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SUMMARY In this paper, we propose a new computing en-
vironment (which we will refer to λ computing environment) that
provides a base for parallel computing among nodes distributed
in the wide area. In our concept, virtual channels are provided
utilizing optical networks connecting computing nodes. It can of-
fer high-speed and reliable connection pipe among nodes, so that
it is efficiently applicable to SAN (Storage Area Network) and/or
Grid computing. In the environment, shared memory is consti-
tuted on a virtual ring of the photonic network. Consequently,
it is not necessary to distinguish shared memory in a wide-area
distributed system from a communication channel; thus high-
speed data exchange between computing nodes on the ring can
be achieved. The key to realizing such a computing environment
is how to construct a shared memory system on the photonic
ring. In this paper, we propose and evaluate a shared memory
system suitable to the virtual optical ring network, which takes
into account contention resolution, cache coherency, and synchro-
nization methods because the propagation delays among nodes
are much larger than the conventional shared memory system.
Through simulation experiments of using three benchmark pro-
grams as representative parallel computing applications, we show
the applicability of our shared memory system on the wide-area
virtual photonic ring.
key words: λ Computing Environment, Shared Memory, Cache
Coherency, Memory Access Contention

1. Introduction

As users of networks such as the Internet have in-
creased, so has the amount of traffic steadily increased.
Various applications that utilize images have come to
be used, and the demands made on the technology that
enables the high speed and large scale transmission in a
network have increased. To satisfy these demands, re-
search into optical transmission technology has been ac-
tively pursued. Research into WDM technologies that
use multiplexed light wavelengths have been the main
target for development and technology from new WDM
research that can use 1000 wavelengths has also been
advanced [1]. In recent years, IP over a WDM network
has been studied and developed to provide high-speed
transmission on the Internet based on WDM technol-
ogy. Moreover, standardization of the routing technol-
ogy of the Internet, called GMPLS, which is the com-
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munication technology that uses various optical tech-
nologies for a lower layer than the WDM technology,
has also been advanced in IETF [2]. Further, aiming
to realize the true IP communication of a photonic net-
work, research into optical packet switches based on
optical technology has also begun [3]–[9].

However, many such technologies presuppose the
existing Internet technology. That is, an IP packet is
treated as a degree of granule treating information, and
it is made into the target for research and development
of how to carry it at high speed on a network. There-
fore, as long as architecture based on packet switch-
ing technology is focused on, realization of high quality
communication to each connection will be very diffi-
cult. New technologies such as SAN and Grid com-
puting need to be applied to provide end users with a
high speed and reliable communication pipe; for that, a
mass wavelength path needs to be set up between end
users and provided for users. That is, it is possible to
provide an end user with a ultra high-speed and high
quality communication pipe by building a photonic net-
work that uses established fibers, or newly laid fiber if
needed, and by utilizing wavelengths multiplexed in the
fiber as the minimum particle size for information ex-
changes.

As middleware aimed at the realization of a high-
speed distributed computation environment using an
optical network, OptIPuter is proposed [10]. It has
been studied and developed to build a Grid environ-
ment established on optical networks. It also provides
virtual communication paths. However, this is based on
present Internet technology and treats a packet as the
informational particle size; so that the problem men-
tioned previously regarding packet processing arises
again.

Thus we propose a new architecture, the λ com-
puting environment that has virtual channels utilizing
optical fibers connecting computing nodes. In the con-
ventional Grid environment, data is exchanged with the
message passing using TCP/IP. In the λ computing en-
vironment, by realizing communication between nodes
on the Grid not by conventional TCP/IP but by es-
tablished wavelength paths, we can achieve highly reli-
able high-speed communication. Then, by making vir-
tual channels on a mesh upon the photonic network
that is connected to the network nodes and the com-
puter nodes with optical fibers, distributed computa-
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tion on a high speed channel is enabled. Moreover,
it is possible to utilize wavelengths as a shared mem-
ory by constituting a virtual ring in the λ computing
environment [11]. As a result, it is not necessary to
distinguish shared memory from communication chan-
nels in a wide-area distributed system; and we expect
that the high-speed data exchange between comput-
ing nodes can be achieved (see Fig. 1). In our re-
search group, we also use wavelengths as a high-speed
transmission channel and implemented high-speed ac-
cess method to the shared memory that exists on each
computing node [12].

