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Abstract— Although the bandwidth of access networks is
rapidly increasing with the latest techniques such as DSL
and FTTH, the access link bandwidth remains a bottleneck,
especially when users activate multiple network applications
simultaneously. Furthermore, since the throughput of a
standard TCP connection is dependent on various network
parameters, including round–trip time and packet loss ra-
tio, the access link bandwidth is not shared among the
network applications according to the user’s demands. In
this thesis, we present a new management scheme of access
link resources for effective utilization of the access link
bandwidth and control of the TCP connection’s throughput.
Our proposed scheme adjusts the total amount of the
receive socket buffer assigned to TCP connections to avoid
congestion at the access network, and assigns it to each TCP
connection according to characteristics in consideration of
QoS. The control objectives of our scheme are (1) to protect
short-lived TCP connections from the bandwidth occupation
by long-lived TCP connections, and (2) to differentiate the
throughput of the long-lived TCP connections according to
the upper-layer application’s demands. One of the obtained
results from the simulation experiments is that our proposed
scheme can reduce the delay of short-lived document transfer
perceived by the receiver host by up to about 90% , while a
high utilization of access link bandwidth is maintained.

I. INTRODUCTION

The rapid increase in Internet users has been the impetus
for the performance of backbone networks into solving
network congestion posed against the context of increasing
network traffic. However, little work has been done in
the area of improving the performance of Internet servers
despite the projected shift in the performance bottleneck
from backbone networks to endhosts or access networks.
For example, busy Web servers must have many simul-
taneous HTTP sessions, and server throughput degrades
when effective resource management is not considered,
even with large network capacity. Furthermore, Web proxy
servers [1] must also accommodate a large number of
TCP connections, since they are usually prepared by ISPs
(Internet Service Providers) for their customers. In our
previous work, therefore, we have proposed a TCP con-
nection resource management scheme at endhosts to solve
those problems and confirmed its effectiveness through
simulation and implementation experiments [2].

On the other hand, the bandwidth of access networks
is also rapidly increasing with the latest techniques, such
as DSL (Digital Subscriber Line) and FTTH (Fiber to
the Home). However, the access link bandwidth remains
a performance bottleneck, especially when users activate
multiple network applications simultaneously, as shown
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Figure. 1. Bottleneck at Access Network

in Figure 1. In this figure, six TCP connections are
established between a user host which becomes a TCP
receiver host, and the hosts, A, B, C, D, E and F, which
correspond to TCP sender hosts. Each of those connections
corresponds to upper–layer applications such as P2P and
FTP. For example, when the access link bandwidth is
4 Mbps, which is the typical value on the current Internet
in Japan [?], 667 Kbps is assigned to each TCP connection
when the access link bandwidth is fairly shared. However,
since the throughput of the standard TCP connections is
affected by various network parameters, including round–
trip time (RTT) and packet loss ratio, the access link
bandwidth is not shared equally among the network ap-
plications. For the same reason, we cannot expect a dif-
ferentiated throughput for all TCP connections according
to the user’s demands and the application characteristics.
For example, in Figure 1, we cannot intentionally increase
the throughput of the TCP connection for P2P and FTP
data transmission, and restrict that for the network update
operation which should be done in the background.

Another problem we focus on in this paper is the
performance unfairness between short–lived and long–
lived TCP connections. When the access network link
is congested and some incoming packets are discarded,
the performance of the short–lived connections degrades
seriously, compared with that of the long–lived connec-
tions [3], [4]. This problem significantly affects the user’s
perceived performance such as Web document transfer
delay when they activate long–lived network applications
simultaneously.



Therefore, in this paper, we present a new access link
resources management scheme for the effective utilization
of the access link bandwidth and the control of the
performance of TCP connections. Our proposed scheme
virtually adjusts the amount of the receive socket buffer
for all TCP connections in order to avoid congestion
at the access link [5], [6], and assigns it to each TCP
connection according to its characteristics and the user’s
demands for the applications. All TCP connections at the
endhost are categorized into two types, which are short–
lived connections and long–lived connections. As men-
tioned above, since the data transfer time in short–lived
connections increases greatly when a packet loss occurs,
it is necessary to prioritize the short–lived connections,
that is, to try not to discard the short–lived connection’s
packets at the access link. For long–lived connections,
on the other hand, it is important to assign the access
link resources according to the applications’ characteristics
and the user’s demands, as mentioned above. Thus, the
objective of our proposed scheme is to prioritize short–
lived TCP connections and differentiate the throughput of
long–lived TCP connections, while keeping the utilization
of the access link.

