
Implementation and Evaluation of Proxy Caching System
for MPEG-4 Video Streaming with Quality Adjustment Mechanism

Yoshiaki Taniguchi1, Atsushi Ueoka2, Naoki Wakamiya1,
Masayuki Murata1, and Fumio Noda2

1 Department of Information Networking,
Graduate School of Information Science and Technology, Osaka University

1-3 Machikaneyama, Toyonaka, Osaka 560-8351, Japan
Tel: +81-6-6850-6588, Fax: +81-6-6850-6589

{y-tanigu, wakamiya, murata}@ist.osaka-u.ac.jp
2 Systems Development Laboratory, Hitachi Ltd.

1099 Ohzenji, Asao-ku, Kawasaki, Kanagawa, 215-0013 Japan
{at-ueoka, noda}@sdl.hitachi.co.jp

Abstract

With the increase in computing power and the proliferation of the Internet, video streaming
services have become widely deployed. In this paper, we propose, design, implement, and evaluate
a proxy caching system for MPEG-4 video streaming services. With our system, high-quality, low-
delay, and scalable video distribution can be accomplished. Through evaluations conducted from
several performance aspects, we proved that our proxy caching system can provide users with a
continuous and high-quality video streaming service in accordance with network condition.

Keywords: Quality Adjustment, Video Streaming Service, Proxy Caching, MPEG-4

1 Introduction

With the increase in computing power and the proliferation of the Internet, video streaming services
have become widely deployed. Through these services, the client receives a video stream from a video
server over the Internet and plays it as it gradually arrives. However, on the current Internet, only
the best effort service, where there is no guarantee on bandwidth, delay, or packet loss probability, is
still the major transport mechanism. Consequently, video streaming services cannot provide clients with
continuous or reliable video streams. As a result, the perceived quality of video streams played at the
client cannot satisfy expectations, and freezes, flickers, and long pauses are experienced. Furthermore,
most of today’s Internet streaming services lack scalability against increased clients since they have been
constructed on a client-server architecture. A video server must be able to handle a large number of
clients simultaneously. It injects a considerable amount of video traffic along the path to distant clients,
and the network becomes seriously congested.

The proxy mechanism widely used in WWW systems offers low-delay and scalable delivery of data
by means of a “proxy server”. The proxy server caches multimedia data that have passed through it in
its local buffer, called the “cache buffer”, and it then provides the cached data to users on demand. By
applying this proxy mechanism to video streaming systems, high-quality and low-delay video distribution
can be accomplished without imposing extra load on the system [1, 2, 3, 4]. In addition, the quality of
cached video data can be adapted appropriately in the proxy when clients are heterogeneous, in terms of
the available bandwidth, end-system performance, and user preferences on the perceived video quality.

In this paper, we propose and design a proxy caching system for MPEG-4 video streaming services to
attain high-quality, continuous, and scalable video distribution. In our system, a video stream is divided
into blocks so that the cache buffer and the bandwidth can be used efficiently. A proxy retrieves a block
from the server, deposits it in its local cache buffer, and provides the requesting client with the block in
time. It maintains the cache with a limited capacity by replacing unnecessary cached blocks with a newly
retrieved block. The proxy cache server also prefetches video blocks that are expected to be required in
the near future to avoid cache misses. The proxy server also adjusts the quality of a cached or retrieved

1



Streaming
Server Player

RTSP
Server

RTSP
Client

Cache
Manager

RTP
Sender

RTCP
Sender

Hard
Disk

Filter

TFRC

Video Video

Audio Audio
RTP

Sender

RTCP
Sender

RTP
Receiver

RTCP
Receiver

RTP
Receiver

RTCP
Receiver

Cache
Table

Proxy

(RTSP/TCP)

(RTP/UDP)
Video

(RTP/UDP)
Audio

(RTCP/UDP)

(RTCP/UDP)

ClientServer

(RTSP/TCP)

(RTP/UDP)
Video

(RTCP/UDP)

(RTP/UDP)

(RTCP/UDP)

Audio

Signal Data module

Figure 1: Modules constituting system

video block to the appropriate level through video filters to handle client-to-client heterogeneity without
involving the original video server.

We implemented our proxy caching system for MPEG-4 video streaming services on a real current
system. We employed off-the-shelf and common applications for the server program and the client
program. Our proxy caching system can be applied to environments in that RTSP/TCP was used to
control video streaming and RTP/UDP to deliver them. We introduced a TFRC (TCP Friendly Rate
Control) mechanism to the system for video streaming to share the bandwidth fairly with conventional
TCP sessions. We used a frame dropping filter to adapt the rate of video streams to the bandwidth
available to service. Through evaluations from several performance points of view, we proved that our
proxy caching system could dynamically adjust the quality of video streams to suit network conditions
while providing users with a continuous and high-quality service.

