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Abstract

Since a radio channel is shared among terminals in an ad
hoc network, packet collisions are frequent. When trans-
mitting packets using TCP, data and ACK packets are trans-
mitted in opposite directions on the same radio channel.
Therefore, frequent collisions are unavoidable, and this se-
riously degrades throughput. To reduce the likelihood of
packet collisions when an intermediate node transmits both
data and ACK packets, these two types of packet can be
combined and transmitted at the same time to increase the
efficiency of radio channel utilization.

In this paper, we propose a new technique to improve
TCP performance by combining data and ACK packets.
Our proposed technique is applicable to an ad hoc network
that uses a table-driven routing method. By means of a sim-
ulation using networks with various topologies, we have
found that throughput can be improved by up to 60% by
applying our proposed technique.

1 Introduction

In recent years, many ways of applying wireless ad hoc
networks have been developed. When an ad hoc network
provides the same services as a wired network, TCP [1]
should be used as the transport layer protocol because it is
the de facto standard for wired networks. An ad hoc net-
work is multi-hop network composed of wireless channels,
though, and the transmission quality of a wireless channel
is less stable than that of a wired channel. Therefore, packet
loss occurs frequently in an ad hoc network, and the con-
sequent connection failure can severely degrade TCP per-
formance. Several groups have studied TCP performance
over ad hoc networks [2, 3, 4, 5]. Much of this research
has focused on TCP performance degradation caused by
terminal movement. For example, [2] developed the ex-
plicit link failure notification (ELFN) technique. ELFN re-

duces the effect of the decrease of the TCP window size
when a link failure occurs in the middle of a route. In
this technique, a node freezes the TCP mechanism when
a link failure occurs, thus preventing the TCP from making
the window size excessively small, and so the TCP perfor-
mance is improved. Although [2] focused on node mobil-
ity, we have examined the performance degradation caused
by short-duration link failure in an ad hoc network where
the terminal is stationary. We have applied ELFN and de-
veloped a technique that improves the performance of such
a network [6].

However, we found that simply avoiding link failure was
not sufficient to improve TCP performance. Packet colli-
sions occur because TCP is based on bidirectional commu-
nication. When TCP is used as the transport layer proto-
col, a TCP sender sends data packets and a TCP receiver
receiving packets sends ACK packets to a sender for ac-
knowledgement. In ad hoc networks, since nodes cannot
distinguish between data packets and ACK packets, colli-
sions often occur over wireless connections. As packets
travel over multi-hop links, they often collide. The IEEE
802.11 standard provides for channel reservation based on
an RTS/CTS control message, but this causes another prob-
lem. Neighboring nodes that can receive radio-wave sig-
nals must be silent until the channel is released, especially
in a high-density network topology. Many nodes can-
not send packets they want to send, and eventually packet
losses occur and performance deteriorates [7].

In this paper, we propose a technique to improve TCP
performance in an ad hoc network that focuses on the bidi-
rectional characteristic of TCP. In this technique, if a data
packet and an ACK packet meet in an intermediate node,
they will be collectively transmitted in an opposite direc-
tion simultaneously. In this way, packet collisions can be
avoided and effective use of a wireless channel achieved.

To evaluate this technique, we applied it to an ad hoc



network which used table-driven routing with fixed termi-
nals. In a fixed ad hoc network, packet losses are caused
mainly by packet collisions rather than by node mobility. In
this way, we could clearly see the effect of this technique.
Flexible Radio Network (FRN) is a commercially available
product based on an ad hoc network system, and it is driven
by a routing table with fixed nodes [8]. We therefore used
FRN to evaluate our proposed technique. Through a sim-
ulation using networks with various topologies, we found
that throughput could be improved by up to 60%, or at least
10% in a very high load situation, by applying our proposed
technique.

This paper is organized as follows. Section 2 describes
the FRN system and Section 3 describes our proposed tech-
nique. We evaluate the technique in Section 4 and conclude
the paper in Section 5.

