
Master’s Thesis

Title

Search Load Distribution Mechanism for Active P2P Networks

アクティブP2Pネットワークにおける

検索負荷分散機構に関する研究

Supervisor

Prof. Hideo Miyahara

Author

Shi Jiangang

February 13, 2004

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Search Load Distribution Mechanism for Active P2P Networks

アクティブ P2Pネットワークにおける検索負荷分散機構に関する研究

Shi Jiangang

Abstract

Peer-to-Peer (P2P) applications have considerably attracted millions of people from Internet

researchers to end users, but there is still a long way for such applications to become advanced

Internet applications as World Wide Web. The greatest problems regarding P2P applications come

from complexity and inconvenience in peer discovery and content location. For example, even if

two peers are in the same subnetwork and through the same router to the Internet, they can not

be aware of each other without some complex mechanisms, such as a centralized directory server

or a bootstrapping node. They are bottlenecks and single points of failure as Web servers in the

Internet. Furthermore, since peers connect to and disconnect from a P2P logical network ran-

domly, the location of shared contents and network topologies are continuously changing. Thus,

current improvements for web applications, such as caching and CDNs, are not associated with

load distribution among those servers in P2P application because they are aimed at developing

static contents. If an underlying network is aware of the conditions and demands for overlying ap-

plications and provides application-oriented services, it is helpful to improve the QoS (Quality of

Service) of networked applications efficiently. For example, for P2P applications, a network can

efficiently distribute and balance load among peers by estimating application-level performance

from passively gathered packet-level information, with much flexibility and transparently.

In this study, we propose a framework constructed on active network technologies for dynamic

and transparent search load distribution for P2P applications. Active routers at a network layer

monitor and analyze P2P traffic passing through themselves, then decide whether it is necessary

1

to conduct some user-defined services to improve the QoS of P2P applications. One application

that benefits from active network technologies is “active load balancing for P2P directory servers”.

When an active router considers that a directory server is a bottleneck, it redirects client peers to

other directory servers. Another application is “active transparent P2P caching”, in which an active

router caches directory information and answers query requests on behalf of actual P2P directory

servers. We implemented the latter as an active OpenNap cache proxy and showed that our pro-

posal is effective in distributing load on a P2P network depending on predefined conditions. An

active router passively monitored and evaluated the load on an OpenNap server. Then, it initiated

a virtual cache server as an active service based on the predetermined condition. It could success-

fully reduce the load on the OpenNap server without deteriorating the QoS of P2P applications.

With the proposed framework, one can easily operate desired services in a P2P network with much

flexibility.

Keywords

load distribution, P2P, active network, active P2P, service deployment

2

Contents

1 Introduction 6

2 Active P2P Network 10

2.1 Peer-to-Peer Networks and Applications . 10

2.2 Active Network Technology . 14

2.3 Layered Network of P2P and Active Networks 17

3 Active Load Distribution for P2P Applications 20

3.1 Architecture of Active Routers . 20

3.2 Monitor, Measurement and Decision Mechanisms 20

3.3 Examples of Applications of Our Framework 22

3.4 Service Deployment and Management . 27

4 Implementation of Active OpenNap Cache Proxy 31

4.1 OpenNap protocol . 31

4.2 Architecture of Active OpenNap Cache Proxy 31

4.3 Mechanisms of Active OpenNap Cache Proxy 34

4.4 Experiment and Evaluation . 37

5 Conclusions 42

Acknowledgements 44

References 45

3

List of Figures

1 Active Node Architecture: Building Blocks . 16

2 Active P2P Network . 17

3 Modules in Active Router . 21

4 Active Load Balancing for P2P Directory Servers 24

5 Transparent Query Redirection . 25

6 Active Transparent P2P Caching . 26

7 Centralized Deployment, Configuration, and Management 29

8 MIB Tree of Active Node . 30

9 Architecture of Linux-Based Active Router . 32

10 Packet Flows in Active Router . 33

11 Server State Database . 34

12 Modules in Virtual Cache Proxy . 34

13 Experimental Environment . 37

14 Example of Keyword Generation . 38

15 Variation in Query Rate Monitored at Original OpenNap Server and Active Router 39

16 Variation in the Number of Files in Response Messages on Network B 40

17 Variation in Response Time on Network B . 41

4

List of Tables

1 Advantages and Disadvantages of P2P Architectures

. 13

5

1 Introduction

After Web technology was invented around 1990, the Internet has evolved with breathtaking speed.

Now, 14 years later, the Internet population has reached 682,419,5121 and still grows daily. In

view of network technology, the success of the Internet is based on a client-server model, espe-

cially Web servers. An Internet Content Provider (ICP) publishes its HTML contents on a central

Web server, and users try to retrieve contents from the server granted they know the server’s ad-

dress. However, for popular ICPs, e.g., Yahoo, they found it impossible to satisfy so many users

with one server in spite of deploying the most powerful system and buying more and more band-

width. To distribute load from a single server, new technologies such as load balancing, Web

caching and CDNs (Content Distribution Networks) had been developed. For example, by de-

ploying cache servers at some points near users and making them as proxies for a web server, the

load is distributed among servers [1]. Consequently, the original web server becomes liberated

from managing a considerable number of requests. In addition, since the load is also distributed

over networks, congestion caused by the concentration of traffic is avoided and users experience

better transmission performance. Such load distribution technologies have demonstrated that they

work very well. One obvious example is that Web servers seems to respond much quicker than

before, in spite of the fact that the number of contents and users had grown at a speed much higher

than the growth of hardware performance.

However, with the increase in the computing capability of user PCs and the development of ac-

cess networks, multimedia contents including video and audio streams have become widely used.

The data size of each content increases and it requires a large bandwidth near servers than text

and simple images. In addition, multimedia contents are so attractive that more and more peo-

ple have begun using the Internet for entertainment purpose. As a result, the current applications

based on the client-server architecture are now collapsing due to the lack of scalability between

the volume of contents and the number of users. By deploying proxy servers and distributing load

1Last updated on November 24, 2003 at http://www.internetworldstats.com/

6

among them, such scalability can be attained to some extent. However, they are still deployed and

located statically and cannot adopt the changes in demand and user distributions. If an ICP wants

to provide sufficient availability guarantees to clients anywhere in the Internet, it has to prepare a

considerable number of mirror servers, caches, and proxy servers.

The emergence of Napster, an MP3 file sharing system, followed by hundreds of peer-to-peer

(P2P) applications, remind us of the fact that a personal computer connected to the Internet can be

not only a client requesting contents from others, but also a server providing local objects to others.

When those personal computers are connected together and serve each other, the most powerful

service system can be constructed, which can provide almost unlimited computation ability and

storage space.

The advantage of P2P is that users, called peers in P2P applications, can exchange information,

contents, and objects directly among themselves, without mediation of central servers. A peer

does not need to deposit an object that it wants to offer in one or more servers beforehand. A peer

who needs the object directly requests the provider peer to provide the consumer peer with the

object. As a result of direct communications among peers, we can avoid the concentration of load

on some specific points of a network. However, a peer must know from whom it can obtain an

object needed. The effectiveness and usefulness of P2P applications largely depend on how each

peer discovers other peers and how it locates the desired objects in a dynamically changing P2P

network.