In this paper, we propose and evaluate an approach
to realize a shared memory system using a virtual opti-
cal ring network. Specifically our shared memory sys-
tem uses a level-1 cache in a CPU of each computer
group as the cache of such a shared memory. When us-
ing the virtual ring as a shared memory, it is necessary,
unlike a bus between a CPU and the shared memory in
a computer, to consider restrictions in timing and the
frequency of access, since the shared memory is spread
out on a long-distance optical fiber; so to take into con-
sideration coherency between the shared memory in the
virtual ring and the cache of each computer group more
strictly than the conventional shared memory system.
Next we have to solve the contention of shared memory
access like a conventional shared memory system. This
problem arises in cases where a processor has not fin-
ished writing access to the data on the shared memory,
and another processor tries to read or write to the same
data. When we perform parallel computation on shared
memory using a virtual optical ring network, synchro-
nization is needed to collaborate between computing
nodes. However, it is not necessary to distinguish the
shared memory in a wide-area distributed system from
a communication channel so that it appears that the
high-speed data exchange between computing nodes is
achieved. As noted above, after considering such fea-
tures, we propose a shared memory access method for
the λ computing environment, and evaluate the method
through simulations.

The rest of the paper is organized as follows.
In Section 2, we describe the cache coherency prob-
lem, memory access contention, and synchronization
between computing nodes of the conventional shared
memory system. In Section 3, we propose a realiza-
tion approach for a shared memory system in the λ
computing environment. In Section 4, we evaluate our
approach using a benchmark program for parallel com-
puting. Finally, we conclude the paper and describe
future work in Section 5.

2. Conventional Shared Memory System

To realize a shared memory system, it is necessary to
avoid memory access contention, maintain cache co-
herency [13], [14], and realize synchronization between
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Fig. 1 λ Computing Environment.

computing nodes to enable collaboration. In this sec-
tion, we briefly explain these techniques.

2.1 Contention Avoidance in a Shared Memory Sys-
tem

A problem exists when a processor has not finished
writing access to data on the shared memory, and an-
other processor tries to read or write to the same data.
This kind of contention is solved by a lock mechanism.
Each processor has to lock the shared memory before it
tries to write the data on the shared memory. By using
a lock mechanism, write access to the shared memory is
protected. When we realize a shared memory system in
the λ computing environment, we have to resolve this
problem.

2.2 Cache Coherency

When each processor has a cache, it is necessary to
fully take into consideration the consistency between
the data on the cache and the data on the shared mem-
ory. Two ways, a directory method and a snoop cache
method, are techniques for generally maintaining cache
coherency. In realizing shared memory on the λ com-
puting environment, access to a directory table may be-
come a bottleneck when a directory method is adopted.
So a snoop cache method is adopted in this paper.

The snoop cache method offers cache consistency
between data on caches and on the shared memory. It
snoops memory access on a share bus, and performs
consistency control to a local cache block by the dis-
tributed technique if needed. When a processor tries
to read data, firstly it searches in the local cache, and
when data does not exist there, it accesses to the shared
memory. When a processor tries to read or write to
a shared memory, consistency control is not needed if
another processor does not the same data in its local
cache. However, if another processor has the same data
in its local cache, some methods can be considered using
a method to keep cache consistency. Moreover, when a
processor writes or updates the data on its cache, keep-
ing cache consistency becomes still more complicated
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Fig. 2 Behavior of Write-back Invalidation Protocol.

and there are some ways to keep consistency.
Such cache consistency protocols are classified into

four types according to the timing (write-through,
write-back) and the method (invalidation, updating).
Among those, a write-back invalidation protocol has
the least shared memory access. When the access delay
time to a shared memory is large, this protocol is very
effective. So we adopt this protocol when we realize
a shared memory system in the λ computing environ-
ment. The write-back invalidation protocol is simply
explained below.

In the write-back invalidation protocol, data in the
local cache has three states; Invalid (I), Clean (C), and
Dirty (D). The I state means that data is invalidated
and cannot be used, the C state means that the data
on the cache is the same value compared to the data
on the shared memory, and the D state means that the
data on cache is not the same value compared to the
data on shared memory.

