
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

アクティブP2Pネットワークにおける
検索負荷分散機構に関する研究

侍 建港† 若宮 直紀† 村田 正幸††

† 大阪大学 大学院情報科学研究科
†† 大阪大学 サイバーメディアセンター

E-mail: †{shi,wakamiya}@ist.osaka-u.ac.jp, ††murata@cmc.osaka-u.ac.jp

あらまし P2P型アーキテクチャは，ネットワーク規模に対する拡張性や対故障性などから，従来のサーバ-クライア

ント型アーキテクチャの問題を解決するネットワークパラダイムとして注目を集めている．しかしながら，ディレク

トリサーバやブートストラッピングノードなど，未だその機構の一部をサーバに依存しているため，それらサーバが

ボトルネックとなり，十分な性能を得られない．本研究では，アクティブネットワーク技術にもとづく動的な負荷分散

のためのフレームワークを提案し，フレームワークの適用例として OpenNapのための検索負荷分散機構を実現した．

アクティブノードは，自身を通過する P2Pトラヒックを観測することにより，ボトルネックとなるサーバを特定し，

必要に応じて P2Pアプリケーションの QoSを向上するためのサービスを提供する．アクティブノードによるサービ

ス提供は透過的であり，P2Pアプリケーションやユーザがその存在を意識する必要はない．実験により，アクティブ

ノードによる検索負荷分散が達成され，提案したフレームワークが実用的かつ有効であることを示した．

キーワード 負荷分散，Peer-to-Peer，アクティブネットワーク

Active Load Distribution Mechanism for P2P Searching

Jiangang SHI†, Naoki WAKAMIYA†, and Masayuki MURATA††

† Graduate School of Information Science and Technology, Osaka University
†† Cybermedia Center, Osaka University

E-mail: †{shi,wakamiya}@ist.osaka-u.ac.jp, ††murata@cmc.osaka-u.ac.jp

Abstract P2P network architecture draws much attention for its features of scalable, robust, self-organizing,

and distributed. However, most of the current P2P architectures still rely on servers, e.g., directory servers and

bootstrapping nodes. They are bottlenecks and single points of failure. In this study, we propose a framework

constructed on active network technologies for dynamic and transparent search load distribution. Active nodes at

network layer monitor and analyze P2P traffics passing through them, then decide whether it is necessary to conduct

some user defined services to improve QoS of P2P applications. We implemented “active OpenNap cache proxy” as

an example of an application of our framework. Through experiments, we showed that our proposal was effective

to distribute load on a P2P network depending on predefined conditions in a transparent way.

Key words load distribution, Peer-to-Peer, active network

1. Introduction

The success of P2P file sharing applications recalled us

a fact that personal computer at the edge of the Internet

can be not only a client but also a server. When they are

connected together and serve each other, the most power-

ful service system can be built, which can provide almost

unlimited computation ability and storage space.

However, the effectiveness and usefulness of P2P applica-

tions largely depend on how each peer discovers other peers

and how it locates the desired resources in a P2P network,

which is called P2P searching in this paper. One solution is

to deploy directory servers to maintain a directory database

for all peers or for only a group of peers. It brings advan-

tages of the client-server model such as convenience of man-

agement and control, guaranteed QoS for peers, but it also

— 1 —



introduces disadvantages of servers including bottlenecks and

single points of failure. Another solution uses “query flood-

ing” mechanism, in which P2P messages are relayed peer

by peer. It succeeds in avoiding bottlenecks of directory

servers with some self-organization protocols. However, even

flooding-based P2Ps are often called “pure P2Ps”, there are

still bottlenecks of peers and single points of failure. They

are bootstrapping nodes, which introduce peers that a new

peer should be connected with to join a P2P network. Thus

P2P traffic load is not fairly distributed over a P2P network.

Mechanisms for server load distribution have been proposed.

For example, in [1], servers are chained together to distribute

search load in OpenNap P2P application. However, since

most of them are configured in a static way, they cannot

adapt to dynamically changing network environment.

