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あらまし ネットワークノードや計算機群を光ファイバで接続したフォトニックネットワーク上に仮想チャネルをメッ

シュ状に張ることにより、グリッド計算など新しい応用技術に必要な、高速かつ、高信頼な通信パイプをエンドユー

ザに提供することができる。これをλコンピューティング環境と呼び提案している。本稿では、λコンピューティン

グ環境上に仮想光リングを構成し、光リング上にデータを載せることにより、波長を仮想的な共有メモリとして利用

することを考える。結果として、広域分散システムにおける共有メモリと通信チャネルの区別の必要がなくなり、計

算機間の高速なデータ交換が可能になる。この共有メモリを用いて並列計算を行う際のメモリアクセスの競合回避方

法、データの一貫性制御、同期方法の提案、評価を行う。並列計算用のアプリケーションプログラムを用いたシミュ

レーションを行い、広域な光リング上での共有メモリシステムの有効性を示す。

キーワード λコンピューティング環境、光リングネットワーク、共有メモリ、メモリアクセス競合、キャッシュの整

合性
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Abstract In this paper, we propose a new computing environment (which we will refer to λ computing environment) that

provides a base for parallel computing among nodes distributed in the wide area. In our concept, virtual channels are provided

utilizing optical networks connecting computing nodes. It can offer high-speed and reliable connection pipe among nodes, so

that it is efficiently applicable to SAN (Storage Area Network) and/or Grid computing. In the environment, shared memory

is constituted on a virtual ring of the photonic network. Consequently, it is not necessary to distinguish shared memory in

a wide-area distributed system from a communication channel; thus high-speed data exchange between computing nodes on

the ring can be achieved. The key to realizing such a computing environment is how to construct a shared memory system

on the photonic ring. In this paper, we propose and evaluate a shared memory system suitable to the virtual optical ring net-

work, which takes into account contention resolution, cache coherency, and synchronization methods because the propagation

delays among nodes are much larger than the conventional shared memory system. Through simulation experiments of using

three benchmark programs as representative parallel computing applications, we show the applicability of our shared memory

system on the wide-area virtual photonic ring.

Key words λ computing environment, phtonic ring network, shared memory, meory access contention, cache coherency

1. Introduction

As users of networks such as the Internet have increased, so has

the amount of traffic steadily increased. Various applications that
utilize images have come to be used, and the demands made on
the technology that enables the high speed and large scale trans-
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mission in a network have increased. To satisfy these demands,
research into optical transmission technology has been actively pur-
sued. Research into WDM technologies that use multiplexed light
wavelengths have been the main target for development and technol-
ogy from new WDM research that can use 1000 wavelengths has
also been advanced [1]. In recent years, IP over a WDM network
has been studied and developed to provide high-speed transmission
on the Internet based on WDM technology. Moreover, standard-
ization of the routing technology of the Internet, called GMPLS,
which is the communication technology that uses various optical
technologies for a lower layer than the WDM technology, has also
been advanced in IETF [2]. Further, aiming to realize the true IP
communication of a photonic network, research into optical packet
switches based on optical technology has also begun [3, 4].

However, many such technologies presuppose the existing Inter-
net technology. That is, an IP packet is treated as a degree of granule
treating information, and it is made into the target for research and
development of how to carry it at high speed on a network. There-
fore, as long as architecture based on packet switching technology is
focused on, realization of high quality communication to each con-
nection will be very difficult. New technologies such as SAN and
Grid computing need to be applied to provide end users with a high
speed and reliable communication pipe; for that, a mass wavelength
path needs to be set up between end users and provided for users.
That is, it is possible to provide an end user with a ultra high-speed
and high quality communication pipe by building a photonic net-
work that uses established fibers, or newly laid fiber if needed, and
by utilizing wavelengths multiplexed in the fiber as the minimum
particle size for information exchanges.

Thus we propose a new architecture, the λ computing environ-
ment that has virtual channels utilizing optical fibers connecting
computing nodes. In the conventional Grid environment, data is
exchanged with the message passing using TCP/IP. In the λ com-
puting environment, by realizing communication between nodes on
the Grid not by conventional TCP/IP but by established wavelength
paths, we can achieve highly reliable high-speed communication.
Then, by making virtual channels on a mesh upon the photonic
network that is connected to the network nodes and the computer
nodes with optical fibers, distributed computation on a high speed
channel is enabled. Moreover, it is possible to utilize wavelengths
as a shared memory by constituting a virtual ring in the λ comput-
ing environment [5]. As a result, it is not necessary to distinguish
shared memory from communication channels in a wide-area dis-
tributed system; and we expect that the high-speed data exchange
between computing nodes can be achieved (see Fig. 1). In our re-
search group, we also use wavelengths as a high-speed transmission
channel and implemented high-speed access method to the shared
memory that exists on each computing node [6].