When one or some computers refer to an address,
the data is copied to A cache from the shared memory
and that cache’s state becomes a clean state as shown
in Fig. 2 (a). Since the value of the data on the shared
memory and the data in the C state is the same, read
access to this cache block does not need bus operation.
If a processor writes to data in a C state, the state will
become a D state. At this time, the control message
requesting invalidation of the relevant data is sent on
a bus. Since the cache controllers of other processors
snoop a bus, they receive the control message and in-
validate the relevant data in their local cache (Fig. 2
(b)). Henceforth, read and write accesses to the data
in a D state do not need bus operation. When other
processors read to the data in a D state, the data in
a D state is written back to the shared memory, and
cache consistency is completed. Next, the data is sent
by bus to the processor that requested the read access
and states of cache blocks on both processor’s cache

will become a C state (Fig. 2 (c1)). On the other hand,
when other processors write to the address of the data
in a D state, like reading, writing back of the data in a
D state to the shared memory takes place, and the data
is sent to the processor which sent the demand message.
Finally, the demanding processor writes the data on a
local cache, and the state of the data will be D. The
cache data on the processor that has the original data
are invalidated (Fig. 2 (c2)).

2.3 Synchronization between Computing Nodes

When we perform application programs of parallel com-
putation on a shared memory system, synchroniza-
tion between computing nodes is needed to collabo-
rate. Kinds of synchronization include atomic oper-
ation, caching of synchronous variable, blocking con-
trol on a shared memory, a memory lock, and the bar-
rier synchronization method. Barrier synchronization
is used when each processor needs to wait until all pro-
cessors reach to the same break point.

Application programs used for evaluation in this
paper first calculate locally and then after local calcu-
lation perform synchronization processing. In barrier
synchronization, each computing node reads and up-
dates the data of synchronous variable by turns. So
a synchronous memory on an optical ring is suited to
barrier synchronization because data is circling on the
optical ring and each computing node can easily read
and update the data on a synchronous memory by turn.
So in this paper we adopt the barrier synchronization
method. The method of realizing barrier synchroniza-
tion using shared memory on an optical ring is shown
in Sec. 3.4.

3. Realization Approach for a Shared Memory
System in the λ Computing Environment

In this section, we explain an approach for realizing
a shared memory system in the λ computing environ-
ment. Firstly, we describe our network model. Like a
conventional shared memory system, we have to real-
ize cache coherency, avoidance of memory access con-
tention, and synchronization between computing nodes
to enable collaboration. We also describe how to resolve
these points needing consideration.

3.1 Network Model on Consideration

We show a network model in Fig. 3. Computing nodes
that compose the λ computing environment are con-
nected with optical fibers that make a virtual ring net-
work. In this paper, I presuppose that each computing
node has one CPU, a level-1 cache, and a local mem-
ory. A local memory is used for storage of programming
codes and local data, a shared memory is used for stor-
age of the shared data that all computing nodes use
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in computing and a synchronous memory is used for
synchronization between computing nodes. An optical
ring network has a wavelength path for shared memory,
a wavelength path for control signals and a wavelength
path for synchronous memory. The bandwidth of an
optical ring for shared memory is set to 1Tbps. Since
propagation delay time is 5 ns/m, we can use an optical
ring network as a shared memory, of which the capacity
is equivalent to 6.25MBytes. We usually use these pa-
rameters except otherwise explicitly stated. For com-
parative evaluation, we also use the model with 1km
ring length and 10 number of rings in parallel, and with
100m ring length and 100 number of rings while these
models might be unrealistic even in the near future in
Sec. 4.3. The processing delay time in the interface of
each computing node and middle nodes, such as net-
work devices which constitute an optical ring network,
is not explicitly taken into account here. Indeed, we as-
sume that it is included in the propagation delay time.

Next, we show a configuration of each computing
node and data flows between a computing node and
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wavelengths of an optical ring in Fig. 4. The local
cache controller searches the data on the local cache
when it receives read or write request to the data on the
shared memory and the synchronous memory from the
CPU. If the data requested by the CPU is not found in
the local cache, the local cache controller commits the
request from the CPU to the shared cache controller.
The shared cache controller monitors wavelengths for
control signals, a shared memory, and a synchronous
memory. When it receives the request from the lo-
cal cache controller, it reads or updates the data on
the shared memory and the synchronous memory. And
when it receives the control messages from other nodes,
it changes the state of the cache block on a local cache
to keep cache coherency.