Several solutions have been proposed to deal with the problem, such as “Centralized Direc-

tory” [2] as in Napster, “Decentralized Directory” as in KaZaA [3] and JXTA search [4], “Query

Flooding” as in Gnutella, and “Distributed Hash Table (DHT)”-based mechanisms as in Chord

[5]. However, they still rely on some centralized nodes. For example, Napster maintains a di-

rectory of contents shared by all peers. It introduces advantages of a client-server architecture

such as convenience of management and control and guaranteed QoS for peers, but it also intro-

duces disadvantages of servers including bottlenecks and single points of failure. Mechanisms for

7

server load distribution have been proposed. For example, in [6], servers are chained together to

distribute search load in OpenNap P2P application. However, since most of them are configured

statically, they cannot adapt to a dynamically changing network environment. Pure P2P applica-

tions such as Gnutella, where there is no directory server, uses a “query flooding” mechanism, in

which P2P messages are relayed peer by peer. It succeeds in avoiding the bottlenecks of directory

servers with some self-organization protocols. Unfortunately, since those P2P protocols have no

knowledge of an underlying network layer, they often bring redundant P2P traffic into the network

or guide P2P traffic to congested network links, which consume much network resource and takes

a long time to obtain desirable results. In addition, they still need special purpose servers, called

bootstrapping nodes, to introduce new peers to a P2P network. In KaZaA, a kind of cluster-based

P2P networks [7] does not rely on any statically prepared servers. Instead, at least one leader peer

is selected among peers in every cluster to be the directory server. When the leader leaves off, a

new leader peer is appropriately selected. To place those centralized nodes dynamically to satisfy

a practical situation, some complex algorithms are needed. Such algorithms rely heavily on mu-

tual trust and often involve much communications among peers. Thus, it consumes much network

resource and takes a long time to obtain desirable results.

If an underlying network is aware of the conditions and demands of overlying applications

and provides application-oriented services, it is helpful to improve the QoS of networked applica-

tions efficiently. Active network technologies provide a programmable infrastructure for various

of network applications [8]. Active nodes or active routers, which constitute active networks, are

programmable and can be dynamically tailored to network administrator’s, application’s, and even

user’s demands. Basically they process packets at a network layer, but they can apply application-

specific manipulation to packet payload if needed. Sample applications of active network tech-

nologies include DDoS defense mechanisms [9] and multimedia broadcast [10].

In this thesis we present a framework based on active network technology to dynamically dis-

tribute load among servers or networks transparently. Our framework does not need overlying P2P

8

applications to be aware of underlying active networks. Furthermore, there is no need for active

nodes to communicate with each other to attain the load distribution. Each active node conjectures

the current load state of a P2P network from locally available and passively accumulated informa-

tion. It monitors and analyzes P2P traffic which coincides with the prescribed conditions. Then,

it decides whether it should take some actions to contribute to load distribution on a P2P network,

without any message exchange.

The rest of the theis is organized as follows. In section 2, an active P2P network is introduced

briefly, which consists of a layered network with P2P logical networks overlying active networks

operating on a network layer. In section 3, the framework of active load distribution for P2P

applications is proposed and described in detail, including a brief introduction of an active node

architecture, descriptions of two example of applications, and a scenario of service deployment

and management. In section 4, to verify and show the practicality and usefulness of our proposed

framework, one application is chosen and implemented on an actual system. We also discuss

several experiments conducted. Finally in section 5 a summary is given and some future research

studies are described.

9

2 Active P2P Network

Not only P2P applications, but all networked applications benefit from technologies that introduce

some kind of intelligence into networks. If a network can offer application-dependent and tailored

behaviors towards packets, including prioritized scheduling and intelligent routing, a higher QoS

can be provided to users of overlying networked applications. In this study, we consider a layered

network with P2P logical networks overlying active networks operating on a network layer. We

call it an “active P2P network”. In an active P2P network, P2P applications can attain better QoS,

in terms of, for example, response time, the number of responses, and the availability of searching

results, with the help of active network technologies in a transparent way. P2P applications do not

need to be aware of an underlying active network. There is no need to modify P2P applications to

benefit from an active network.

In the following subsections, P2P and active network technologies will be explained separately.

Then, the concept of an active P2P network, a type of layered network of P2P and active networks

will be introduced.

2.1 Peer-to-Peer Networks and Applications

Peer-to-peer (P2P) is one of the networked applications that users, called peers, can retrieve objects

directly from each other without mediation of servers. Peers organize a logical network with

logical links that correspond to the relationship among two peers that are in a neighborhood. In

the view of client-server model, each peer is a server, a client, and a node at the same time. For

example, when a peer permits other peers to download an MP3 file from its hard disk, the peer

plays the role of a server. The peer also obtains files from other peers as a client. When messages

exchanged among peers are relayed on logical P2P networks, a peer behaves as a node.

For a peer to obtain an object, it must first find a peer that can provide it with the desired

object. Thus, we need mechanisms for a peer to discover other peers and determine which peers

have the desired objects. Current P2P applications, most of which are P2P file sharing systems,

10

have different mechanisms for dealing with such peer discovery and content location problems.

Here we employ the way in [2] to classify P2P applications into three basic architectures.

1. Centralized Directory

In this architecture, a central server provides a directory service for the all of peers. When

a peer launches a P2P file-sharing application, the application first summarizes a list of

objects in a local hard disk. Then it registers the list with a peer ID, IP address, and other

type of information into a well-known central server, to which it establishes a permanent

TCP connection. The server maintains a directory database that maps an object name to a

set of IP addresses of provider peers. The directory database is kept up-to-date by receiving

transaction messages. When a peer adds or removes an object, it informs the directory server

of such changes. When a peer leaves the P2P network, the server detects the disappearance

through the termination of the TCP connection.

To find an object, a peer sends a query message including some keywords and the maxi-

mum number of results it expects to the directory server. The server examines its directory

database to find records of the object that contains the specified keywords. If there are, the

server generates a list of records that match the query. On receiving the list, the peer selects

a peer from which it directly retrieves objects.

Napster, OpenNap, and instant messaging applications such as ICQ, Yahoo messenger, and

MSN messages are typical examples of this class.

2. Decentralized Directory

In this architecture, peers are clustered into groups. The entire logical P2P network consists

of groups. A newly launched peer first inquires from a group whether it can join a bootstrap-

ping node. Then, it becomes a member of the specified group. In a group, there is a leader

that plays the role of a directory server of the group. It maintains information of the objects

deposited by peers in the group. Thus, the mechanisms including registration, query, object

11

retrieve in a group are similar to the “Centralized Directory” architecture. Additionally, to

achieve more results, one leader peer can forward queries from its client peers to another

leader peer. Of course, some mechanisms are needed to decide who becomes the leader of

a group. A leader peer is chosen statically among peers in a group, or dynamically by an

algorithm taking peer’s performance into account.

Morpheus, KaZaA, eDonkey2000, and WinMX are typical applications of this class.

3. Query Flooding

In this architecture, all peers are equal. Since there is no directory server, this architecture

is also called “pure P2P” while the others are called “hybrid P2P”. There is no hierarchi-

cal structure in a P2P network. To join a P2P network, a peer first sends a request to a

bootstrapping node to provide it with a list of IP addresses of peers that have already partici-

pated in the network. Then the new peer advertises its address to those peers. Consequently,

a neighborhood is built among them.

To find an object, a peer conducts “query flooding”. A peer begins flooding all its neigh-

boring peers with query messages. To restrict the range in which the message propagates,

a TTL (Time To Live) is appropriately set. Each of the neighboring peers first examines

its local disk to determine whether it has the requested object. If it does, the peer sends

back a response message to the requesting peer through an inverse way that a corresponding

request message traversed. Before further relaying the query message, it decreases TTL. If

TTL is larger than zero, the peer sends the message to all of its neighboring peers except for

one from which the message originated.

Gnutella and Freenet are typical applications using the query flooding mechanism.

Table 1 summarizes some advantages and disadvantages of the above three typical P2P archi-

tectures. We can see the fact that all of today’s P2P architectures require some always-up nodes.