In this paper, we propose and evaluate an approach to realize a
shared memory system using a virtual optical ring network. Specif-
ically our shared memory system uses a level-1 cache in a CPU of
each computer group as the cache of such a shared memory. When
using the virtual ring as a shared memory, it is necessary, unlike a
bus between a CPU and the shared memory in a computer, to con-
sider restrictions in timing and the frequency of access, since the
shared memory is spread out on a long-distance optical fiber; so to
take into consideration coherency between the shared memory in
the virtual ring and the cache of each computer group more strictly
than the conventional shared memory system. Next we have to solve
the contention of shared memory access like a conventional shared
memory system. This problem arises in cases where a processor has
not finished writing access to the data on the shared memory, and

Optical Ring

Optical Fiber Utilize an optical ring 

as a shared memory

Address Data

Optical Ring

Optical Fiber Utilize an optical ring 

as a shared memory

Address Data

Fig. 1 λ Computing Environment.

9

2

10 8

4
5

Control Token

6

7

0

1

・

・

・

・

In case ring length is 10km and 

bandwidth of optical ring is 1Tbps, 

shared memory size is 6.25MB

Cache

CPU

3

Local 

Memory

Cache

CPU

Local 

Memory

Cache

CPU

Local 

Memory

Wavelength Path for 

a Shared Memory

Wavelength Path for 

a Synchronous 

Memory

Wavelength Path for 

Control Signals

9

2

10 8

4
5

Control Token

6

7

0

1

・

・

・

・

In case ring length is 10km and 

bandwidth of optical ring is 1Tbps, 

shared memory size is 6.25MB

Cache

CPU

3

Local 

Memory

Cache

CPU

Local 

Memory

Cache

CPU

Local 

Memory

Wavelength Path for 

a Shared Memory

Wavelength Path for 

a Synchronous 

Memory

Wavelength Path for 

Control Signals

Fig. 2 Network Model.

another processor tries to read or write to the same data. When we
perform parallel computation on shared memory using a virtual op-
tical ring network, synchronization is needed to collaborate between
computing nodes. However, it is not necessary to distinguish the
shared memory in a wide-area distributed system from a communi-
cation channel so that it appears that the high-speed data exchange
between computing nodes is achieved. As noted above, after con-
sidering such features, we propose a shared memory access method
for the λ computing environment, and evaluate the method through
simulations.

The rest of the paper is organized as follows. In Section 2, we
propose a realization approach for a shared memory system in the
λ computing environment. Specifically, we describe how to resolve
the cache coherency problem, memory access contention, and syn-
chronization between computing nodes of the λ computing environ-
ment. In Section 3, we evaluate our approach using a benchmark
program for parallel computing. Finally, we conclude the paper and
describe future work in Section 4.

2. Realization Approach for a Shared Memory
System in the λ Computing Environment

In this section, we explain an approach for realizing a shared
memory system in the λ computing environment. Firstly, we de-
scribe our network model. Like a conventional shared memory sys-
tem, we have to realize cache coherency, avoidance of memory ac-
cess contention, and synchronization between computing nodes to
enable collaboration. We also describe how to resolve these points
needing consideration.

2. 1 Network Model on Consideration
We show a network model in Fig. 2. Computing nodes that com-

pose the λ computing environment are connected with optical fibers
that make a virtual ring network. In this paper, I presuppose that
each computing node has one CPU, a level-1 cache, and a local
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Fig. 3 Cache Control Scheme and Data Flows.

memory. A local memory is used for storage of programming codes
and local data, a shared memory is used for storage of the shared
data that all computing nodes use in computing and a synchronous
memory is used for synchronization between computing nodes. An
optical ring network has a wavelength path for shared memory, a
wavelength path for control signals and a wavelength path for syn-
chronous memory. The bandwidth of an optical ring for shared
memory is set to 1Tbps. Since propagation delay time is 5 ns/m,
we can use an optical ring network as a shared memory, of which
the capacity is equivalent to 6.25MBytes. We usually use these pa-
rameters except otherwise explicitly stated. For comparative evalu-
ation, we also use the model with 1km ring length and 10 number
of rings in parallel, and with 100m ring length and 100 number of
rings while these models might be unrealistic even in the near fu-
ture in Sec. 3. 3. The processing delay time in the interface of each
computing node and middle nodes, such as network devices which
constitute an optical ring network, is not explicitly taken into ac-
count here. Indeed, we assume that it is included in the propagation
delay time.