2 System Description of FRN

FRN is a commercial product based on ad hoc network
technology. A network can be built only by suitably plac-
ing terminal nodes, and the network can be extended only
by adding nodes as needed. FRN has been used, for exam-
ple, for electric energy control in factories and ticket man-
agement systems in skiing areas. Services usually supplied
over a wired network are now being requested through an
FRN. In such a system, all nodes are controlled by a proto-
col which can efficiently adapt to node failures and changes
to the network configuration.

An FRN’s routing system is table-driven, like a DSDV
(destination-sequenced distance vector) type [9] with peri-
odic communication. Routing protocols of an on-demand
type, such as AODV (ad-hoc on-demand distance vector)
[9], are suitable for networks whose nodes move rapidly.
However, FRN nodes are basically stationary, they can
know their neighboring nodes, and manage through a rout-
ing table. Later on, we outline the FRN routing method and
the FRN data-link protocol. The details of these are given
in [10].

2.1 Data-link Protocol

In an FRN, the radio channel is divided into fixed-length
time slots. When a packet is to be sent, the node wanting to
send the packet does a carrier sense at the start of the time
slot and this carrier sense prevents the packet from collid-
ing with another. In addition, acknowledgement between
neighboring nodes is done using a packet which is also used
for forwarding from one node to the next. Every neighbor-
ing node in a wireless network can receive packets from a
node even when it is not the packet source/destination. We
call such a packet arelay echoin an FRN. The final destina-
tion node of a packet does not forward the packet, instead
sending a relay echo, and so it sends an FRN ACK packet
to the previous node. Forwarding of a packet and sending
of an FRN ACK are done in the time slot immediately af-
ter the slot in which the node receives the packet. Figure 1
shows the relay echo mechanism.

When the transmission of a packet fails because of a link
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Figure 1: Relay echo mechanism

failure or packet collision, the node resends the packet af-
ter waiting for a random number of time slots to prevent
another packet collision. Although this random number of
time slots is generally within a range of three to five slots,
the most desirable number of slots is undetermined. We
therefore examined the interval of random time slots, set-
ting it as 3-5 slots (the conventional number) as the short-
est interval, 3-9 slots, 3-13 slots,… and 3-25 slots as the
longest interval.

The maximum lifetime - the maximum time that a packet
is allowed to exist within a network - is defined by slot for
all packets and set at the source node. This lifetime is de-
creased by one for every time slot even if the packet re-
mains in a buffer. When the value reaches zero, the packet
is discarded. In the original FRN system, the value of this
parameter was defined to be long enough for a network
scale. If the value is too small, packets cannot reach their
destination; if the value is too big, unneeded packets re-
main in the network for a long time. Therefore, this value
is very important. In this paper, we tentatively set it as 32
slots.

2.2 Routing Protocol

In the FRN, each node manages network information in
a network configuration table. The network configuration
table contains the route information from the node to each
destination node. The route information consists of a list of
the neighboring nodes’ addresses on the routes to a desti-
nation node and the hop count of each route. This network
configuration table is created through periodic exchanges
of control packets that contain information regarding the
shortest route.

Every node maintains multiple sets of route information
for each destination node, and selects one when sending
packets to that node. This selection method is as follows.
For each destination, routes are classified into three groups
according to their hop count (Figure 2).

• Forward route: The route(s) having the lowest hop
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Figure 2: Classification of adjacent nodes

count to the destination.

• Sideward route: The route(s) whose hop count to the
destination is equal to the shortest hop count plus one.

• Backward route: The route(s) whose hop count to the
destination is equal to the shortest hop count plus two
or more.

The transmitting-priority order with respect to which nodes
to send to is forward route, sideward route, and backward
route. If every transmission to a node on a forward route
fails, transmission to a sideward node is attempted. If trans-
mission along all possible sideward routes also fails, the
node transmits to a backward node.

3 The Proposed Technique
We explained the problems that arise in ad hoc networks

in Section 1. In this paper, we focus on the problem of
packet collisions caused by bidirectional TCP communica-
tion.