Independent of architectures, there are still bottlenecks and single points of failure.

12

Table 1: Advantages and Disadvantages of P2P Architectures

P2P architectures Advantages Disadvantages

Centralized

directory

1. A peer can easily locate an object by

sending a query to a directory server.

2. It is easy to manage and maintain

the directory.

1. A directory server is a single point

of failure.

2. A directory server is a performance

bottleneck.

3. The architecture lacks scalability.

Decentralized

directory

1. The load of directory service is dis-

tributed.

2. Failure of a directory server only

affects a group of peers.

1. A complex algorithm and mecha-

nism are necessary to construct a hier-

archical network.

2. Distributed directory servers are

single points of failure of their groups

and bottlenecks.

3. A bootstrapping node is necessary

and is a single point of failure.

Query

flooding

1. All peers are equal.

2. No server is needed for searching.

1. A search involves much communi-

cation and traffic.

2. A bootstrapping node is necessary

and is a single point of failure.

3. A complex protocol is needed to

maintain a logical P2P network.

13

2.2 Active Network Technology

An active network (AN) is a network of dynamically and flexibly configurable intelligent nodes,

called active nodes. Active nodes are programmable and can be dynamically tailored to network

administrator’s, application’s, and even user’s demands. Basically they process packets at network

layer, but they can apply application-specific manipulation to packet payload if necessary.

There are three approaches to building an active network, a discrete approach, an integrated ap-

proach, and their combination [8, 11]. The first approach is the use of “Programmable switches”[8].

This approach is also called “out-of-band extensions” [12]. It separates the mechanism for inject-

ing programs into a “programmable” node from the actual processing of packets as they flow

through a node. A program is sent to a node as they would to a host. When a packet arrives at the

node, the corresponding program is selected based on some header information and then executed.

If a new version of the program or if a different type of processing is necessary, a new program or

service can be deployed at this node. Most importantly, it usually occurs automatically.

The separation of program execution and loading is valuable when it is necessary for program

loading to be carefully controlled or when individual programs are relatively large. A program

consists of modules. Modules cooperate with each other through interfaces. Such modulariza-

tion facilitates service deployment. An active node maintains some modules for common and

primitive functions and dynamically retrieves a missing module for a special purpose function on

demand. However, even though it is convenient to introduce new services at network layer with

such programmable switches compared with conventional methods, it is not sufficiently flexible

yet. Imagine the following scenario: a customer buys one hour of reservation of high guarantee of

network QoS from an ISP for an Internet video conference. In this active network approach, the

ISP first composes a program or a policy for prioritized packet scheduling. Then, it distributes and

deploys the program into the appropriately chosen active nodes. The program distinguishes those

packets belonging to the conference and gives them a favorable service. One hour later, programs

in active nodes are stopped.

14

The second, an integrated approach, is “Capsules”. This approach is also called “in-band ac-

tive packets” [12], in which programs are integrate into every packet. This means that a packet,

called capsule, carries a program by itself. When a capsule arrives at a node, a program contained

in the capsule is loaded by a code loading mechanism. Then, the node applies the program to

the capsule. This approach can supply packet-specific computations, which is more flexible and

dynamic than application or session-related computation by the discrete approach. For example,

an active packet contains a small program for dynamic and conditional packet routing depending

on network conditions. Every time it arrives on an active node, the program is executed to find a

preferable path for the next hop. Despite the limitation in the size of program that can be embed-

ded in an active packet, the integrate approach provides a highly dynamic and flexible deployment

of active services. For the video conferencing example, on receiving a reservation, the ISP encap-

sulates all packets belonging to the conference into active packets at an ingress node. The active

packets have a program code for prioritized packet processing. One hour later, the ISP stops the

encapsulation. In this way, all conference traffic is given a preferable service without statically

configuring active nodes as in the discrete approach.

The third approach is a combination of in-band and out-of-band approaches. Between these

two, we also have hybrid approaches. Packets carry only short scripts, and these scripts carry

elaborated services, which are loaded via out-of-band signaling.

Active nodes are the basic elements constituting active network. In view of software archi-

tecture, an active node is similar to those general software platforms. As Fig. 1 illustrates, an

operating system, called “NodeOS” in AN research, manages hardware and software resources in-

cluding transmission, processing, and storage resources. An execution environment (EE) conceals

the details of the operating system from applications and supplies them with APIs, similarly shells

in Unix or Java virtual machines. User-defined or application-oriented programs running on an

execution environment are called active applications (AAs). Such programs written in C language

or Java in some cases, depending on the active network architecture [13].

15

Execution Environments (EEs)

resources

Active Applications (AAs)

Node Operating System (NodeOS)
access to node resources

higher level programming interface for AAs

end−to−end services
invoked by users

AA 1 AA 2 AA 3

EE 1 EE 2

transmission resources
(channels)

storage

resources

processing

NodeOS

Figure 1: Active Node Architecture: Building Blocks

Active traffic is a stream of active packets, in which signals, configurations, messages, descrip-

tions, executable codes or reference of codes are embedded. In order to distinguish active traffic

from conventional IP traffic, the Active Network Encapsulation Protocol [14] was proposed. Ac-

tive packet has an ANEP header that includes a “Type Identifier” field. Well-known Type IDs are

assigned to specific EEs by the Active Network Assigned Number Authority. If a particular EE is

present at a node, packets containing a valid ANEP header with the Type ID assigned to that EE

will be routed to channels connected to the indicated EE. Obviously, such a mechanism is highly

dependent on network layer processing.

Thus, active nodes provide to users, who can be end users or network administrators, the ability

of deploying their programs or services to take advantage of resources at active nodes. However,

before active network technologies are introduced into the real world of the Internet, we must first

answer how to deploy those active applications, as well as resolve problems of authorization and

management. A brief introduction about service deployment can be found in the following section

3.

Another problem that should be considered is the performance of active nodes. Highly intelli-

gent and tailored packet processing introduces additional load to active nodes which may disturb

16

������������������������

������������ ������������ 	�		�	
�

�
 ����

�
�

�������
�

������
���
������
���

������
���
������
���

������
���
������
���

P2P network layer

Active network layer

Network layer

Active node

Network router

Access port

Virtual access port

Peer

Figure 2: Active P2P Network

the routing and forwarding of general IP packets. Therefore, it is not expected that active network

technologies are employed by the Internet core backbone routers, which require that packets be

processed at a maximum line speed. Some studies of the performance of PC router-based active

nodes can be found in [15].

2.3 Layered Network of P2P and Active Networks

In recent years, some ideas about deploying services at network layers to improve the performance

and behavior of networked applications have been proposed [16-19]. The Internet which provides

only the best-effort service cannot satisfy the QoS demands of advanced networked applications

any more. Applications require networks to guarantee or control various QoS in terms of, for

example, packet transfer delay, delay jitter, and bandwidth. If networks guarantee the allocation

of network resources as in IntServ and DiffServ, applications can provide users with services of

high stable quality that can successfully predict the set of entities, i.e., hosts, nodes, and links,

and the amount of resources needed. For some classes of applications, even a lower degree of

17

support from networks is helpful. For example, some multimedia applications have the capability

of adapting data emission rate to network conditions. For this purpose, they conjecture network

conditions by observing the reception of packets [20], because they do not have any direct means

of obtaining information including the topology of the network, the utilization of links on the path

that a connection traverses, and the existence and characteristics of other flows that compete for

network resources. If underlying networks can provide such applications with detailed information

on networks, they can accomplish effective and efficient controls.