The rest of this paper is organized as follows. Section 2 describes our proxy caching system and
explains how it is implemented. Section 3 discusses several experiments we did to evaluate our system.
Section 4 is the conclusion.

2 Proxy Caching System with Video Quality Adjustment

In this section, we describe the system we implemented. Fig.1 illustrates the modules that constitute
our video streaming system. The video streaming was controlled through RTSP (Real Time Streaming
Protocol) [5] / TCP sessions. There were two sets of sessions for the client. The first was established
between the originating video server and proxy to retrieve uncached blocks. The other was between the
proxy and client. Each of video and audio was transferred over a dedicated RTP (Realtime Transport
Protocol) [6] / UDP session. The quality of service was monitored over RTCP (RTP Control Protocol)
/ UDP sessions. The video stream was coded using the MPEG-4 video coding algorithm, and it was
compliant with ISMA 1.0 [7]

2.1 Basic Behavior

Figure 2 illustrates the basic behavior of our system. In the proxy cache server, a video stream is divided
into blocks so that the cache buffer and the bandwidth can be efficiently used. Each block corresponds to
a sequence of VOPs (Video Object Planes) of MPEG-4. A block consists of a video block and an audio
block, and they are separately stored. The number of VOPs in a block is determined by taking into
account the overheads introduced by maintaining the cache and transferring data block-by-block. The
strategy used to determine the block size is beyond the scope of this paper. We used 300 in our empiric
implementation. Since an MPEG-4 video stream is coded at 30 frames per second, a block corresponds
to ten seconds of video. Segmentation based on VOP was reasonable since packetization based on this is
recommended in RFC3016 [8]. Furthermore, we could use the range field of the RTSP PLAY message to

2



Server

Proxy

Client

Playout

1

2

Time

Signal Video Data

3 4

5

O
P

T
IO

N
S

Establishing connections

O
K

D
E

S
C

R
IB

E

S
E

T
U

P

O
K

(V
id

eo
)

S
E

T
U

P
(A

ud
io

)

O
K

O
K

P
L

A
Y

P
L

A
Y

 (3
-4

)

O
K

O
K

Play-out Delay

Cache Miss

Cache Manager

RTP Receiver

RTP Sender
1

2 3 4

T
E

A
R

D
O

W
N

O
K

closing
connections

5

Figure 2: Basic behavior of our system

specify a block, e.g., Range 20-30, because we could easily specify the time that the block corresponded
to.

First, a client begins by establishing connections for audio/video streams with the proxy server using a
series of RTSP OPTIONS, DESCRIBE, and SETUP messages. An OPTIONS message is used to request
communication options. A DESCRIBE message is used for media initialization and a SETUP message
is used for transport parameter initialization. These RTSP messages are received by the Cache Manager
through an RTSP Server module (in Fig.1). The proxy server relays RTSP OPTIONS, DESCRIBE, and
SETUP messages to the video server. Thus, connections between the video server and the proxy server
are also established at this stage. Then, the client requests delivery of the video stream by sending an
RTSP PLAY message.

A proxy maintains information about cached blocks in the Cache Table. Each entry in the table
contains a block identifier, the size of the cached block, and the flag. The size is set at zero when the
block is not cached. The flag is used to indicate that the block is being transmitted. On receiving a
request for a video stream from a client through the RTSP Server, the Cache Manager begins providing
the client with blocks. It first examines the table. As long as blocks of the requested stream are cached,
the Cache Manager sequentially reads them out and sends them to the client through the RTP Sender.
The quality of video blocks is adjusted to fit the bandwidth on the path to the client by the Filter. The
bandwidth is estimated by the TFRC (TCP Friendly Rate Control) module using feedback information
collected by exchanging RTCP messages. When a connection between the video server and the proxy
server is not used for the predetermined timeout duration, the video server terminates the connection
according to RTSP specification. In our system, the proxy server maintains the connection for future
use by regularly sending an RTSP OPTIONS message after 90 seconds idle period.

When a block is not cached in the local cache buffer, the Cache Manager retrieves the missing block
by sending an RTSP PLAY message to the video server. To use bandwidth efficiently, and prepare for
potential cache misses, it also requests the video server to send succeeding blocks that are not cached,
by using the range field of the RTSP PLAY message. Blocks 3 and 4 in Fig.2 have been retrieved from
the video server by sending one RTSP PLAY message. Although we have to use an SMPTE, NPT, or
UTC timestamp to specify the range, there are block identifiers beside the PLAY message in Fig.2 to
allow for easier understanding.