Here we explain our proposed technique to alleviate the
problem of packet collisions. ACK packets are very small,
containing only TCP header information. Transmitting
such an ACK packet using a time slot as big as that used
for a data packet wastes radio channel capacity. There-
fore, we have considered ways to transmit a combined data
and ACK packet by exploiting a characteristic of a wireless
channel: that all nodes within the range of an electric wave
used to transmit a packet can know the packet contents.

To put it more concretely, every node needs to have two
queues. Data packets and ACK packets are saved in their
respective queues. When a packet is in both of queue,
each destination is determined, and the combined packet
is transmitted in a form where an ACK packet is added to a
data packet. If each node has only one queue, the combined
data and ACK packet can be saved in the queue. However,
the combined packet will be erased when one relay echo
or ACK (not of TCP but of FRN’s datalink layer) arrived
in this case, and the function of the relay echo will be de-
stroyed.
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Figure 3: A process where the proposed technique is used

Figure 3 shows a process where our proposed technique
is used. If a node does not have packets in each queue,
the node behaves as before. If a node has packets in each
queue, the node combines a data packet and an ACK packet
from the top of each queue and sends the combined packet
to two destinations (Figure 3(c)). If a node receives a com-
bined packet, it then determines the two destinations of the
combined packet, and when that node is one of the desti-
nations, it receives the portion of the packet addressed to
itself. If the node is not one of the destinations, it discards
the packet. Here, we must be careful regarding the time
slot that the next-hop nodes use to forward the packets. If
the nodes forward the packet in the next time slot, as be-
fore, packet collision invariably occurs and the node that
sent the combined packet cannot receive each relay echo.
To avoid this, we set up the time slot so that a packet is
less likely to collide with another when nodes receive the
combined packet. Figures 3(d) and 3(e) show this. Node
4 received the data-packet portion of the combined packet,
so it postpones retransmitting the ACK-packet portion for
one time slot to prevent a collision. Node 3 can thus receive
each relay echo from nodes 2 and 4.

This technique enables more efficient use of the radio
channel and reduces the chance of packets colliding when a
node has both data and ACK packets. When TCP is used as
the transport layer protocol, there are bidirectional streams
in the network, so intermediate nodes often possess both
data and ACK packets. Thus, our technique should signifi-
cantly improve TCP performance.

We evaluated the effect of the delayed ACK option of
TCP [1]. The delayed ACK option is aimed at effective use
of a wireless channel by sending collected ACK segments.
When a destination node receives a data packet, the node
delays the return of an ACK packet for a fixed time. All of
a node’s accumulated ACK packets can be transmitted as
one ACK packet if another data packet is receivable within
this time. If the number of ACK packets can be lowered by



using this option, improved TCP throughput in an FRN can
be realized. Therefore, we next evaluated whether our pro-
posed technique is also effective when used simultaneously
with this option.

4 Evaluation
4.1 Simulation Environment

We evaluated our proposed technique through simula-
tions using ns-2 [11] with its radio propagation model ex-
tended by the CMU Monarch Project [12]. We used the
IEEE 802.11 multicast transmission mode for all packet
transmissions with a slight modification to simulate the
FRN time slots. In all simulations, the time slots were syn-
chronized at all nodes. This mode is a single-hop multicast
that does not produce the channel reservation mechanism
that is produced by RTS/CTS of the IEEE 802.11 unicast
mode. The radio transmission range was 250 m and each
node’s buffer capacity was large enough to inhibit buffer
overflow in our simulations. Each node exchanged its net-
work configuration table at intervals sufficiently long to not
affect the system performance. We set the maximum life-
time as 32 slots in all simulations.

We used the network topologies shown in Figure 4. A
circle and a number in the circle mean a node and its ad-
dress. A line connecting two nodes means that they can
communicate directly. Although these topologies are very
simple, we can use them to identify basic tendencies of
our proposed technique and apply the results to the general
FRN network. In all simulations, we used TCP Reno as the
transport layer protocol. We also evaluated the case where
the delayed ACK option was used. We used the Figure 4(a)
topology to evaluate the technique in a pure bidirectional
connection. In Figure 4(b), there is a crossing of connec-
tions and we evaluated the technique in such a case. Figure
4(c) shows a mesh topology, a more complicated topology
with more random connections.