In contrast with the above passive mechanisms, the active network is a technology that makes

networks aware of applications and enables networks to behave in accordance with application’s

demands. Since active nodes operate on a network layer and they are deployed in the network as

network equipment similar to routers, they are also called active routers. They can easily gather

packet-level information such as IP address, port number, protocol type, and timestamp, while ob-

serving packets flowing through themselves. Furthermore, they can even analyze and manipulate

user data part of a packet. With information on underlying IP networks, active nodes can derive a

packet-level QoS such as packet transfer delay, delay jitter, and link utilization. They can further

interpret those QoS to application-level QoS with information related to overlying applications.

Then, they can configure their behavior to be preferable to such applications to provide them with

a better level of service. For example, an active node can adjust the quality of a video stream to

the available bandwidth by filtering out some packets [21].

In this study, we consider such a layered network of P2P and active network architecture, as

shown in Fig. 2. An IP network consists of nodes, hosts, and links, more specifically, of routers,

ports of network interface of hosts, and physical links. Some routers in an IP network are also

active nodes. A P2P network consists of peers, i.e., hosts. An active network layer between them

consists of active nodes and virtual access ports. Since an active network is transparent, but the

overlying P2P network and the underlying IP network are not aware of it. Thus, we call ports on

an active network virtual access ports. Routing among network access ports is based on IP routing

18

protocols, e.g., RIP, OSPF, and BGP. Messages on a P2P application layer are routed using a P2P

protocol. Active nodes provide conventional routing functions to packets that are irrelevant to the

active load distribution. Active nodes have chances of collecting sufficient information on P2P

traffic passively. They analyze the behavior of P2P applications. Furthermore, by dynamically

introducing active services, they process P2P traffic with some application-oriented policy. For

example, they distribute the load of P2P searching transparently depending on the need.

19

3 Active Load Distribution for P2P Applications

Active nodes in our framework provide conventional routing functions to packets that are irrelevant

to the active load distribution. Thus, we call them active routers hereafter. A router constituting

an IP network can be either of a conventional router and an active router. Hosts that participate in

P2P applications organize a P2P network.

3.1 Architecture of Active Routers

Figure 3 illustrates the architecture of an active router in our framework. It follows the archi-

tecture of a typical active node having NodeOS, which manages the node resources such as link

bandwidth, CPU cycles, and storage; the Execution Environments (EEs), which provide active

applications with APIs using NodeOS’s resources; and the Active Applications (AAs), which pro-

gram the virtual machine on an EE to provide an end-to-end service. For an active router, a packet

scheduling and routing function module is the basic element of NodeOS. We propose to deploy a

“service creation engine” as a proactive P2P service at an active router, which is to load other ac-

tive services. A “monitor”, which consists of “P2P packet analyzer”, “server state database”, and

“manager” modules, is an active application in charge of collecting information from P2P traffic.

An “active P2P service” is a dynamic module that can be loaded by service creation engine.

3.2 Monitor, Measurement and Decision Mechanisms

First, when incoming packets enter IP stacks and wait for scheduling, a packet capturer module

at an active router filters out all packets it has interest in. The packet filtering policy depends on

a P2P application. The easiest way is to use a well-known TCP port. For example, “6699” and

“8888” are widely used in an OpenNap server and “9700” is in JXTA application.

Next, by checking the payload of packets and comparing keywords of payload with P2P pro-

tocols, a P2P packet analyzer can identify the type of P2P messages with P2P protocol knowl-

edge. For example, each message in OpenNap protocol [6] to or from a server are in the form of

< length >< type >< data >, where< length > specifies the length in bytes of the< data >

20

Active

service

environment
Execution

IP stack

Network device drivers

Packet scheduler

database
Server state

Monitor

Packet stream

Service

engine

Packet capturer

Management

Resource

Platform

creation P2P
agent

Middleware: Network APIs

Packet
analyzer

Manager

NodeOS

information
Management

applications
Active

Figure 3: Modules in Active Router

portion of the message and< type > specifies the command type. Then, the P2P packet ana-

lyzer stores P2P packet information into a server state database, which includes IP addresses, port

numbers, P2P message types, and timestamps.

Then, a manager identifies a bottleneck peer, to which load accumulates on. Since there is no

direct way of getting information on load state on CPU, memory, bandwidth on remote peers, an

active router estimates the current load state from the server state database which is constructed

passively. The metrics of load include response time, the number of search results, and query rate

[22]. Although they are not precise, they are practical. For example, an active router can take the

response time of a server to measure load. If it finds that the response time is much longer than

before or it exceeds the predetermined threshold, it considers that the server is now a bottleneck.

When the manager has identified a bottleneck based on predefined policies, it requests a service

creation engine to introduce a corresponding active P2P service to the active router. After service

deployment, incoming packets satisfying some predetermined conditions are forwarded to the

active P2P service by some packet redirection policies executed in packet scheduling modules in

21

NodeOS. A management service at a local active router should be in charge of inserting or deleting

such packet redirection policies.

An active P2P service processes packets transparently. That is, client peers and servers do not

need to know the existence of active P2P services on their communication channels. No static or

dynamic configuration is required on client peers and servers to benefit from active P2P services.

In some cases, packets are answered by an active P2P service and are not sent to a server, but an

overlying P2P application does not notice such interception.

When the monitor considers that the remote server is no longer a bottleneck or is underutilized,

it requests the server creation engine to stop the active P2P service. The decision is based on some

predetermined policy, such as a threshold-based one. Since the active P2P service communicates

with a server instead of client peers, an active router can obtain load state information of the server

after introducing the active P2P service.

3.3 Examples of Applications of Our Framework

Here, we briefly introduce two examples of applications. The first example is active load balancing

for P2P directory servers. A directory server that maintains a list of resources and their location

information in P2P applications is a single point of failure and a performance bottleneck. By

introducing redundant servers or “Decentralized Directory”, the server load can be distributed, but

not evenly. OpenNap [6] uses a “Metaserver” as a portal to direct peers to different OpenNap

servers, although it is statically arranged and peers must be configured to use a specific portal.

In this example, active routers act as brokers to distribute load among several servers. Us-

ing our framework, client peers do not need to know which server it is actually connected with.

Furthermore, load distribution is performed in accordance with server load states. First, an active

router captures and analyzes those P2P traffic passing through it to find servers and estimate their

loads, as Fig. 4(a) shows. Response time can be chosen as a parameter for measuring the quality of

services of a directory server in this case. Response time can be calculated as in function 1. If the

22

response time at a server becomes longer than before, an active router forwards queries to another

server that it considers unloaded. For this purpose, a manager in Fig. 3 activates a load balancing

service as an active application at an active router. Then the load balancing service rewrites the

destination address of incoming P2P packets to redirect them to an unloaded server as Fig. 4(b)

illustrates. Because of address rewriting, the source address of a response message is the address

of the server that the active router selected, not that of the server that the client intended. Thus, an

active route has to rewrite the source address of response messages to the address of the originally

requested server in order to provide transparent interleaving.

Figure 5 illustrates the mechanism of network address translation. In this figure, there are two

directory servers, A and B. A client peer establishes a TCP connection to server A. Then it sends a

query to server A and receives a response from server A. By observing P2P traffic, an intermediate

active router considers that server A is overloaded. It establishes a TCP connection to server B.

Then, the next query from the peer to server A is redirected to server B by the active router. If

the client peer is connection-aware, for example, if it is employing a TCP session connection,

mechanisms to forge original connections are needed. An active router monitors and keeps all

parameters associated with the original session, e.g., sequence number of a packet, as shown in

Fig. 5 shows. Based on the snapshot, an active router can initiate a “virtual TCP session” to pretend

to be the peer. Of course, for connection-unaware peers or UDP sessions, SNAT (source network

address translation) and DNAT (destination network address translation) mechanisms in Fig. 5 are

sufficient.