The access link resource management scheme proposed
in this paper is implemented in a TCP receiver host,
which corresponds to the user host in Figure 1. There
are two major reasons for this choice. One is that in the
congestion control mechanism of standard TCP [7], [8], a
sender host cannot exactly estimate the congestion level
of the access link near a receiver host because of the
congestion control being performed by the sender host.
Another reason is that we cannot control the behavior of
TCP sender hosts to differentiate their throughputs because
each TCP connection lives independently on the other
connections. That is, the best way is for the receiver host
to control the utilization of the access network resources.
We also note that our proposed scheme does not modify
the congestion control mechanism of TCP, and network
protocol structures.

The rest of this paper is organized as follows: In
Section II, we propose a new access link resource man-
agement scheme and confirm its effectiveness by detailing
the results we obtained in the simulation experiments in
Section III. Finally, we present our concluding remarks in
Section IV.

II. OUR APPROACH AND ALGORITHM

Our proposed scheme can be divided into two mecha-
nisms: adjusting the amount of the receive socket buffer
for all TCP connections and assigning it to each TCP
connection.

A. Adjusting the Amount of Receive Socket Buffer for All
TCP Connections

As mentioned in Section I, this mechanism is for
controlling the arrival rate of packets at the access link and
avoiding congestion there. Since the network congestion

level dynamically changes, we adjust the amount of the
receive socket buffer for all TCP connections at regular
intervals. In detail, our proposed scheme periodically
measures the RTTs of all TCP connections at the receiver
host, and adjusts the amount of the receive socket buffer
for all TCP connections according to the measured results
as follows:

• When the RTTs of all TCP connections do not
increase, we determine that the access link resources
are still sufficient and increase the amount of the
receive socket buffer for all TCP connections.

• When the RTTs of all TCP connections increase,
we decrease the amount of the receive socket buffer
for all TCP connections, since it is likely that the
congestion occurs at the access link.

• Otherwise, we do not change the amount of the
receive socket buffer for all TCP connections.

It is important that the amount of the receive socket buffer
for all TCP connections be limited to the value deter-
mined above, even when the system has sufficient memory
capacity and larger memory space can be assigned for
the receive socket buffer. This is because if the receive
socket buffer size for each TCP connection is too large, the
packet transmission rate of the connection unnecessarily
increases, which causes the congestion of the access link.

We also note that the meaning of virtually adjusting the
amount of the receive socket buffer for all TCP connec-
tions is to adjust the advertised window size, which reports
the current available size of the receive socket buffer to
the TCP sender [7], instead of increasing/decreasing the
actual size of the receive socket buffer.

B. Assigning Receive Socket Buffer to TCP Connections

Before we assign receive a socket buffer to each TCP
connection, we categorize all TCP connections into short–
lived or long–lived. This is because the objectives of our
scheme are to prioritize short–lived TCP connections, to
differentiate the throughput of long–lived TCP connections
in consideration of the applications’ QoS, and to keep the
utilization of the access link. However, the TCP receiver
cannot know whether a TCP connection is short–lived or
long–lived, since the data size transferred by the TCP
connection is not informed in advance. Therefore, in our
proposed scheme, we use a threshold–based approach.
That is, we use a threshold value for the receive socket
buffer of each TCP connection and categorize the connec-
tion by whether the assigned receive buffer size exceeds
the threshold value or not. Since all TCP connections are
initially categorized as short–lived in this approach, these
states are expressed as “initial state” instead of “short–
lived” and as “persistent state” instead of “long–lived” in
our scheme. The threshold value is set to the receive socket
buffer size, in case we consider all of the TCP connections
currently at the receiver host to be in a persistent state.

