OpenNap-NG.” available at http:
//opennap-ng.sourceforge.net/ .

[15] “NetFilter.” available at http://www.
netfilter.org/ .

[16] “TCPDUMP/LIBPCAP.” available athttp://
www.tcpdump.org/ .

[17] “JPCAP.” available athttp://sourceforge.
net/projects/jpcap/ .