The second example of application of our framework is active transparent P2P caching. Con-

tents popularity in P2P networks follows a Zipf-like distribution [23], which implies that caching

in the P2P network is still a very efficient means of avoiding redundant traffic as proved by its

power on World Wide Web. However, to take advantage of caching, cache servers should be care-

fully placed in a P2P network taking the distribution of peers, resources, and their popularity into

account. Active routers exist over networks. If an active router at an appropriate location, which

23

Server A

Server B

Peers

Served by A

Served by B

Active router

Server A is
overloaded!

Queries

(a) Measurement

Server A

Server B

Peers

Served by A

Served by B

Active router

Queries

NAT

(b) Load balancing

Figure 4: Active Load Balancing for P2P Directory Servers

24

Server B Server A Peer

query (to A)

General
query/response

Query (to A)

Response (from A)

Establishment of TCP

query (to B)

Response (from A)

Response (from B)

Active router

Source

NAT
Destination

NAT

connection to server A

Establishment of TCP
connection to server B

Network Address
Translation (NAT)

Snapshoot parameters of
connection of peer−server A
(sequence numbers)

Time

Figure 5: Transparent Query Redirection

25

Peers

Served by A

Server A Active router

Queries

Server A is
overloaded!

(a) Measurement

Peers

Server A

Virtual cache proxy

Served by A

Served by
virtual cache proxy

Caching

NAT

Response

Query

Active router

(b) Virtual Caching

Figure 6: Active Transparent P2P Caching

26

depends on the conditions of P2P networks and applications, provides a functionality of caching,

the QoS of overlying P2P applications is expected to be considerably improved. P2P traffic can be

categorized into two: protocol messages such as queries, responses, and other command messages,

and object data themselves such as music and video files. Therefore, caching can also divided into

two classes: cache of P2P protocol messages and cache of contents.

As Fig. 6(a) shows, in this example, an active router first monitors the P2P traffic directed to a

peer that holds resources or a server that answers query messages. When it considers that the load

on the peer or the server is too high based on, for example, the number of messages, it initiates a

virtual cache proxy as an active P2P service. Messages originating from the peer or the server are

investigated and their contents are deposited in the cache, as in Fig. 6(b). Then, the active router

redirects all incoming messages for the peer or the server to the local virtual cache, so that the

cache can answer requests transparently.

3.4 Service Deployment and Management

Obviously, a safe, convenient, and practical service deployment and management system is also

needed to load active P2P services in the Internet. The deployment of active services can be

divided into two levels [24]. Network level deployment first identifies and selects nodes to run

service components. Then, node level deployment selects, loads, and installs adequate implemen-

tations of service components on each of the selected active nodes [25, 26].

Network level service deployment has to solve some problems similar to those in P2P ap-

plications, including active node discovery, query and the retrieval of service codes. Thus, it is

natural to deploy mechanisms similar to those for P2P applications. The centralized mechanism

[27] depends on a management control center or a server which acts as a broker, storage server,

or management station. There is a well-known management server. When a node joins an active

network, it registers itself into the management server. The management server monitors the sta-

tus of each active node. When it decides to deploy a service at some active nodes, it first chooses

27

appropriate active nodes to perform service-oriented functions. Then, it sends requests or com-

mands to those active nodes. The mechanisms of node-level service deployment are used this time

to obtain the requested functions. The decentralized mechanism [28] clones the protocol of the

Gnutella-type P2P protocol and is based on message flooding, which is similar to “query flood-

ing” in Gnutella. An active node is connected to several neighboring nodes to construct an overlay

network similar to a Gnutella-type flat P2P network. When an active node wants to deploy a new

service, it first locates the program codes needed. Then, it retrieves and executes them. When

an active node wants other active nodes to deploy a new service, it first locates active nodes in

addition to the program codes needed. Then, it sends codes to those active nodes. The IP routing

protocol-based mechanism discovers active nodes along IP routing paths for the first step in net-

work level deployment. In Ref. [29], the use of OSPF messages to carry information related to

active node discovery is proposed. These messages are distributed in a network based on OSPF

protocol. An active node that can understand additional information in an OSPF packet updates the

information by, for example, inserting its node ID into the packet. Active nodes are successfully

discovered and some of them are chosen for service deployment.

In this study, we prefer the centralized mechanism for network-level service deployment,

which has been deployed successfully in research [30, 31]. In this model, SNMP (Simple Network

Management Protocol) is used as a management protocol, as Fig. 7 illustrates. A central manage-

ment station is in charge of managing all network equipment including conventional routers and

active routers. The SNMP protocol is used as a communication protocol among management sta-

tion and active routers. All program codes are stored and managed in a code repository server.

Node discovery and code location are accomplished by a management station. Obviously, it is

very convenient to integrate such a mechanism into current network management systems because

most of them employ SNMP-based centralized control.

After network level deployment is accomplished, node level deployment begins at selected

active nodes. For node-level deployment, a service creation engine is in charge of loading new

28

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

SNMP

Management Code repository

Active router

Router

End user

An ISP’s domain

Figure 7: Centralized Deployment, Configuration, and Management

active services. It analyzes commands sent from a management station, and starts a requested

active service. If the code of the requested service is not in an active node, a service creation

engine retrieves it from the code repository specified by the management station.

The detailed mechanism of service deployment is as follows: A management station obtains

state information on active routers by “get” commands in the SNMP protocol before service

deployment. Then, based on the collected information, the management station appropriately

chooses those active nodes that deploy the service. It uses “set” commands to request active nodes

of service deployment. The Management Information Base (MIB) in active routers is similar to

those in other nonactive routers except for some items associated with active services, as Fig. 8

illustrates. A branch, named “anargsce”, is associated with a service creation engine. There are

two queues for receiving commands from the management station. “Commandqueue” is used

to receive service deployment commands, and “configqueue” is to receive service configuration

commands. The management station sends those commands to active nodes using “set” com-

mands in the SNMP protocol. A service creation engine dispatches commands in both queues

and executes them. For example, on receiving a service deployment command, a service creation

29

ccitt iso (1)

org (3)

dod (6)

internet (1)

directory mgm private

anarg_sce

experimen

description as_info_db command_queue config_queue
(writable) (writable)

joint−iso−cc

Figure 8: MIB Tree of Active Node

engine examines whether the conditions of the active node can deploy the service. If it can, the

service creation engine retrieves related codes from a code repository server. Then, it updates its

local MIB to reflect the new conditions, so that the management server can obtain up-to-date state

information.

30

4 Implementation of Active OpenNap Cache Proxy

In this section, we implemented an application based on the OpenNap P2P protocol [6], “active

OpenNap cache proxy”, as a prototype of active transparent P2P caching for investigating the

practicality and effectiveness of our framework.

4.1 OpenNap protocol

OpenNap clones most of Napster’s protocols. The OpenNap server acts as a directory server for

a cluster of peers. A peer connects to a server and provides it with peer information, including

user name, link type, incoming port number, and a list of files that it wants to share with the

others. Based on registered information, the server maintains a user information database. To

find a file, a peer sends a query message to the server with parameters, such as keyword and

the maximum number of results that it desires. Receiving a query, the server examines the user

information database. If there is one or more records that match the query, the server returns

those records to the requesting peer as a response message. Communications between a peer and

a server are “keep-alive TCP session”-based. When the connection is broken by a peer or due

to some network problems, a server releases the resource used by the peer by deleting the peer’s

record in its database.