On receiving a block from the video server through the RTP Receiver, the Cache Manager sets its
flag to on to indicate that the block is being transmitted, and it relays the block to the RTP Sender
VOP by VOP. When reception is completed, the flag is cancelled and the Cache Manager deposits the
block in its local cache buffer. If there is not enough room to store the newly retrieved block, the Cache
Manager replaces one or more less important blocks in the cache buffer with the new block.

A client receives blocks from a proxy and first deposits them in a so-called play-out buffer. Then,
after some period of time, it gradually reads blocks out from the buffer and plays them. By deferring
the play-out as illustrated in Fig.2, the client can prepare for unexpected delay in deliverly of blocks due
to network congestion or cache misses.

When a proxy server receives an RTSP TEARDOWN message from a client, the proxy server relays
the message to the video server, and closes the sessions.

3



High
Priority Low

Receiving Receiving

Start End

Cached block with the highest priority Cached block with low priority

12345 678Stream

Figure 3: Priority of cached blocks

2.2 Cache Replacement

When a proxy cache server retrieves a block and finds the cache is full, it discards one or more less
important blocks to make room for the new block. First, the Cache Manager selects the video stream
with the lowest priority from cached streams using the LRU (Least Recently Used) algorithm. It then
assigns priority to blocks in the selected stream using the following algorithm. Blocks being received
from the video server have the highest priority. The block at the beginning of the stream is also assigned
the highest priority to provide potential clients with a low-latency service. Of the others, those closer to
the end of a longer succession of cached blocks are given lower priorities. Finally, blocks candidate for
replacement are chosen one by one until sufficient capacity becomes available.

Figure 3 has an example of victim selection. In this example, the block located at the end of the
stream is in the longest succession. Therefore, the block is given the lowest priority and becomes the
“1”st victim. Among successions of the same length, the one closer to the end of the stream has lower
priority.

2.3 Rate Control with TFRC

TFRC is a congestion control mechanism that enables a non-TCP session to behave in a TCP-friendly
manner [9]. The TFRC sender estimates the throughput of a TCP session sharing the same path in
accordance with network condition, expressed in terms of loss event rate, RTT, and packet size.

In the system we implemented, this information is obtained by exchanging RTCP messages between
the RTCP Sender of the proxy cache server and the client application. A client reports the cumulative
number of packets lost and the highest sequence number received to a proxy. From those information,
the proxy obtains the packet loss probability. RTT is calculated from the time that the proxy receives
LSR and DLSR fields of a RTCP Receiver Report message and the time that the proxy receives the
message. By applying the exponentially weighted moving average functions, the smoothed values are
derived for both.

Although the TFRC requires a client to send feedback messages at least once per RTT, the client
application employed in the experiments issues RTCP Receiver Report messages every three to six
seconds. According to RTCP specifications, the sender can trigger feedback by sending an RTSP Sender
Report to the receiver, but it ignores this. Thus, to make a client frequently report reception conditions,
we have to modify the client application. In the current system, we employed off-the-shelf and common
applications for the video server and clients so that we could verify the practicality and applicability of
proxy cache system we propose. Problems inherent in public applications remains for future research.

2.4 Video Quality Adjustment

The quality of the block sent to a client is adjusted so that resulting video rate fits the available bandwidth
estimated by the TFRC. We employed a frame dropping filter [10] as a quality adjustment mechanism.
The frame dropping filter adjusts the video quality to the desired level by discarding frames. The
smoothness of video play-out deteriorates but it is simpler and faster than other filters such as low-pass
and re-quantization.

We should take into account the interdependency of video frames in discarding frames. For example,
discarding an I-VOP affects P-VOPs and B-VOPs that directly or indirectly refer to the I-VOP in
coding/decoding processes. Thus, unlike other filters [11], we cannot do packet-by-packet or VOP-by-
VOP adaptation. The frame dropping filter is applied to a series of VOPs of one second. The Filter first

4



124 35 6 78 9 10 11 12 13 14 15

Figure 4: Frame discarding order

0

500

1000

1500

2000

0 100 200 300 400 500 600

bi
t r

at
e 

[k
bp

s]

time [sec]

original
800kbps

500kbps

200kbps

Figure 5: Adjusted video rate by frame dropping filter

buffers, e.g., 15 VOPs in our system where the video frame rate is 15 fps. Then, the order for discarding
is determined. To produce a well-balanced discard, we prepared a binary tree of VOPs. The VOP at the
center of the group, i.e., the eighth VOP in the example, became the root of the tree and was given the
lowest priority. Children of the eighth VOP were the fourth and twelfth VOPs and respectively became
the second and third candidates for frame dropping. Fig.4 illustrates the resulting order for discarding
assigned to VOPs. The order itself does not take into account VOP types. Then, considering inter-VOP
relationships, we first discard B-VOPs from ones that have the lowest priority until the amount of video
data fits the bandwidth. If it is insufficient to discard all B-VOPs to attain the desired rate, we move to
P-VOPs. Although we could further discard I-VOPs, they have been kept in the current implementation
for the sake of smooth video play-out without long pauses.