3.2 Contention Avoidance

Like a conventional shared memory system, we have to
solve contention to the shared and synchronous mem-
ories to realize a shared memory system in the λ com-
puting environment. To resolve this problem, we adopt
a lock mechanism. That is, each computing node has
to send a lock message using a control token before it
tries to write or update data in state C on a local cache,
and data on the shared memory or the synchronous
memory. By using this mechanism, write access to the
shared memory is protected. The approach to realize
contention avoidance is explained in Sec. 3.3 along with
cache coherency.

3.3 Cache Coherency

As mentioned in Sec. 2.2, the write-back invalidation
protocol has the least shared memory access. It is very
effective because in our shared memory system, the ac-
cess delay time to a shared memory is large. Thus,
there are some write-back invalidation protocols; such
as the Illinois [15] and Symmetry protocols [16]. We
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adopt the Illinois protocol because its consistency con-
trol is the simplest. In the Illinois protocol, data of
a local cache has four states; Invalid (I), Clean Exclu-
sive (CE), Clean Shared (CS) and Dirty (D). I and D
states are the same states like in the conventional pro-
tocol. The CE state means that the data on the cache
is the same value compared to the data on the shared
memory and another processor does not have the same
data, and the CS state means that another processor
has the same data in its local cache. However, the Illi-
nois protocol presupposes the shared memory system
using a shared bus. So we have to adapt Illinois proto-
col to the shared memory system in the λ computing
environment.

So we propose a cache coherency protocol that
solves cache coherency and contention to the shared
and synchronous memories in the λ computing envi-
ronment on the basis of the Illinois protocol. We show
the state transition diagram of our proposed cache co-
herency protocol in Fig. 5. Hereafter, we first explain
each arrowhead of the transition in Fig. 5. Second, we
explain the behavior of the computing nodes that re-
ceived a control message. In our cache coherency proto-
col, five control messages are used. A line copy request
message is sent by a computing node that tries to read
the data when it does not have the data in its local
cache. A line move request message is sent by a com-
puting node that tries to write the data when it does
not have the data in its local cache. Lock and invali-
dation request messages are sent by a computing node
that tries to update the data in the CE or CS states
or write the data in a I state. A lock request message
is used to avoid contention to shared and synchronous
memories. And an invalidation request message is used
to keep that the cache block in the D state is only one
among all computing nodes for maintaining cache co-
herency. An unlock request message is sent by a com-
puting node that has finished updating or writing the
data.

At first, we explain the case a computing node that
reads the data from A local cache. In this case, the state
of the cache block (Fig. 5 (1), (2), (3)) does not change.

And, we explain how a computing node reads data
from another computing node’s cache or shared mem-
ory. A computing node attaches a line copy request
message to a control token after catching the control
token. It waits until the control token returns. If it
receives a line copy ack (Fig. 5 (5)), it has to wait until
the copy of the cache block is sent by another comput-
ing node and reads the cache block from the control
token. Then it changes the state of the cache block
(I → CS). If it does not receive a line copy ack (Fig. 5
(4)), it directly reads the cache block from the shared
memory. Then it changes the state of the cache block
in its local cache (I → CE).

Next, we explain how a computing node updates
the data on a local cache. If the state of the cache

block is D (Fig. 5 (8)), it only updates the data on the
local cache. If the state of the cache block is CE (Fig. 5
(6)), it updates the data on the local cache and changes
the state of the cache block (CE → D). If the state
of cache block is CS (Fig. 5 (7)), contention avoidance
processing is needed. After catching the control token,
it has to check whether a lock request message of an-
other computing node is attached to the control token.
If a lock message is attached, it has to wait until an
unlock message is sent and then restart the write pro-
cessing. If a lock message is not attached, it attaches a
lock request message and an invalidation request mes-
sage to the control token. Then it updates the data
on the local cache and changes the state of the cache
block (CS → D). Finally, it attaches an unlock request
message to the control token after catching the control
token.

Next, we explain how a computing node tries to
write when it does not have the copy cache block on
the local cache (Fig. 5 (9)). In this case, contention
avoidance processing is also needed. A computing node
searches the lock table. If the address of the cache block
that it tries to write is registered in the lock table, it has
to wait until an unlock request message is sent. If the
address is not registered, it has to check whether a lock
request message of other computing node is attached
to the control token after catching the control token.
If a lock message is attached, it has to wait until an
unlock message is sent and then restart the write pro-
cessing. If a lock message is not attached, it attaches a
lock request message and a line move request message
to the control token. It waits until the control token
returns. If it receives a line copy ack, it has to wait
until a cache block is sent by another computing node
and read the cache block from the control token. Then
it updates the cache block and changes the state of the
cache block (I → D). If it does not receive a line copy
ack, it directly reads the cache block from the shared
memory. Then it updates the cache block and changes
the state of the cache block (I → D). After updating
the cache block, it attaches an unlock request message
to the control token after catching the control token.