If an underlying network is aware of conditions and de-

mands of overlying applications and provide application-

oriented services, it is helpful to improve QoS of networked

applications in an efficient way. Active network technologies

provide a programmable infrastructure for a variety of net-

work applications [2]. Active nodes or active router, which

constitute active networks, are programmable and can be dy-

namically tailored to network administrator’s, application’s,

and even user’s demands. Basically they process packets at

network layer, but they can apply application-specific ma-

nipulation to packet payload if needed. Sample applications

of active network technologies include DDoS defense mecha-

nisms [3], multimedia broadcast [4], and so on.

This paper proposes a framework based on active network

technologies [2, 5] to dynamically distribute load between

servers or network links in a P2P network. Our framework

does not need overlying P2P applications to be aware of un-

derlying active networks. Furthermore, there is no need for

active nodes to communicate with each other to attain the

load-distribution. Each active node conjectures the current

load state of a P2P network from locally available and pas-

sively gathered information. It monitors and analyzes P2P

traffic which coincides with the prescribed conditions. Then,

it decides whether it should take some actions to contribute

to the load-distribution on a P2P network, without any mes-

sage exchanging.

The rest of paper is organized as follows. First in section

2., an architecture of our active P2P network is introduced.

Then in section 3., the framework is proposed and described

in detail. After that, in section 4. an example of application

is implemented and evaluated on an actual system. Finally

section 5. summarizes the paper and describes some further

research works.

������������������������

������������ ������������ 	�		�	
�

�
 ����



�
�

�������
�

������
���
������
���

������
���
������
���

������
���
������
���

P2P network layer

Active network layer

Network layer

Active node

Network router

Access port

Virtual access port 

Peer

Figure 1 Active P2P Network

2. Active P2P Networks

In recent years, some ideas about deploying services at

network layer to improve the performance and behavior of

networked applications have been proposed [6, 7]. The ac-

tive network is a technology that makes networks aware of

applications and enables networks behave in accordance with

application’s demands.

In this study, we consider such a layered network of P2P

and active networks architecture as Fig. 1. An IP network

consists of nodes, hosts, and links. More specifically, they

are routers, ports of network interface of hosts, and phys-

ical links. Some routers in an IP network are also active

routers. A P2P network consists of peers, i.e., hosts. An ac-

tive network laying between them consists of active routers

and virtual access ports. Since an active network is trans-

parent, both an overlying P2P network and an underlying

IP network are not aware of it. Thus, we call ports on an

active network virtual access ports. Active routers provide

conventional routing functions to those packets that are ir-

relevant to the active load distribution. Active routers have

chances to collect enough information of P2P traffic in a

passive way. Then, they can analyze the behavior of P2P

applications. Furthermore, by dynamically introducing ac-

tive services, they process P2P traffic with some application-

oriented policy.

3. Active Load Distribution for P2P Ap-
plications

A router constituting an IP network can be either of a con-

ventional router and an active router. Hosts that participate

in P2P applications organize a P2P network.

3. 1 Architecture of Active Routers

Figure 2 illustrates the architecture of an active router in

our framework. It follows the architecture of a typical ac-

tive node having the NodeOS, which manages the node re-

sources such as link bandwidth, CPU cycles, and storage; the

Execution Environments (EEs), which provide API of using

— 2 —



Active 

service

environment
Execution

IP stack

Network device drivers

Packet scheduler

database
Server state

Monitor

Packet stream

Service 

engine

Packet capturer

Management

Resource

Platform

creation P2P
agent

Middleware: Network APIs

Packet
analyzer

Manager

NodeOS

information
Management

applications
Active

Figure 2 Modules in Active Router

NodeOS’s resources or parameters of other needed resources;

and the Active Applications (AAs), which program the vir-

tual machine on an EE to provide an end-to-end service. For

active router, packet scheduling and routing function mod-

ule is the basic element of NodeOS. We propose to deploy

“service creation engine” as a proactive P2P service at active

router, which is to load other active services. “Monitor” is

an active application in charge of collecting information from

P2P traffic. It can be loaded by service creation engine as

other common user defined “active P2P services” in Fig. 2.