Figure 5 shows bit rate variation of filtered video streams generated aiming at 200, 500, 800 kbps
from the original VBR video stream whose average rate is 1000 kbps.

3 Evaluation

Figure 6 has the configuration for our experimental system. A proxy is directly connected to a video
server. One video client is connected to the proxy through two routers. The video session competes for
the bandwidth of the link with two routers with three FTP sessions and a UDP flow generated by a
packet generator. In the experiment, the video client issues the OPTIONS message at time zero. FTP
sessions start transferring files at 180 seconds and stop at 420 seconds. The packet generator always
generates UDP packets at the rate of 8.5 Mbps. Using this configuration, we evaluated the capability of
adjusting video quality dynamically against changes in network conditions. For this purpose, the proxy
as well as the server had the whole video stream in a cache buffer of 200 MBytes. A ten-minutes-long
video stream was coded by an MPEG-4 CBR coding algorithm targeted at rate of 1 Mbps. Video data
of 320×240 pixels and 30 fps and audio data of 96 Kbps were multiplexed into the MPEG-4 stream. A
block corresponds to 300 VOPs, i.e, 10 seconds. Thus, the stream consists of 60 blocks. For purposes
of comparison, we also conducted experimental evaluations of the traditional method where the proxy
does not adjust video quality.

Figures 7(a) and (b) have variations in reception rates observed at each client with tcpdump. As
Fig.7(a) shows, the video reception rate is regulated in accordance with network conditions. During
congestion, the average throughput of TCP sessions is 185 kbps with our system. On the contrary,
since the traditional system keeps sending video traffic at the coding rate, TCP session are disturbed

5



Server

redhat 7.2
Pentium 3 Xeon 
550MHz

Proxy

redhat 7.2
Xeon
2.2GHz Dual

Router

Vine 2.5
Xeon
2.2GHz Dual

Windows 2000
Pentium 4
2.4GHz

Client 

FTP Client 2

Windows 2000
Celeron
1GHz

Router

10Base-T 10Base-T

redhat 7.2
Pentium 3 Xeon
750MHz

100Base-T

FTP Client 1

Windows 2000
Pentium 4
2.4 GHz

FTP Client 3

Windows 2000
Pentium 3
1.2 GHz

FTP Sever 3

FTP Sever 2

FTP Sever 1

redhat 7.2
Pentium 3
700 MHz

Packet Generator

SmartBits600

Figure 6: Configuration of experimental system

0

500

1000

1500

2000

0 100 200 300 400 500 600

th
ro

ug
hp

ut
 [

kb
ps

]

time [sec]

Video
FTP1
FTP2
FTP3

(a) With quality adjustment

0

500

1000

1500

2000

0 100 200 300 400 500 600

th
ro

ug
hp

ut
 [

kb
ps

]

time [sec]

Video
FTP1
FTP2
FTP3

(b) Traditional method

Figure 7: Reception rate variations

and, the attained throughput is only 92 kbps. To conclude, by introducing the TFRC algorithm and a
video-quality adjustment mechanism, our video streaming system behaves in a friendly manner with the
TCP.

However, as observed in Fig.7(a), there are large rate variations in video session and the average
throughput of the video session during the competitive period is higher than that of TCP sessions.
The major reason for this is that the control interval of adaptation is three to six seconds, which is
considerably longer than that of the TCP which reacts to network conditions in order of RTT. TCP
sessions are sensitive to congestion and they suppress the number of packets to inject into the network
when they occasionally observe packet losses. Video sessions, on the other hand, do not notice sudden
and instantaneous packet losses due to the long control interval. By increasing the frequency that a client
reports feedback information, such discrepancies are expected to be eliminated. Another reason is that
the experimental system is relatively small. As a result, only a slight change during a session directly
and greatly affects the other sessions. Then, synchronized behaviors are observed in Fig.7(a). We plan
to conduct experiments within a larger network environment where a large number of sessions co-exist.