Next, we show a configuration of each computing node and data
flows between a computing node and wavelengths of an optical ring
in Fig. 3. The local cache controller searches the data on the lo-
cal cache when it receives read or write request to the data on the
shared memory and the synchronous memory from the CPU. If the
data requested by the CPU is not found in the local cache, the local
cache controller commits the request from the CPU to the shared
cache controller. The shared cache controller monitors wavelengths
for control signals, a shared memory, and a synchronous memory.
When it receives the request from the local cache controller, it reads
or updates the data on the shared memory and the synchronous
memory. And when it receives the control messages from other
nodes, it changes the state of the cache block on a local cache to
keep cache coherency.

2. 2 Contention Avoidance
Like a conventional shared memory system, we have to solve con-

tention to the shared and synchronous memories to realize a shared
memory system in the λ computing environment. Contention to
the shared and synchronous memories exists when a processor has
not finished writing access to data on the shared memory, and an-
other processor tries to read or write to the same data. To resolve
this problem, we adopt a lock mechanism. That is, each computing
node has to send a lock message using a control token before it tries
to write or update data in state C on a local cache, and data on the
shared memory or the synchronous memory. By using this mecha-
nism, write access to the shared memory is protected. The approach
to realize contention avoidance is explained in Sec. 2. 3 along with
cache coherency.
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Fig. 4 State Transition Diagram.

2. 3 Cache Coherency
When each processor has a cache, it is necessary to fully take

into consideration the consistency between the data on the cache
and the data on the shared memory. Two ways, a directory method
and a snoop cache method, are techniques for generally maintaining
cache coherency. In realizing shared memory on the λ computing
environment, access to a directory table may become a bottleneck
when a directory method is adopted. So a snoop cache method is
adopted in this paper.

The snoop cache method offers cache consistency between data
on caches and on the shared memory. It snoops memory access on
a share bus, and performs consistency control to a local cache block
by the distributed technique if needed. When a processor tries to
read data, firstly it searches in the local cache, and when data does
not exist there, it accesses to the shared memory. When a proces-
sor tries to read or write to a shared memory, consistency control is
not needed if another processor does not the same data in its local
cache. However, if another processor has the same data in its lo-
cal cache, some methods can be considered using a method to keep
cache consistency. Moreover, when a processor writes or updates
the data on its cache, keeping cache consistency becomes still more
complicated and there are some ways to keep consistency.

Such cache consistency protocols are classified into four types
according to the timing (write-through, write-back) and the method
(invalidation, updating). Among those, a write-back invalidation
protocol has the least shared memory access. When the access de-
lay time to a shared memory is large, this protocol is very effective.
So we adopt this protocol when we realize a shared memory system
in the λ computing environment.

Thus, there are some write-back invalidation protocols; such as
the Illinois [7] and Symmetry protocols [8]. We adopt the Illinois
protocol because its consistency control is the simplest. In the Illi-
nois protocol, data of a local cache has four states; Invalid (I), Clean
Exclusive (CE), Clean Shared (CS) and Dirty (D). The I state means
that data is invalidated and cannot be used, the CE state means that
the data on the cache is the same value compared to the data on
the shared memory and another processor does not have the same
data, the CS state means that another processor has the same data in
its local cache and the D state means that the data on cache is not
the same value compared to the data on shared memory. However,
the Illinois protocol presupposes the shared memory system using
a shared bus. So we have to adapt Illinois protocol to the shared
memory system in the λ computing environment.