4.2 Architecture of Active OpenNap Cache Proxy

An active OpenNap cache proxy is a proxy server that answers query messages in behalf of Open-

Nap servers. In this implementation, an active router monitors P2P traffic belonging to OpenNap

sessions. When it considers that a server is overloaded, it activates a virtual cache proxy as an

active application to undertake some portion of query traffic. The virtual cache proxy maintains

the local cache of directory information and answers queries based on the cache.

Figure 9 illustrates the architecture of an active router in our implementation. The NetFilter

in Linux 2.4 kernel was chosen to realize the function of the packet scheduler module. Generally,

it only passes incoming packets to an output network interface based on a routing policy, as in

31

SNMP
agent

Active

service
Applications

environment
Execution

NodeOS
(Linux kernel)IP stack

PCAP

Network device drivers

Netfilter/IPTables

Management
Information
Base (MIB)

P2P

P2P packet
analyzer

database
Server state

Monitor

Packet stream

Service
creation
engine

Java Virtual Machine

Java Native Interface (JNI)

Resource

Manager

Figure 9: Architecture of Linux-Based Active Router

Fig. 10(a). Packets that need to be answered by the active router are redirected to the locally

initiated virtual cache proxy based on a DNAT (Destination Network Address Translation) policy

[32], as in Fig. 10(b). “PCAP” [33] and its Java’s wrapper “jpcap” [34] were used as a packet

capturer. An “analyzer” thread in the “monitor” in Fig. 3 analyzes captured P2P packets and

inserts the history record of the target server peers in the “server state database”. The database

consists of two types of tables as shown in Fig. 11. A server list is a list of IP addresses of servers

that an active router finds. Each server in a server list is related to a “query-response timestamp

table”. Each entry in a query-response timestamp table consists of the sequence number of the

query, the timestamp of the query, and the timestamp of the first packet of the corresponding

response message. “Manager” is in charge of controlling all of the other modules in the monitor.

A virtual cache proxy is built on an OpenNap server program, but it has additional caching and

forwarding functions, as shown in Fig. 12. It is loaded as an active P2P service module by a service

creation engine in Fig. 3. It provides directory service to all of its client peers transparently. At the

same time, it behaves as a general client peer to a OpenNap server. It queries the remote OpenNap

32

SNMP
agent

Applications

environment
Execution

NodeOS
(Linux kernel)IP stack

PCAP

Network device drivers

Netfilter/IPTables

Management
Information
Base (MIB)

P2P packet

database
Server state

Monitor

Service
creation
engine

Java Virtual Machine

Java Native Interface (JNI)

Resource

Manager

To peersTo OpenNap
server

analyzer

capture
Packet

(a) Monitor and measurement

SNMP
agentproxy

Applications

environment
Execution

NodeOS
(Linux kernel)IP stack

PCAP

Network device drivers

Netfilter/IPTables

Management
Information
Base (MIB)

P2P packet
analyzer

database
Server state

Monitor

Service
creation
engine

Java Virtual Machine

Java Native Interface (JNI)

Resource

Manager

OpenNap packets

To peersTo OpenNap
server

To server To peers

Sockets

DNAT policy

OpenNap
cache

Packet
capture

NAT

(b) Packets in/out OpenNap cache proxy

Figure 10: Packet Flows in Active Router

server instead of the client peer redirected to this cache proxy. The local searcher of a virtual cache

proxy receives queries from client peers through a TCP socket and examines the local directory

database. The database is updated when it receives registration messages from client peers. The

database consists of user names, link types, and a list of files to share. A request forwarder is

used to forward query messages to a remote OpenNap server through a TCP socket. Cache is used

to store those response messages received from the remote server. They are further explained in

detail in the next section.

33

IP address: No. Query timestamp Response timestamp

10.10.10.3

10.10.10.4

10.10.10.5

1002

1003

1063819088924 10638190895911001

1063819089166

1063819089161 1063819091289

0 (initial value)

Server list Query − Response timestamps

Figure 11: Server State Database

forwarder

CacheT
C

P
so

ck
et

T
C

P
so

ck
etLocal searcher

Local directory
database

Query

Figure 12: Modules in Virtual Cache Proxy

4.3 Mechanisms of Active OpenNap Cache Proxy

Search request messages and corresponding response messages are captured and examined at an

active router.

First, PCAP captures those packets matching the filtering policy in which “protocol is TCP

and destination port is 8888”, in which “8888” is the port number in our OpenNap server.

Next, an analyzer thread in monitor distinguishes message types based on< type > in a

packet. If it is “200”, then it is a query message sent from a client peer and the destination IP is

the address of a server. If< type > is “201” or “202”, the message is a response. Therefore,

the destination IP of the packet indicates the address of the peer that sent an inquiry to the server,

whose address appears as the source IP of the packet. If the server IP is new to the server list, a

new entry and a corresponding query-response timestamp table are created. If the message is a

query, its timestamp is stored in the table with a new sequence number. The sequence number is

initialized to one when a new table is created for a new server.

When the message is a response, the analyzer thread investigates the entry of the corresponding

34

query message in the query-response timestamp table. If the response timestamp field is zero, i.e.,

the initial value, it is filled with the timestamp of the packet. Otherwise, the packet is ignored. In

OpenNap query-response communications, it is guaranteed that, for a peer, a series of response

messages that a server sends follows that of query messages that it received. Thus, we can easily

identify the query message that the response message corresponds to. A time limitTrec is set to

define how long a record can stay in the query-response timestamp table. Every time the analyzer

thread investigates the table, it will delete those records whose query timestamps are over time

limit Trec.

Then, the manager investigates the server state database. If a server satisfies some predefined

conditions, it is regarded as a bottleneck or over loaded. Two schemes are supported to make

decisions. With response-time metric, the response timeTR of every query is calculated with the

function

TR = Tfr − Tq , (1)

whereTq is the timestamp of a query packet, andTfr is the timestamp of the first response packet.

AverageTR, asTRavg, is periodically calculated for each server in the server table. Then it is

compared with the predefined thresholdTRth. If TRavg exceedsTRth, a virtual cache server for

the server will be used in the next step.

With query-rate metric, the manager counts the number of query packets for each of servers.

Every time the timer reaches the predetermined the boundary of sliceTs, it is initialized to zero

and the query rate of the server is derived. The query rate is calculated using

R = N/Ts , (2)

whereN is the number of query messages in a time sliceTs. Average query rateRavg is periodi-

cally computed and compared with thresholdRth to identify the bottleneck server.

Finally, a virtual cache server is loaded for the server by a manager as a Java thread. For a

newly activated virtual cache server to deal with the query messages sent to the original server,

35

the manager introduces a new DNAT rule into the Netfilter. IPTables [32] are used as an interface

to insert a DNAT rule. DNAT can direct client peers to a different server peer transparently.

However, for some keep-alive session-based applications, it will destroy on-going connections. In

our experiments, the peers redirected to a virtual cache server first disconnected their connections

and re-established them.

A queryQ consists of several search parameters such askey, Rmax, linktype, andfilesize.

Here we only considerkey, i.e., keyword, andRmax, i.e., the maximum number of results de-

sired. When a virtual cache server receives a queryQ, it processes the query as follows: The

virtual cache proxy generates a response message and first examines the local directory database

using the given keywords. If the number of files that match the keywords is nonzero, their file

names and properties are recorded in a response message. If the number of files locally found can-

not satisfy the maximum number of results desiredRmax, the virtual cache proxy next examines

the cache. Then, the results are merged together, fit toRmax, and finally sent to a requesting peer

as a response message.

A virtual cache proxy maintains a list of keywords that it has searched. The keywords are

then compared with the history list. If they are new, the queryQ is forwarded to the server that

it is originally directed to. However, the requesting peer does not wait for the response from the

original server to avoid delay. A response message is sent to the requesting peer through the steps

described above. As a result, peers receive a small result until the virtual cache proxy collects

sufficient amount of information in its local database and cache. When the virtual cache proxy

receives a response message from the server, it investigates the results. If there are one or more

search results, the virtual cache proxy deposits them in its local cache for further use.