Figures 8 (a) and (b) show packet loss probability calculated from information in RTCP Receiver
Report messages. The high and bursty packet loss in the traditional system leads to degradation of
video quality perceived by the client. We evaluate the video quality in terms of jerkiness, blockiness,
blurriness, and noise using the VideoQoS2 by GENISTA Corporation. Jerkiness corresponds to the
smoothness of video play-out. Blockiness is related to degradation in quality caused by loss of data

6



0.0001

0.001

0.01

0.1

0 100 200 300 400 500 600

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

time [sec]

(a) With quality adjustment

0.0001

0.001

0.01

0.1

0 100 200 300 400 500 600

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

time [sec]

(b) Traditional method

Figure 8: Packet loss probability variations

Table 1: Summary of video-quality evaluation

Blockiness Blurriness Noise Jerkiness

With quality adjustment average 31 10 83 44
variance 142 17 139 1290

Traditional method average 31 10 79 65
variance 263 128 2810 2410

and a high compression ratio that leads to block-shaped regions or mosaic in the image. Blurriness
corresponds to the fineness of the outline of objects in an image. Finally, noise in VideoQoS2 expresses
the degree of noise observed around the edge or in the smooth regions of the image. Due to space
limitations, there is only a summary of the results in Table 1. Independent of measurements, a larger
value indicates lower quality. These values were calculated within a congested period from 180 to 420
seconds. As the table reveals, except for jerkiness, video quality does not differ much between systems.
Variations in traditional system are larger than those in our system due to the frequent packet loss. It
is obvious that video play-out with our system is smoother than with the traditional system, although
the VOPs are intentionally discarded by the frame dropping filter. In the traditional system, the proxy
persists in sending video data at the coding rate during congestion, and many packets are lost at routers.
The client application abandons playing out a VOP seriously damaged by packet loss. The number of
packets that constitute a VOP is proportional to the size of VOP. Thus, the probability that a single
packet loss affects the whole VOP is higher for I-VOP than for P-VOP, and further for P-VOP than
for B-VOP. In addition, the influence of packet loss on I-VOP and P-VOP propagates to the succeeding
VOPs that directly or indirectly refer to the damaged VOP. As a result, being suffered from packet
losses, the user observes frequent freezes and long pauses during congestion, and a jerkiness increases in
the traditional system. The perceived video quality is higher with our system than with the traditional
system owing to the intentional frame discarding although the amount of received video data in the
traditional system is larger than that in our system.

4 Conclusion

In this paper, we proposed, designed, implemented, and evaluated a proxy caching system for MPEG-
4 video streaming services. Due to space limitations, some experimental results including a case that
involved cache replacement had to be omitted from the paper, but the fundamental experiments, revealed
that our proxy caching system can dynamically adjust the quality of video streams to prevailing network
conditions while providing users with a continuous and high-quality video streaming service.

7



In future research work, we plan to conduct additional experiments, e.g., within a larger network
environment, with other filtering mechanisms, and with other server and client applications. We would
also need to take into account user interactions such as pauses, fast forwarding, and rewinding.

References

[1] R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multimedia proxy cache for internet
streaming,” in Proceedings of NOSSDAV 2001, June 2001.

[2] K. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of multimedia streams,” in Pro-
ceedings of the 10th International WWW Conference, pp. 36–44, May 2001.

[3] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation for efficient streaming
media distribution,” in Proceedings of IEEE INFOCOM 2002, Jun. 2002.

[4] M. Reisslein, F. Hartanto, and K. W. Ross, “Interactive video streaming with proxy servers,”
Information Sciences: An International Journal, Dec. 2001.

[5] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming Protocol (RTSP),” Internet Request
for Comments 2326, Apr. 1998.

[6] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for real-time
applications,” Internet Request for Comments 1889, Jan. 1996.

[7] Internet Streaming Media Alliance, “Internet Streaming Media Alliance Implementation Specifica-
tion Version 1.0,” Aug. 2001.

[8] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, and H. Kimata, “RTP Payload Format for MPEG-4
Audio/Visual Streams,” Internet Request for Comments 3016, Nov. 2000.

[9] M. Handley, S. Floyed, J. Padhye, and J. Widmer, “TCP Friendly Rate Control (TFRC): Protocol
specification,” Internet Request for Comments 3448, Jan. 2003.

[10] N. Yeadon, F. Graćıa, D. Hutchinson, and D. Shepherd, “Filters: QoS support mechanisms for
multipeer communications,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1245–
1262, Sept. 1996.

[11] T. Yamada, N. Wakamiya, M. Murata, and H. Miyahara, “Implementation and evaluation of video-
quality adjustment for heterogeneous video multicast,” in Proceedings of The 8th Asia-Pacific Con-
ference on Communications (APCC2002), pp. 454–457, Sept. 2002.

8