So we propose a cache coherency protocol that solves cache co-
herency and contention to the shared and synchronous memories
in the λ computing environment on the basis of the Illinois proto-
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col. We show the state transition diagram of our proposed cache
coherency protocol in Fig. 4. Hereafter, we only explain the pro-
cessing of write access and how to resolve contention to the shared
and synchronous memories in Fig. 4 because of lack of space. In
our cache coherency protocol, five control messages are used. A
line copy request message is sent by a computing node that tries to
read the data when it does not have the data in its local cache. A
line move request message is sent by a computing node that tries to
write the data when it does not have the data in its local cache. Lock
and invalidation request messages are sent by a computing node that
tries to update the data in the CE or CS states or write the data in a I
state. A lock request message is used to avoid contention to shared
and synchronous memories. And an invalidation request message is
used to keep that the cache block in the D state is only one among
all computing nodes for maintaining cache coherency. An unlock
request message is sent by a computing node that has finished up-
dating or writing the data.

Next, we explain how a computing node updates the data on a
local cache. If the state of the cache block is D (Fig. 4 (8)), it only
updates the data on the local cache. If the state of the cache block is
CE (Fig. 4 (6)), it updates the data on the local cache and changes
the state of the cache block (CE → D). If the state of cache block
is CS (Fig. 4 (7)), contention avoidance processing is needed. Af-
ter catching the control token, it has to check whether a lock request
message of another computing node is attached to the control token.
If a lock message is attached, it has to wait until an unlock message
is sent and then restart the write processing. If a lock message is not
attached, it attaches a lock request message and an invalidation re-
quest message to the control token. Then it updates the data on the
local cache and changes the state of the cache block (CS → D).
Finally, it attaches an unlock request message to the control token
after catching the control token.

Next, we explain how a computing node tries to write when it
does not have the copy cache block on the local cache (Fig. 4 (9)).
In this case, contention avoidance processing is also needed. A com-
puting node searches the lock table. If the address of the cache block
that it tries to write is registered in the lock table, it has to wait until
an unlock request message is sent. If the address is not registered,
it has to check whether a lock request message of other computing
node is attached to the control token after catching the control token.
If a lock message is attached, it has to wait until an unlock message
is sent and then restart the write processing. If a lock message is
not attached, it attaches a lock request message and a line move re-
quest message to the control token. It waits until the control token
returns. If it receives a line copy ack, it has to wait until a cache
block is sent by another computing node and read the cache block
from the control token. Then it updates the cache block and changes
the state of the cache block (I → D). If it does not receive a line
copy ack, it directly reads the cache block from the shared memory.
Then it updates the cache block and changes the state of the cache
block (I → D). After updating the cache block, it attaches an un-
lock request message to the control token after catching the control
token.

2. 4 Synchronization between Computing Nodes
When we perform application programs of parallel computation

on a shared memory system, synchronization between computing
nodes is needed to collaborate. Kinds of synchronization include
atomic operation, caching of synchronous variable, blocking control
on a shared memory, a memory lock, and the barrier synchroniza-
tion method. Barrier synchronization is used when each processor
needs to wait until all processors reach to the same break point.

Application programs used for evaluation in this paper first calcu-

late locally and then after local calculation perform synchronization.
In barrier synchronization, each computing node reads and updates
the data of synchronous variable by turns. So a synchronous mem-
ory on an optical ring is suited to barrier synchronization because
data is circling on the optical ring and each computing node can
easily read and update the data on a synchronous memory by turn.
So in this paper we adopt the barrier synchronization method.

Next, we explain the method for realizing barrier synchroniza-
tion in the shared memory system using an optical ring network.
First, part of the wavelength paths of an optical ring are allocated
to the synchronous memory area. When a synchronous memory is
accessed, a Fetch & Decrement operation like in the conventional
method is indivisibly performed. That is, it ensures that access to
a synchronous memory indivisibly causes a subtraction processing
of the relevant data. Since only one computing node can simul-
taneously access the synchronous memory, when using an optical
ring network for a synchronous memory, execution of an atomic
operation is easy. With an application program, in bringing about
synchronization among some computing nodes, each node accesses
to the synchronous memory. The number of processors is set in
the synchronous memory as the initial value. The value of the syn-
chronous memory will be set to zero if all nodes access. If the value
of a synchronous memory is set to zero, all nodes will finish the
synchronous process and begin the next processing.

3. Performance Evaluation

In this section, we evaluate through simulation the performance
of the shared memory access method proposed in the previous sec-
tion. We utilized the ISIS library [9] currently developed at the
Amano Laboratory of Keio University in coding the simulation pro-
gram.