3. 2 Monitor, Measurement and Decision Mecha-

nisms

First, when incoming packets enter in IP stacks and wait-

ing for scheduling, a packet capturer module at active router

filters out all packets it interested. The packet filtering pol-

icy depends on a P2P application. The easiest way is to

use well-known TCP port. For example, “6699” and “8888”

are widely used in OpenNap server and “9700” are in JXTA

application.

Next, by checking payload of packets and comparing with

P2P protocols, a P2P packet analyzer can identify the type of

P2P messages with P2P protocol knowledge. For example,

each message of OpenNap protocol [1] to or from a server

are in the form of < length >< type >< data >, where

< length > specifies the length in bytes of the < data >

portion of the message and < type > specifies the command

type. After that, the P2P packet analyzer stores P2P packet

information into a server state database, which includes IP

addresses, port numbers, P2P message types and so on.

Then, a manager in a monitor application identifies a bot-

tleneck peer, to which load concentrates on. Since there is

no any direct way to get information of load state on CPU,

memory, bandwidth on remote peers, an active router esti-

mates the current load state from the server state database

which is constructed in a passive way. Metrics of load in-

clude the response time, the number of search results, and

the query rate.

When the manager identifies a bottleneck based on prede-

fined policies, it requests service creation engine to introduce

a corresponding active P2P service to the active router. In

the case of centralized mechanism [8], active service deploy-

ment is accomplished using SNMP as a management proto-

col. Being requested by a management station, a service cre-

ation engine retrieves an active service from a code repository

and starts the service. After service deployment, incoming

packets satisfying some pre-determined conditions are for-

warded to the active P2P service by some packet redirection

policies executed in packet scheduling modules in NodeOS.

Management service at local active router should be in charge

of inserting or deleting such packet redirection policies.

An active P2P service processes packets in a transparent

way. That is, client peers and servers do not need to know

the existence of active P2P services on their communication

channels. No static or dynamic configuration is required on

client peers and servers in order to benefit from active P2P

services. In some cases, packets are answered by an active

P2P service and are not sent to a server, but an overlying

P2P application does not notice such interception.

When the monitor considers that the remote server is no

longer a bottleneck or underutilized, it requests the server

creation engine to stop the active P2P service. The decision

is based on some predetermined policy, such as a threshold-

based one. Since the active P2P service communicates with

a server instead of client peers, an active router can obtain

load state information of the server after introducing the ac-

tive P2P service.

4. Active OpenNap Cache Proxy

In this section, we implemented an application based on

OpenNap P2P protocol, “active OpenNap cache proxy”, as a

prototype to investigate the practicality and the effectiveness

of our framework.

4. 1 OpenNap protocol

OpenNap clones most of Napster’s protocols. OpenNap

server acts as a directory server for a cluster of peers. A

peer connects to a server and notifies it with peer informa-

tion, including user name, link type, incoming port number,

and a list of files that it wants to share with the others.

Based on registered information, the server maintains a user

information database. To find a file, a peer sends a query

message to the server with parameters, such as keyword and

the maximum number of results that it desires. Receiving

a query, the server examines the user information database.

If there are one or more records that match the query, the

server returns those records to the requesting peer as a re-

sponse message. Communications between peer and server

are “keep-alive TCP session” based. When the connection

is broken out by peer or because of some network problems,

— 3 —



a server releases resource used by the peer by deleting the

peer’s record in its database.

4. 2 Architecture of Active OpenNap Cache

Proxy

Active OpenNap cache proxy is a proxy server that answers

query messages in behalf of OpenNap servers. In this imple-

mentation, an active router monitors P2P traffic belonging

to OpenNap sessions. When it considers that a server is

overloaded, it activates a virtual cache proxy as an active

application to undertake some portion of query traffic. The

virtual cache proxy maintains the local cache of directory

information and answers queries based on the cache.

As NodeOS, we chose linux platform and Java virtual ma-

chine provides an execution environment. NetFilter in Linux

2.4 kernel was chosen to realize the function of the packet

scheduler module. Usually, it only passes incoming pack-

ets to an output network interface based on routing policy.