Next, we explain the behavior of computing nodes
that received a control message. At first, we explain
the behavior of a computing node that receives a line
copy request message. If a computing node has a cache
block of the relevant address in the CE state (Fig. 5
(10)), it attaches a line copy back and a copy of cache
block to the control token after catching the control
token. Then, it changes the state of the cache block
(CE → CS). If a computing node has a cache block
of the relevant address in the CS state (Fig. 5 (11)), it
attaches a line copy back and a copy of the cache block
to the control token after catching the control token.
If a computing node has a cache block of the relevant
address in the D state (Fig. 5 (12)), it attaches aline
copy back to the control token after catching the control
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token. Then, it writes back the cache block in the D
state to the shared memory and changes the state of the
cache (D → CS). It attaches a copy of the cache block
to the control token after catching the control token.

Next, we explain the behavior of a computing node
that receives a line move request message. If a comput-
ing node has a cache block of the relevant address in
the CE state (Fig. 5 (13)), it attaches a line move ack
and copy of the cache block to the control token after
catching the control token. Then, it changes the state
of the cache block (CE → I). If a computing node has
a cache block of the relevant address in the CS state
(Fig. 5 (14)), it attaches a line move ack and a copy of
the cache block to the control token after catching the
control token. Then, it changes the state of the cache
block (CS → I). If a computing node has a cache
block of the relevant address in D the state (Fig. 5
(15)), it attaches a line move ack to the control token
after catching the control token. Then, it writes back
the cache block in the D state to the shared memory
and changes the state of the cache block (D → I). It
attaches a copy of the cache block to the control token
after catching the control token.

Next, we explain the behavior of a computing node
that receives lock, unlock and invalidation request mes-
sages. If a computing node receives a lock request mes-
sage, it registers the relevant address to its lock table. If
a computing node receives an unlock request message,
it removes the relevant address from its lock table. If
a computing node receives an invalidation request mes-
sage, it searches the relevant address in the local cache.
If a computing node has a relevant cache block in its
local cache, it changes the state of the cache block to
the I state.

3.4 Synchronization between Computing Nodes

We explain the method for realizing barrier synchro-
nization in the shared memory system using an optical
ring network. First, part of the wavelength paths of an
optical ring are allocated to the synchronous memory
area. When a synchronous memory is accessed, a Fetch
& Decrement operation like in the conventional method
is indivisibly performed. That is, it ensures that ac-
cess to a synchronous memory indivisibly causes a sub-
traction processing of the relevant data. Since only
one computing node can simultaneously access the syn-
chronous memory, when using an optical ring network
for a synchronous memory, execution of an atomic oper-
ation is easy. With an application program, in bringing
about synchronization among some computing nodes,
each node accesses to the synchronous memory. The
number of processors is set in the synchronous mem-
ory as the initial value. The value of the synchronous
memory will be set to zero if all nodes access. If the
value of a synchronous memory is set to zero, all nodes
will finish the synchronous process and begin the next
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processing.

4. Performance Evaluation

In this section, we evaluate through simulation the per-
formance of the shared memory access method pro-
posed in the previous section. We utilized the ISIS
library [17], [18] currently developed at the Amano Lab-
oratory of Keio University in coding the simulation pro-
gram.

4.1 Simulation Model

We used the following network model. Each computing
node in the λ computing environment is interconnected
with optical fibers and nodes are configured to virtu-
ally form the ring topology. Each computing node has
one CPU, a level-1 cache, and a local memory. Clock
frequency of a CPU is 1GHz, the capacity of a level-1
cache is 512KB, and the capacity of a local memory
is 2GByte. It assumes that computing nodes are put
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Table 1 Characteristics of Memory Accesses (ring length 10km).

nodes clocks shared accesses synchronous accesses L1 hit

“radix sort” 1 1239504563 116224 0 59.9622%
(16384 keys) 2 1079750949 1296305 55 17.2424%