3. 1 Simulation Model
We used the following network model. Each computing node in

the λ computing environment is interconnected with optical fibers
and nodes are configured to virtually form the ring topology. Each
computing node has one CPU, a level-1 cache, and a local memory.
Clock frequency of a CPU is 1GHz, the capacity of a level-1 cache
is 512KB, and the capacity of a local memory is 2GByte. It assumes
that computing nodes are put on the optical ring network with equal
distances. An optical ring network has wavelength paths for shared
memory, control signals, and synchronous memory.

The bandwidth of an optical ring for shared memory is set to
1Tbps. Since propagation delay time is 5 ns/m, we can use an op-
tical ring network as a shared memory, of which the capacity is
equivalent to 6.25MBytes. We usually use these parameters except
otherwise explicitly stated. For comparative evaluation, we also use
the model with 1km ring length and 10 number of rings in paral-
lel, and with 100m ring length and 100 number of rings while these
models might be unrealistic even in the near future. The process-
ing delay time in the interface of each computing node and middle
nodes, such as network devices which constitute an optical ring net-
work, is not explicitly taken into account here. Indeed, we assume
that it is included in the propagation delay time.

To evaluate the performance, we use a Splash2 benchmark pro-
gram [10], such as the “radix sort” program that sorts the sequence
of an integer value using a radix sort algorithm. We also use the
“product of a matrix” program that calculates the product of n × n

matrix and the “queen problem” program that solves the n-queen
problem. See Table 1 for comparing the characteristic of memory
accesses for these programs. The numbers show the order of fre-
quencies in memory accesses of programs.
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Table 1 Characteristics of Memory Accesses (ring length 10km).

nodes clocks shared accesses synchronous accesses L1 hit
“radix sort” 1 1239504563 116224 0 59.9622%
(16384 keys) 2 1079750949 1296305 55 17.2424%

4 772450953 4822926 131 16.6878%
8 670200953 17821287 379 16.7660%

16 865300953 71520173 1259 16.8651%
“product of a matrix” 1 2048357893 81920 0 60.2431%
(128×128) 2 2665750970 162124605 13 79.5476%

4 2615251057 471528629 21 90.0370%
8 2539751057 1086505926 37 95.2501%

16 2506851057 2316505719 69 97.5408%
“queen problem” 1 110045031 499250 0 30.4880%
(32×32) 2 2494650912 8964784 619 15.6490%

4 2325700916 8869410 1031 17.0453%
8 2074550916 20263999 1855 15.9305%

16 2107500916 35978138 3503 17.6546%

We note that sample programs that we are using in this paper
are just intended to see how levels of parallelism affects the perfor-
mance. In actual, the program could be clearly divided into inde-
pendent tasks when applied to parallel computation, and we can en-
joy a parallelism of computation by an increasing number of nodes,
but some part of the entire program needs synchronization to an ex-
tent, and to effect on the performance depends on the problem. The
three programs that we have chosen here are typical examples and
have different characteristics as indicated in Table 1. Our intention
here is to test whether the typical parallel algorithm can work well
in a sense that total parallel execution time is not unacceptably in-
creased and an introduction of parallelism does not only result in
the increasing execution time.

3. 2 Comparisons: Basic Results
We show results of execution time for each application program

by setting the ring length to 10km. The number of execution clocks
in CPU for the “radix sort” program is first shown in Fig. 5. The
numbers of keys for sorting are set at 4096, 8192, and 16384. When
the number of key is 4096, the advantage of parallel computation
cannot be observed even if the number of computing nodes is in-
creased. This is because the ratio of synchronous operation to to-
tal operation is large. However, as problem size becomes larger
such as 8192, it turns out that the advantage of parallel computation
appears. As the number of nodes exceeds some number (4 in the
case that the key size is 8192), the execution time is gradually in-
creased because the number of synchronization becomes large by an
increasing number of nodes. When the sort key size is 16384, such
a tendency becomes clearer. From these results, we found that the
shared memory and access method for λ computing environment
are effective in parallel computation for the “radix sort” program
when the number of parallel nodes is not so large.

The case of “product of a matrix” program is next shown in Fig. 6.
The matrix sizes are changed from 32 × 32 to 128 × 128. The ad-
vantage of parallel computation becomes smaller in this case. It is
because the number of accesses to the shared memory is large com-
pared to other application programs as shown in Table 1, where the
numbers of accesses to the shared memory are compared in three
programs, and it compensates for introduction of parallel computa-
tion. However, it is still true that it does not introduce the additional
delay if the “product of a matrix program” does not occupy the large
portion of the entire program.