Those packets that need to be answered by the active router

are redirected to the locally initiated virtual cache proxy

based on a DNAT (Destination Network Address Transla-

tion) policy. PCAP and its Java’s wrapper jpcap were used

as a packet capturer.

A packet analyzer thread in monitor in in Fig. 2 analyzes

captured P2P packets and inserts history record of target

server peers in a server state database. The database con-

sists of two types of tables, i.e., server list and query-response

timestamp. A server list is a list of IP address of servers that

an active router finds. Each server in a server list is related

to a query-response timestamp table. Each entry in a query-

response timestamp table consists of the sequence number of

the query, the timestamp of the query, and the timestamp

of the first packet of the corresponding response message. A

manager is in charge of controlling all of the other modules

in monitor.

A virtual cache proxy is built on an OpenNap server pro-

gram, but it has caching and forwarding functions addition-

ally as shown in Fig. 3. It is loaded as an active P2P ser-

vice module by a service creation engine in Fig. 2. It pro-

vides directory service to all of its client peers transparently.

At the same time, it behaves as a general client peer to a

OpenNap server. It queries the remote OpenNap server in-

stead of client peer redirected to this cache proxy. A local

searcher of a virtual cache proxy receives queries from client

peers through a TCP socket and examines its local direc-

tory database. The database is updated when it receives

registration messages from client peers. The database con-

sists of user name, link type, and a list of files to share. A

request forwarder is used to forward query messages to a re-

mote OpenNap server through a TCP socket. A cache is

used to store those response messages received from the re-

forwarder

CacheT
C

P 
so

ck
et

T
C

P 
so

ck
etLocal searcher

Local directory
database

Query

Figure 3 Modules in Virtual Cache Proxy

mote server. They are further explained in detail in the next

section.

4. 3 Mechanisms of Active OpenNap Cache Proxy

First, PCAP captures those packets matching the filtering

policy “protocol is TCP and destination port is 8888”, in

which “8888” is the port number in our OpenNap server.

Next, an analyzer thread in monitor distinguishes message

types based on < type > in a packet. If it is “200”, then it is

a query message sent from a client peer and the destination

address is the address of a server. If < type > is “201” or

“202”, the message is a response. Therefore, the destination

address of the packet indicates the address of the peer that

sent an inquiry to the server, whose address appears as the

source IP of the packet. If the server address is new to the

server list, a new entry and a corresponding query-response

timestamp table are created. If the message is a query, its

timestamp is stored in the table with a new sequence num-

ber. The sequence number is initialized to one when a new

table is created for a new server.

When the message is a response, the analyzer thread inves-

tigates the entry of the corresponding query message in the

query-response timestamp table. If the response timestamp

field is zero, i.e., the initial value, it is filled with the times-

tamp of the packet. Otherwise, the packet is ignored. In

OpenNap query-response communications, it is guaranteed

that, for a peer, a series of response messages that a server

sends follows that of query messages that it received. Thus,

we can easily identify the query message that the response

message corresponds to.

Then, the manager investigates the server state database.

If a server satisfies some predefined conditions, it is regarded

as a bottleneck or over-loaded. Two schemes were supported

to make decisions. With response-time metric, response time

TR of every query is calculated as TR = Tfr−Tq, in which Tq

is the timestamp of a query packet, and Tfr is the timestamp

of the first response packet. Average of TR, as TRavg, is peri-

odically calculated for each server in the server table. Then

it is compared with the predefined high threshold TRthH . If

TRavg exceeds TRthH , a virtual cache server for the server

will be invoked in the next step.

With query-rate metric, the manager counts the number

of query packets for each of servers. Every time the timer

reaches the predetermined the boundary of slice Ts, it is ini-

— 4 —



tialized to zero and the query rate of the server is derived.

The query rate is calculated as, R = N/Ts, where N is the

number of query messages in a time slice Ts. Average query

rate Ravg is periodically computed and compared with high

threshold RthH to identify the bottleneck server.