4 772450953 4822926 131 16.6878%
8 670200953 17821287 379 16.7660%

16 865300953 71520173 1259 16.8651%
“product of a matrix” 1 2048357893 81920 0 60.2431%
(128×128) 2 2665750970 162124605 13 79.5476%

4 2615251057 471528629 21 90.0370%
8 2539751057 1086505926 37 95.2501%

16 2506851057 2316505719 69 97.5408%
“queen problem” 1 110045031 499250 0 30.4880%
(32×32) 2 2494650912 8964784 619 15.6490%

4 2325700916 8869410 1031 17.0453%
8 2074550916 20263999 1855 15.9305%

16 2107500916 35978138 3503 17.6546%

on the optical ring network with equal distances. An
optical ring network has wavelength paths for shared
memory, control signals, and synchronous memory.

The bandwidth of an optical ring for shared mem-
ory is set to 1Tbps. Since propagation delay time
is 5 ns/m, we can use an optical ring network as a
shared memory, of which the capacity is equivalent to
6.25MBytes. We usually use these parameters except
otherwise explicitly stated. For comparative evalua-
tion, we also use the model with 1km ring length and 10
number of rings in parallel, and with 100m ring length
and 100 number of rings while these models might be
unrealistic even in the near future. The processing de-
lay time in the interface of each computing node and
middle nodes, such as network devices which constitute
an optical ring network, is not explicitly taken into ac-
count here. Indeed, we assume that it is included in
the propagation delay time.

To evaluate the performance, we use a Splash2
benchmark program [19], such as the “radix sort” pro-
gram that sorts the sequence of an integer value using
a radix sort algorithm. We also use the “product of a
matrix” program that calculates the product of n × n
matrix and the “queen problem” program that solves
the n-queen problem. See Table 1 for comparing the
characteristic of memory accesses for these programs.
The numbers show the order of frequencies in memory
accesses of programs. See also Figs. 6 and 7 for actual
data.

We note that sample programs that we are using in
this paper are just intended to see how levels of paral-
lelism affects the performance. In actual, the program
could be clearly divided into independent tasks when
applied to parallel computation, and we can enjoy a
parallelism of computation by an increasing number
of nodes, but some part of the entire program needs
synchronization to an extent, and to effect on the per-
formance depends on the problem. The three programs
that we have chosen here are typical examples and have
different characteristics as indicated in Table 1. Our
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Fig. 8 Processing time of “radix sort” program (ring length
10km).

intention here is to test whether the typical parallel
algorithm can work well in a sense that total parallel
execution time is not unacceptably increased and an
introduction of parallelism does not only result in the
increasing execution time.

4.2 Comparisons: Basic Results

We show results of execution time for each application
program by setting the ring length to 10km. The num-
ber of execution clocks in CPU for the “radix sort”
program is first shown in Fig. 8. The numbers of keys
for sorting are set at 4096, 8192, and 16384. When
the number of key is 4096, the advantage of parallel
computation cannot be observed even if the number of
computing nodes is increased. This is because the ra-
tio of synchronous operation to total operation is large.
However, as problem size becomes larger such as 8192,
it turns out that the advantage of parallel computation
appears. As the number of nodes exceeds some number
(4 in the case that the key size is 8192), the execution
time is gradually increased because the number of syn-
chronization becomes large by an increasing number of
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Fig. 9 Processing time of “product of a matrix” program (ring
length 10km).
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Fig. 10 Processing time of “queen problem” program (ring
length 10km).

nodes. When the sort key size is 16384, such a tendency
becomes clearer. From these results, we found that the
shared memory and access method for λ computing en-
vironment are effective in parallel computation for the
“radix sort” program when the number of parallel nodes
is not so large.

The case of “product of a matrix” program is next
shown in Fig. 9. The matrix sizes are changed from
32×32 to 128×128. The advantage of parallel compu-
tation becomes smaller in this case. It is because the
number of accesses to the shared memory is large com-
pared to other application programs as shown in Fig. 6,
where the numbers of accesses to the shared memory
are compared in three programs, and it compensates
for introduction of parallel computation. However, it is
still true that it does not introduce the additional delay
if the “product of a matrix program” does not occupy
the large portion of the entire program.