A TTL-based mechanism was introduced to keep the contents of the cache up-to-date. Since

peers might leave from a P2P network without any notification, the directory database cached at

an active router contains meaningless records. The time a new record is deposited in the cache is

also kept in the cache. For each item of search result from a cache, the local searcher will compare

36

OpenNap Server

PC−2 (6 peers)

PC−1 (8 peers)

PC−3 (1 peer)

PC−4 (8 peers)

PC−5 (6 peers)

PC−6 (1 peer)

HubHub Router

Active Router

10Base−T network A:
10.10.10.0/24

10Base−T network B:
192.168.0.0/24

10.10.30.1

Figure 13: Experimental Environment

its timestamps with the current time. If more thanTcache, a predefined threshold, has passed, each

result item will be ignored and the corresponding record is removed from the cache.

The monitor continuously measures the query rate sent to the OpenNap server for which the

virtual cache proxy provides a directory service instead. When the average query rate goes below

a low thresholdRthL, the manager disables a DNAT function in the Netfilter. Then, it stops the

local virtual cache proxy and releases related resources.

4.4 Experiment and Evaluation

We conducted experiments on the system illustrated in Fig. 13 to verify the practicality and ef-

fectiveness of our framework from viewpoints of load balancing and quality of service. When the

number of queries that a server receives decreases, we consider that load is moved to the active

router. The quality of service in OpenNap application is evaluated in terms of the number of files

that a response message contains and the response time that a peer experiences.

The network consists of three subnetworks connected with each other by an active router and

a general IP router. Either network A or B has 15 clients running three PCs. Each peer joins the

P2P network at random and sends query messages to a server once every 1.5 seconds. Either in

37

hqzag

hqz

hqzagdc

Degree 2 Degree 3 Degree 4Degree 1

(1 keyword)

hqzxmoy

hqzxmkna

hqzxmoysa

hqzagdcfy

hqzagsq

hqzagdckwo

hqzxmknavbq

hqzxmknavsb

hqzxmoycra

hqzagsqfbc

hqzagsqpws

hqzxm

Figure 14: Example of Keyword Generation

network A or B, 455 MP3 files are shared among peers. Thus, at the beginning, there is a file list

of 910 files at the OpenNap server. In order to generate a list of keywords which follows a Zipf-

like distribution, we consider the following algorithm. First, a keyword is randomly generated as

in Fig. 14. From a randomly generated keyword ‘hqz’ in degree 1, two keywords ‘hqzxm’ and

‘hqzag’ in degree 2 are obtained by appending two randomly generated suffixes. Likewise, from

the newly generated keywords, four longer keywords in degree 3 are obtained as ‘hqzxmkna’,

‘hqzxmoy’, ‘hqzagdc’, and ‘hqzagsq’. Then, we further generated eight additional keywords in

degree 4. Thus, we have fifteen keywords. The number of filesNf that a keyword in degreeD

matches is derived using

Nf ≈ Nsum/D , (3)

whereNsum is the total number of files and follows a Zipf-like distribution. In our experiments,

we first defined a list of ten keywords in degree 1. By appending two or three random characters

for each keyword twice, we obtained a list of twenty keywords in degree 2. We generated10×D

keywords in degree D. Finally, we had 910 keywords in 13 degrees. Then, 910 file names were

38

0

5

10

15

20

0 50 100 150 200 250 300

Q
ue

ry
 ra

te
 [Q

ue
rie

s/
S

ec
.]

Time [Seconds]

OpenNap server
Active router

Figure 15: Variation in Query Rate Monitored at Original OpenNap Server and Active Router

generated by adding an extension, such as ‘.mp3’, to those keywords. As a result, each of the ten

major keywords matched 91 files, each of the twenty matched about 45, each of the thirty matched

about 30, each of the forty matched 23, each of the fifty matched 18, each of the sixty matched

15, each of the seventy matched about 13, each of the eight matched about 11, each of the ninety

matched about 10, and finally each of the one hundred matched about 9. Then, files were randomly

divided into two groups. Peers in network A shared files in one group and peers in network B did

in the other group.

Query rate was used as a metric of load state. We empirically employed 9.5 as the threshold

Rth in the experiments, and we took the maximum search resultsRmax = 100 in each query

request.

Figure 15 depicts the variation in the number of queries that the OpenNap server received and

that captured by the active router at the interface near network B. From the beginning, only one

peer in network B was connected to the OpenNap server while there were two peers in network

39

0

20

40

60

80

100

0 50 100 150 200 250 300

N
um

be
rs

 o
f f

ile
s

[It
em

s]

Time [Seconds]

Figure 16: Variation in the Number of Files in Response Messages on Network B

A connected to the OpenNap server. From about 50 seconds, more and more peers from both

networks A and B joined the P2P network and connected to the OpenNap server. At about 120

seconds, the query rate passing through the active router exceeded the threshold 9.5. Thus, the

active router initiated a virtual cache proxy and introduced a new DNAT policy to the Netfilter, so

that query messages from each peer in network B are redirected to the virtual cache proxy. As a

result, the OpenNap server received queries only from peers in Network A and the cache proxy in

the active router.

Figure 16 illustrates the variation in the number of files in a response message. Although

there are variations due to the keywords chosen, we observe that the quality of search results

deteriorates after load balancing as mentioned in section 4.3. However, with time, the virtual

cache proxy improved its cache by observing query and response messages, and the quality of

service improved.

The response time for peers in network B won halved after the redirection, as Fig. 17 illus-

40

0

50

100

150

200

250

300

0 50 100 150 200 250 300

R
es

po
ns

e
Ti

m
e

[M
ill

is
ec

on
ds

]

Time [Seconds]

Figure 17: Variation in Response Time on Network B

trates. This means that peers in network B began to receive much better and faster search services

than before. Spikes in Fig. 17 corresponds to instants at which new peers joined the P2P network.

When new peers join and register themselves, a virtual cache proxy updates its local directory

database. It disturbs local searcher in processing queries and response time increases. Such prob-

lem can be avoided by optimizing the synchronization mechanism for access to a common data

block shared by several threads in an active OpenNap cache proxy.

In this experiment, the load introduced by active packet processing including the virtual cache

proxy was very small compared with the processing capability of the equipment; actually, it was

imperceptible. However, we need further investigation for the case that there are considerable

numbers of flows and that highly complicated packet processing is required at an active router.

41

5 Conclusions

As it has been introduced in the beginning of this thesis, the P2P architecture still has a lot of

problems even though it has attracted millions of people. The greatest technical problems in P2P

are search-related, including peer discovery and content location. The current solutions to P2P

search can be classified into three approaches, i.e., centralized directory, decentralized directory,

and query flooding-based pure P2P. By analyzing these three architectures, we showed that they

have performance bottlenecks that decrease the quality of search service in P2P applications.

Thus, an active network was introduced. We combined the two logical networks, P2P and

active networks, in an active P2P network. The reason we considered to deploy an active network

in this study is its programmability in the network layer. In other words, we can tailor the be-

havior of networks to provide some application-specific specialized services to P2P applications

transparently. Active routers can passively collect packet-oriented and network-level information.

Then, they can dynamically deploy some helpful service based on monitoring-based presumption.