Finally, a virtual cache server is loaded for the server by

manager as a JAVA thread. For a newly activated virtual

cache server to deal with query messages sent to the original

server, the manager introduces a new DNAT rule into Net-

filter. IPTables are used as an interface to insert a DNAT

rule. DNAT can direct client peers to a different server peer

transparently. However, for some keep-alive session-based

applications, it will destroy the on-going connections. In our

experiments, peers redirected to the virtual cache server first

disconnect their connections and re-establish them.

A query Q consists of several search parameters such as

key, Rmax, linktype, and filesize. Here we only consider

key, i.e., keyword, and Rmax, i.e., the maximum number

of results desired. When a virtual cache server receives a

query Q, it generates a response message and first examines

the local directory database using the given keywords. If the

number of files that match the keywords is non-zero, their

filenames and properties are recorded in a response message.

If the number of files locally found cannot satisfy the max-

imum number of results desired Rmax, the virtual cache

proxy next examines the cache. Then, results are merged to-

gether, it is fit to Rmax, and finally it is sent to a requesting

peer as a response message.

A virtual cache proxy maintains a list of keywords that

it has searched. The keywords are then compared with the

history list. If they are new, the query Q is forwarded to

the server that it is originally directed to. However, the re-

questing peer does not wait for the response from the original

server to avoid the extra delay. A response message is sent

to the peer in the preceding steps as described. As a result,

peers receive a small result until the virtual cache proxy col-

lects sufficient amount of information in its local database

and cache. When the virtual cache proxy receives a response

message from the server, it investigates the results. If there

are one or more search results, the virtual cache proxy de-

posits them in its local cache for the further use.

A TTL-based mechanism was introduced to keep the con-

tents of the cache up-to-date. Since peers might leave

from a P2P network without any notification, the directory

database cached at an active router contains meaningless

records. The instant when a new record is deposited in the

cache is also kept in the cache. For each item of search result

from cache, the local searcher will compares its timestamps

with the current time. If more than Thd, a predefined thresh-

old, has passed, that item of result will be ignored and the

OpenNap Server

PC−2 (6 peers)

PC−1 (8 peers)

PC−3 (1 peer)

PC−4 (8 peers)

PC−5 (6 peers)

PC−6 (1 peer)

HubHub Router

Active Router

10Base−T network A:
10.10.10.0/24

10Base−T network B:
192.168.0.0/24

10.10.30.1

Figure 4 Experimental Environment

corresponding record is removed from the cache.

4. 4 Experiment and Evaluation

We conducted experiments on the system illustrated in

Fig. 4 to verify the practicality and effectiveness of our frame-

work from viewpoints of load-balancing and the quality of

service. When the number of queries that a server receives

decreases, we consider that load is moved to the active router.

The quality of service in OpenNap application is evaluated in

terms of the number of files that a response message contains

and the response time that a peer experiences.

The network consists of three sub-networks that are con-

nected with each other by an active router and a general IP

router. Either network A or B has 15 peers running at three

PCs. Each peer joins the P2P network at random and sends

query messages to a server once every 1.5 seconds. Either

in network A or B, 455 files are shared among peers. Thus,

at the beginning, there is a file list of 910 files at the Open-

Nap server. We prepare a keyword list for those files. The

number of files that a keyword matches follows the Zipf-like

distribution. In our experiments, we first defined a list of

keywords. Then, 910 file names were generated based on

those keywords. As a result, each of ten major keywords

matched 91 files, each of twenty matched about 45, each of

thirty matched about 30, each of forty matched 23, each of

fifty matched 18, each of sixty matched 15, each of seventy

matched about 13, each of eight matched about 11, each of

ninety matched about 10, and finally each of one hundred

matched about 9. Then, files were randomly divided into

two groups. Peers in network A shared files in one group

and peers in network B did in the other group.

The query rate was used as a metric of load state. We em-

pirically employed 9.5 as the threshold in the experiments.

We took the maximum search results Rmax = 100 in each

query request.