The same tendency can be observed in Fig. 10
where the “queen problem” program is considered. Its
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Fig. 11 Processing time of “radix sort” program (ring length
1km).
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Fig. 12 Processing time of “radix sort” program (ring length
100m).

problem size is changed from 8×8 to 32×32. In this case
the number of synchronous accesses is much larger than
other programs as shown in Fig. 7, where the numbers
of accesses to the synchronous memory are compared in
three programs. However, we can again see that the ex-
ecution time is at least not increased even if the number
of nodes becomes large.

4.3 Effect of Increasing the Optical Ring Length for
Parallel Computation

When ring length is 10km long, the access delay time
to the shared memory and the synchronous memory
are large and may be the main factor that compensates
for introduction of parallel computation. And when
ring length becomes shorter, the advantage of parallel
computation may become clearer. Accordingly, we next
investigate the effect of decreasing the ring length on
parallel computation time. We use three values of ring
lengths: 100m, 1km and 10km.

In Figs. 11 and 12, the execution times of the
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Fig. 13 Processing time of “product of a matrix” program
(ring length 1km).
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Fig. 14 Processing time of “product of a matrix” program
(ring length 100m).

“radix sort” program are shown against 100m and 1km
of ring length. Compare with Fig. 8 where the case of
10km ring length was shown. We can here see that the
results are almost same in three cases.

A different behavior is observed in using the “prod-
uct of a matrix” program. See Figs. 9, 13, and 14.
When the ring length was 10km (Fig. 9), there is no
effect of parallel computation due to the access delay
time is large much larger than the shared memory time.
However, when the ring length is 1km (Fig. 13) and the
matrix size is large enough (256×256), the effect clearly
appears when the number of nodes is less than eight.
It is because the hit ratio of the level-1 cache becomes
high as the matrix size becomes large. Also, when the
ring length is 100m (Fig. 14), the effect of parallelism
is attained even if the matrix size is small (64 × 64 or
128 × 128). As we have already mentioned, the “prod-
uct of a matrix program” has a characteristic that the
number of accesses to the shared memory is the largest
among all the application programs. See Fig. 6. Then
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Fig. 15 Speed up ratio of “queen problem” program by chang-
ing the caching policy of the synchronous memory (ring length
10km).

when ring length is short, the effect of parallel compu-
tation is obtained. Moreover, the number of accesses
to the synchronous memory is the smallest, and there-
fore, parallel computation can be easily improved as the
number of nodes increases.

In the “queen problem” program, on the other
hand, no advantage of parallel computation is obtained
even if the ring length is changed. It is due to the
largest number of synchronous accesses in three pro-
grams even though the accesses to the shared memory
do not frequently occur.

4.4 Synchronization Improvement

As mentioned in Sec. 4.3, synchronization has a great
influence on the performance of parallel computation.
We thus propose a method to improve synchronization
time. As mentioned in Sec. 3.4, we use barrier synchro-
nization to enable collaboration between parallel nodes.
The data used for barrier synchronization are stored on
synchronous memory and the copy of data are stored on
the local cache of the node. Since data used for barrier
synchronization are referred by each node only once,
the performance must be improved by not storing data
on synchronous memory to the local cache. This is be-
cause cache coherency processing is not needed in this
case, and it is sufficient for each node to read or write to
synchronous memory only when data on synchronous
memory are not stored in the local cache.

Lastly, we compare the performance of the above–
mentioned caching policy to that of the original one.
For this purpose, we present the speedup ratio of the
new policy compared to the original one. Noting that
the speedup ratio of the “radix sort” program and the
“product of a matrix” program are small, we only show
the speedup ratio for the “queen problem” program in
Fig. 15. The ring length is assumed to be 10km. The
larger speeding ratio can be detained by the increas-
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ing number of nodes. It is due to the fact that the
“queen problem” program requires the largest number
of accesses to the synchronous memory among the pro-
grams that we have tested. Then, the effect of the
synchronization mechanism that we have introduced in
this subsection becomes clear.

5. Conclusion

In this paper, we have proposed the shared memory ac-
cess method in realizing the shared memory on photonic
network. Moreover, we have evaluated the performance
of the proposed method using the benchmark program
for parallel computing. As a result, we show that the
effectiveness of using optical ring as a shared memory
and of parallel processing by the increase in the num-
ber of nodes when number of synchronous processing
is small. We can see the future possibility of all-optical
parallel computing environment in the wide-area. An
efficient shared memory access method and a practical
use of a local memory is due to be considered in the
future.
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