The same tendency can be observed in Fig. 7 where the “queen
problem” program is considered. Its problem size is changed from
8 × 8 to 32 × 32. In this case the number of synchronous accesses
is much larger than other programs as shown in Table 1, where the
numbers of accesses to the synchronous memory are compared in

three programs. However, we can again see that the execution time
is at least not increased even if the number of nodes becomes large.

3. 3 Effect of Increasing the Optical Ring Length for Paral-
lel Computation

When ring length is 10km long, the access delay time to the
shared memory and the synchronous memory are large and may be
the main factor that compensates for introduction of parallel com-
putation. And when ring length becomes shorter, the advantage of
parallel computation may become clearer. Accordingly, we next
investigate the effect of decreasing the ring length on parallel com-
putation time. We use three values of ring lengths: 100m, 1km and
10km.

In the “radix sort” program, we can see that the results are almost
same in three cases. This is because the radix sort program has the
characteristic that the number of accesses to the shared memory is
the smallest of all the application programs and the increasing the
optical ring length does not compensate for introduction of parallel
computaion.

A different behavior is observed in using the “product of a ma-
trix” program. See Figs. 6, 8, and 9. When the ring length was
10km (Fig. 6), there is no effect of parallel computation due to the
access delay time is large much larger than the shared memory time.
However, when the ring length is 1km (Fig. 8) and the matrix size
is large enough (256 × 256), the effect clearly appears when the
number of nodes is less than eight. It is because the hit ratio of the
level-1 cache becomes high as the matrix size becomes large. Also,
when the ring length is 100m (Fig. 9), the effect of parallelism is
attained even if the matrix size is small (64 × 64 or 128 × 128).
As we have already mentioned, the “product of a matrix program”
has a characteristic that the number of accesses to the shared mem-
ory is the largest among all the application programs. See Table 1.
Then when ring length is short, the effect of parallel computation
is obtained. Moreover, the number of accesses to the synchronous
memory is the smallest, and therefore, parallel computation can be
easily improved as the number of nodes increases.

In the “queen problem” program, on the other hand, no advan-
tage of parallel computation is obtained even if the ring length is
changed. It is due to the largest number of synchronous accesses in
three programs even though the accesses to the shared memory do
not frequently occur.

3. 4 Synchronization Improvement
As mentioned in Sec. 3. 3, synchronization has a great influence

on the performance of parallel computation. We thus propose a
method to improve synchronization time. As mentioned in Sec. 2. 4,
we use barrier synchronization to enable collaboration between par-
allel nodes. The data used for barrier synchronization are stored on

— 5 —
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Fig. 5 Processing time of “radix sort”
program (ring length 10km).
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Fig. 6 Processing time of “product of a matrix”
program (ring length 10km).
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Fig. 7 Processing time of “queen problem”
program (ring length 10km).
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program (ring length 100m).
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Fig. 10 Speed up ratio of “queen problem”
program by changing the caching policy
of the synchronous memory
(ring length 10km).

synchronous memory and the copy of data are stored on the local
cache of the node. Since data used for barrier synchronization are
referred by each node only once, the performance must be improved
by not storing data on synchronous memory to the local cache. This
is because cache coherency processing is not needed in this case,
and it is sufficient for each node to read or write to synchronous
memory only when data on synchronous memory are not stored in
the local cache.

Lastly, we compare the performance of the above–mentioned
caching policy to that of the original one. For this purpose, we
present the speedup ratio of the new policy compared to the origi-
nal one. Noting that the speedup ratio of the “radix sort” program
and the “product of a matrix” program are small, we only show the
speedup ratio for the “queen problem” program in Fig. 10. The ring
length is assumed to be 10km. The larger speeding ratio can be
detained by the increasing number of nodes. It is due to the fact
that the “queen problem” program requires the largest number of
accesses to the synchronous memory among the programs that we
have tested. Then, the effect of the synchronization mechanism that
we have introduced in this subsection becomes clear.

4. Conclusion

In this paper, we have proposed the shared memory access
method in realizing the shared memory on photonic network. More-
over, we have evaluated the performance of the proposed method us-
ing the benchmark program for parallel computing. As a result, we
show that the effectiveness of using optical ring as a shared memory
and of parallel processing by the increase in the number of nodes
when number of synchronous processing is small. We can see the
future possibility of all-optical parallel computing environment in
the wide-area. An efficient shared memory access method and a
practical use of a local memory is due to be considered in the fu-
ture.
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