Figure 5 depicts the variations of the number of queries

that the OpenNap server received and that captured by ac-

tive router at the interface near to network B. First, only one

peer in network B was connected to OpenNap server while

there were two peers in network A connecting to OpenNap

server. From about 50 seconds, more peers joined the P2P

— 5 —



0

5

10

15

20

0 50 100 150 200 250 300

Q
ue

ry
 ra

te
 [Q

ue
rie

s/
S

ec
.]

Time [Seconds]

OpenNap server
Active router

Figure 5 Variation of Query Rates

0

20

40

60

80

100

0 50 100 150 200 250 300

N
um

be
rs

 o
f f

ile
s 

[It
em

s]

Time [Seconds]

Figure 6 Variation in the Number of Files in Response Messages

on Network B

network and were connected to the OpenNap server. At

about 120 seconds, the query rate passing through active

router exceeded the threshold 9.5. Thus, the active router

initiated a virtual cache proxy and introduced a new DNAT

policy to Netfilter. As a result, the OpenNap server received

queries only from peers in Network A and the cache proxy

in the active router.

Figure 6 illustrates the variation in the number of files

in a response message. Although there are variations due

to keywords chosen, we observe that the quality of search

results becomes insufficient after the load-balancing as we

mentioned in section 4. 3. However, as time passes, the vir-

tual cache proxy improved its cache by observing query and

response messages, and the quality of service was improved.

Response time for peers in network B reduced to the half

after the redirection, as Fig. 7 illustrates. It means peers in

network B began to receive much better and faster search ser-

vices than before. Spikes in Fig. 7 correspond instants that

new peers joined the P2P network. When new peers join and

register themselves, a virtual cache proxy updates its local

directory database. It disturbs local searcher in processing

queries and the response time increases. Such problem can

be avoided by optimizing synchronization mechanism for ac-

cess to a common data block shared by several threads in an

active OpenNap cache proxy.

0

50

100

150

200

250

300

0 50 100 150 200 250 300

R
es

po
ns

e 
Ti

m
e 

[M
ill

is
ec

on
ds

]

Time [Seconds]

Figure 7 Variation of the Response Time on Network B

5. Conclusions

We proposed a framework to distribute load on dynami-

cally changing P2P network in a transparent way. We im-

plemented an active OpenNap cache proxy as the prototype

of application of our framework. Through experiments, the

practicality and usefulness of our framework was verified.

However, we need to further consider the efficient implemen-

tation that attains the load distribution while keeping the

level of the quality of service. Furthermore, we will con-

sider other types of applications of our framework, and in-

vestigate methods to efficiently and effectively measure the

performance of P2P network.

References

[1] “OpenNap,” available at http://opennap.sourceforge.

net/.

[2] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.

Wetherall, and G. J. Minden, “A survey of active network

research,” IEEE Communications Magazine, vol. 35, no. 1,

pp. 80–86, January 1997.

[3] J. Ioannidis and S. M. Bellovin, “Implementing pushback:

router-based defense against DDoS attacks,” in Proceedings

of NDSS 2002, February 2002.

[4] H. Akamine, N. Wakamiya and H. Miyahara, “Heteroge-

neous video multicast in an active network,” IEICE Trans-

actions on Communications, vol. E85-B, pp. 284–292, Jan-

uary 2002.

[5] D. Wetherall, U. Legedza and J. Guttag, “Intoducing new

Internet services: why and how,” IEEE NETWORK Maga-

zine, Special Issue on Active and Programmable Networks,

July 1998.

[6] J. D. Touch and V. K. Pingali, “DataRouter: A Network-

Layer Service for Application-Layer Forwarding,” in Pro-

ceedings of IWAN 2003, December 2003, pp. 113–124.

[7] C. Bachmeir, P. Tabery, and J. Kafer, “Towards diverse pro-

tection of data streams in programmable application layer

overlay networks,” in Proceedings of SoftCOM’03, October

2003.

[8] C. Kappler J. Quittek, “Remote service deployment on pro-

grammable switches with the ietf snmp script mib,” in Pro-

ceedings of DSOM ’99, October 1999, pp. 135–147.

— 6 —