We used throughput as a measure of performance. The
throughput was defined as the average number of acknowl-
edged data packets sent from every node per time slot. That
is, we measured the total network performance.

4.2 Results and Discussions

First, we evaluated throughput with the simplest topol-
ogy (Figure 4(a)). In this network, node 0 was a TCP
sender and node 4 was a receiver, so this connection looked
like a chain of 4 hops. The results are shown in Figure 5.
As mentioned (Section 2), we changed the retransmission
interval from 3-5 time slots to 3-25 time slots and mea-
sured the throughput at each interval. Figure 5(a) and Fig-
ure 5(b) show, respectively, the results without and with the
delayed ACK option. A similarity in the two figures is that
throughput is low with a short retransmission interval, im-
proves as the interval becomes longer, and eventually dete-
riorates again at the longest intervals. This is because many
packets collide when the retransmission interval is short,
lowering throughput, but as the interval becomes longer,
packet collisions become less common. However, if the in-
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Figure 4: Network topologies

terval is too long, the retransmission timing becomes late,
the connection response becomes poor, and the TCP per-
formance deteriorates. Therefore, we must set the interval
carefully. In this topology, an interval of 3-17 time slots al-
lowed the best throughput without the delayed ACK option
and our proposed technique improved throughput by 60%.
With the delayed ACK option, the best throughput was ob-
tained when the interval was 3-13 time slots; in this case,
throughput was improved by 20%. The throughput with
the delayed ACK option was better than without the op-
tion entirely, because the option reduced packet collision in
the network. The rate of improvement with the option was
lower, though, because packet collision had already been
suppressed by the option.

Second, we used the cross-chain topology (Figure 4(b)).
In this topology, we observed the effect of collisions when
there were two different connections. (The connection be-
tween nodes 5 and 8 was added to the connection shown
in Figure 4(a).) The throughput shows the added value of
throughput of two connections. The results for this topol-
ogy are shown in Figure 6. The general pattern of the
results was similar to that for the chain topology, but the
rate of improvement with our proposed technique was only
20% without the delayed ACK option and 15% with the op-
tion - slightly lower than for the chain topology. Our pro-
posed technique focuses on packet collisions caused by one
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Figure 5: Throughput of one connection on chain topology

TCP connection, and if there are more than one connection
in the network, cross connections occur. Compared with
a single-connection case, the degree of improvement thus
becomes smaller.

Next, we simulated three or more connections in the
mesh network (Figure 4(c)). The three connections were
nodes 0 to 4, nodes 13 to 18, and nodes 15 to 16. The
results are shown in Figure 7. The pattern again resem-
bled the previous cases with an 18% improvement without
the delayed ACK option and a 10% improvement with the
option. Last, we simulated random connections with the
mesh topology. We set the number of TCP connections
(i.e., the network load) to 3, 6, or 9. Random connection
meant that two nodes were randomly selected and one be-
came a sender while the other was a receiver. We generated
20 connection patterns and averaged the rate of improve-
ment. Since we had obtained the best throughput using 3-
17 time slots in the earlier simulations, we used 3-17 time
slots here. The results are shown in Table 1. When there
were 9 connections, the network load was very high, but
the rate of improvement was at least close to 10%. Thus,
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Figure 6: Throughput of crossing two connections on
cross-chain topology

even when the load is very high and the connections are
random, our proposed technique is effective in an FRN.

5 Conclusion and Future Work

In this paper, we analyzed the problem of packet colli-
sion that arises when TCP is used in an ad hoc networks.
We have proposed a technique that combines data and ACK
packets, and have shown through simulation that this tech-
nique can make radio channel utilization more efficient.
In the simulation, the technique improved the TCP perfor-
mance by up to 60%, and by about 10% even when the
network load was very high.

In the future, we will analyze a routing method that pre-
vents packets from colliding. This method will enable data
packets and ACK packets to pass along separate paths, thus
eliminating the possibility of collision between data pack-
ets and ACK packets.
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