Based on the concept of an active P2P network, we proposed a framework to distribute load

on dynamically changing P2P network actively. We used a Linux-based PC-router as the platform

of an active router. A monitor service is deployed at an active router and then configured to mon-

itor P2P packets and measure the performance of P2P applications. When some predetermined

conditions are met, the monitor requests a service creation engine to load and activate a certain

service to improve the performance of P2P applications by distributing P2P load for example. We

described two examples of such services in this thesis. One was “active load balancing for P2P

directory servers”, and the other was “active transparent P2P caching”.

We then implemented the latter for an OpenNap application. The results of our experiments

showed that our framework can successfully distribute load on the server transparently.

This study focused on the design of the framework as the first step in our research. We will

next consider better implementation in which we can attain load distribution while maintaining

a high QoS. We need to evaluate the performance of active routers in providing both active and

42

conventional packet processing services. Furthermore, we consider other P2P applications that

benefit from our framework. Our framework is sufficiently general and is expected to contribute

to the performance improvement of P2P applications, in a transparent way.

43

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Hideo Miyahara of Osaka University,

for his encouragement and valuable comments.

I would like to express my sincere appreciation to Prof. Masayuki Murata for his extensive

help and continuous support throughout my studies and in the preparation of this thesis.

I am most grateful to Associate Prof. Naoki Wakamiya who has always given me appropriate

guidance and invaluable direct advice.

Finally, I heartily thank my friends and colleagues in the Department of Information Network-

ing, Osaka University for their support.

44

References

[1] “BlueCoat (Cacheflow).” available athttp://www.bluecoat.com/ .

[2] J. F. Kurose and K. W. Ross,Computer Networking (Second Edition). Addison-Wesley,

2002.

[3] “KaZaA.” available athttp://www.kazaa.com/ .

[4] “JXTA Search Project.” available athttp://search.jxta.org/ .

[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, “Chord: A scalable

peer-to-peer lookup service for internet applications,” inProceedings of the ACM SIGCOMM

’01 Conference, pp. 149–160, Augest 2001.

[6] “OpenNap.” available athttp://opennap.sourceforge.net/ .

[7] B. Krishnamurthy, J. Wang and Y. Xie, “Early measurements of a cluster-based architec-

ture for P2P systems,” inProceedings of ACM SIGCOMM Internet Measurement Workshop,

November 2001.

[8] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, “A

survey of active network research,”IEEE Communications Magazine, vol. 35, pp. 80–86,

January 1997.

[9] J. Ioannidis and S. M. Bellovin, “Implementing pushback: router-based defense against

DDoS attacks,” inProceedings of Network and Distributed System Security Symposium,

February 2002.

[10] H. Akamine, N. Wakamiya and H. Miyahara, “Heterogeneous video multicast in an active

network,” IEICE Transactions on Communications, vol. E85-B, pp. 284–292, January 2002.

[11] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network architecture,”Computer

Communication Review, vol. 26, April 1996.

45

[12] G. Carle, “Tutorial: Active networks - architecture, technology, applications, standardisa-

tion,” in Proceedings of the Second International Working Conference on Active Networks

(IWAN 2000), October 2000.

[13] J. D. Touch and V. K. Pingali, “Multiple language family support for programmable network

systems,” inProceedings of the Fifth Annual International Working Conference on Active

Networks (IWAN 2003), pp. 175–186, December 2003.

[14] S, Alexander, B. Braden, C. Gunter, A. Jackson, A. Keromytis, G. Minden and D. Wetherall,

“Active network encapsulation protocol (ANEP).” Active Network Working Group Draft,

available atwww.cis.upenn.edu/˜switchware/ANEP/ , July 1997.

[15] D. Wetherall, “Active network vision and reality: Lessons from a capsule-based system,” in

Proceedings of 17th ACM Symposium on Operating System Principles (SOSP ’99), pp. 64–

79, December 1999.

[16] P. Tabery, C. Bachmeir, and X. Li, , “Optimizing mobile network datagram routing through

programmable proxying,” inProceedings of the 5th IEEE International Conference on Mo-

bile and Wireless Communication Networks, October 2003.

[17] J. D. Touch and V. K. Pingali, “DataRouter: a network-layer service for application-layer

forwarding,” inProceedings of the Fifth Annual International Working Conference on Active

Networks (IWAN 2003), December 2003.

[18] C. Bachmeir, P. Tabery, and J. Kafer, “Towards diverse protection of data streams in pro-

grammable application layer overlay networks,” inProceedings of IEEE 11th International

Conference on Software, Telecommunications and Computer Networks, SoftCOM’03, Octo-

ber 2003.

[19] C. Bachmeir and P. Tabery, “Provision of transparent application layer diverse protection ser-

vices based on lightweight software agents in p2p networks,” inProceedings of 15th IASTED

46

International Conference on Parallel and Distributed Computing and Systems, PDCS’03,

November 2003.

[20] S. C. Chen, M.. L. Shyu, I. Gray, and H. Luo, “An adaptive multimedia transmission protocol

for distributed multimedia applications,” inProceedings of the 5th International Workshop

on Multimedia Network Systems and Applications (MNSA’2003), in conjunction with The

23rd International Conference on Distributed Computing Systems (ICDCS’03), May 2003.

[21] T. Yamada, N. Wakamiya, M. Murata and H. Miyahara, “Implementation and evaluation

of video-quality adjustment for heterogeneous video multicast,” inProceedings of the 8th

Asia-Pacific Conference on Communications (APCC’02), September 2002.

[22] B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer networks,” inProceedings

of the 22nd IEEE International Conference on Distributed Computing Systems (ICDCS’02),

July 2002.

[23] R. Gunther, L. Levitin, B. Shapiro and P. Wagner, “Zipf’s law and the effect of ranking on

probability distributions,”International Journal of Theoretical Physics, vol. 35, pp. 395–417,

1996.

[24] M. Bossardt, T. Egawa, H. Otsuki, and B. Plattner, “Integrated service deployment for active

networks,” in Proceedings of Fourth Annual International Working Conference in Active

Networks (IWAN 2002), December 2002.

[25] M. Bossardt, L. Ruf, R. Stadler, and B. Plattner, “A service deployment architecture for

heterogeneous active network nodes,” inProceedings of 7th Conference on Intelligence in

Networks (IFIP SmartNet 2002), April 2002.

[26] M. Bossardt, A. Muhlemann, R. Zurcher, and B. Plattner, “Pattern based service deployment

for active networks,” inProceedings of the Second International Workshop Active Network

Technologies and Applications (ANTA 2003), May 2003.

47

[27] M. Fry and A. Ghosh, “Application level active networking,”Computer Networks (Amster-

dam, Netherlands: 1999), vol. 31, no. 7, pp. 655–667, 1999.

[28] I. Liabotis, O. Prnjat, and L. Sacks, “SORD: self-organizing resource discovery protocol

for ALAN,” in Proceedings of the Fifth Annual International Working Conference on Active

Networks (IWAN 2003), December 2003.

[29] R. Keller, B. Plattner, “Self-configuring active services for programmable networks,” inPro-

ceedings of the Fifth Annual International Working Conference on Active Networks (IWAN

2003), December 2003.

[30] Y. S. Wang, J. Touch , “Application deployment in virtual networks using the x-bone,” in

Proceedings of 2002 DARPA Active Networks Conference and Exposition (DANCE’02), May

2002.

[31] C. K. J. Quittek, “Remote service deployment on programmable switches with the ietf snmp

script mib,” in Proceedings of 10th IFIP/IEEE International Workshop on Distributed Sys-

tems: Operations and Management, DSOM ’99, pp. 135–147, October 1999.

[32] “NetFilter.” available athttp://www.netfilter.org/ .

[33] “TCPDUMP/LIBPCAP.” available athttp://www.tcpdump.org/ .

[34] “JPCAP.” available athttp://sourceforge.net/projects/jpcap/ .

48