Then, the receive socket buffer size assigned to each
TCP connection is determined as follows. We first assign



the receive socket buffer to initial connections preferen-
tially, and then to persistent connections.
(1) For initial TCP connections

We assign the receive socket buffer for initial connec-
tions to improve the arrival packet rate from the initial
connections at the receiver host. At the same time, our
proposed scheme tries not to unnecessarily reduce the
throughput of persistent connections when prioritizing
initial connections. Therefore, the receive socket buffer
size assigned to each initial connection is determined in
consideration of the increase algorithm of the congestion
window size in TCP’s slow start phase.
(1–a) When the amount of the receive socket buffer for
all TCP connections is sufficient

In this case, the receive socket buffer required by
all initial connections can be assigned. Since an initial
connection is likely to be in the slow start phase, we focus
on the increase algorithm of the congestion window size
in the slow start phase to avoid degrading the throughput
of persistent connections. That is, the assigned size to the
initial connection i is determined according to the number
of RTTs from the beginning of the connection, which is
described as ti. Consequently, the receive socket buffer
size required by connection i in this case becomes 2 · 2ti

packets.
(1–b) When the amount of the receive socket buffer
for all TCP connections is insufficient

In this case, the receive socket buffer required by
all initial connections cannot be assigned. Therefore, the
receive socket buffer is distributed to all initial connections
proportionally to the difference between 2 · 2ti and the
threshold value mentioned above. This is originated by
the consideration that it is necessary to prioritize TCP
connections just after beginning their data transmission,
since they are likely to have small window sizes.

Here, we define the amount of the receive socket buffer
for all TCP connections as B, the number of initial
connections as Nis, and the threshold value as thresholdi.
Then, the receive buffer size assigned to initial connection
i, Ri, can be described as the following equations:

Ri =




2 · 2ti (1–a)

B · (thresholdi − 2 · 2ti)
Nis∑
j

(thresholdj − 2 · 2tj )

(1–b)

(2) For persistent TCP connections
It is important to consider each network application’s

characteristic and user’s demands for persistent connec-
tions to utilize effectively the access link resources. We
assume that each persistent TCP connection has a priority
value pre–defined according to the user’s demands and the
application characteristics.
(2–a) When the amount of the receive socket buffer for
all TCP connections is sufficient

Since the amount of the receive socket buffer for all
TCP connections is larger than that required by all initial

connections, the remainder is assigned to the persistent
connections according to their priority values and RTTs.
(2–b) When the amount of the receive socket buffer
for all TCP connections is insufficient

In this case, we cannot assign enough size of the receive
socket buffer for the persistent connections. However, it is
necessary to assign at least 1 mss for each connection to
avoid the TCP’s silly window syndrome [9], [10].

Here, we define the amount of the receive socket buffer
for all initial connections as Tis, the number of persistent
connections as Nps, the RTT of TCP connection i as rtti,
and the priority value of each TCP connection as pi. Then,
the receive socket buffer size assigned to each persistent
connection i, Ri, is described as the following equations:

Ri =




(B − Tis) · pi · rtti
Nps∑

j

(pj · rttj)
(2–a)

1 mssi (2–b)

C. Discussions on Bottleneck Discovery

Our proposed scheme estimates the network congestion
level from the changes of the RTTs of all TCP connections
at the receiver host. Therefore, if RTTs increase due to a
bottleneck link other than the access link, our proposed
scheme may fail to estimate the access link congestion.
However, when the RTT of most of TCP connections
increase, we can consider that these connections are af-
fected by the congestion occurring at the identical link,
which corresponds to the access link in this case. Conse-
quently, if the RTTs of all TCP connections increase, our
proposed scheme determines the access link bandwidth
is a bottleneck. On the other hand, when the RTTs of
a few TCP connections increase, we can consider that
these connections are affected by the congestion at the
link through which only these connections pass. That is to
say, this congestion is considered to occur at the link other
than the access link. Therefore, if the RTTs of a few TCP
connections at the receiver host increase, our proposed
scheme determines that the bandwidth of the link other
than the access link is a bottleneck.

III. SIMULATION EXPERIMENTS

In this section, we compare our proposed scheme with
the standard TCP, the scheme proposed in [11] and the
scheme proposed in [12] through simulation experiments
with ns–2 [13] and evaluate the effectiveness of our
proposed scheme. In this section, we denote the scheme
proposed in [11] Spring and that in [12] Mehra.

A. Simulation Setup

Figure 2 shows the simulation model. It consists of
four sender hosts A through D and one receiver host.
The propagation delays between the sender hosts and the
receiver host are: A : 35 msec, B : 45 msec, C : 55 msec
and D : 10 msec, respectively. A performance bottleneck in
this simulation is the receiver host’s access link bandwidth
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TABLE I

PARAMETERS IN SPRING AND MEHRA ([11], [12])

Spring ([11]) Mehra ([12])
Xputlink 4 Mbps priority 0

QLengthLoss 64 KBytes weight 0
QLengthDelay 5 KBytes minimal rate 0

Rcvshort 2KBytes
Rcvlong 8KBytes

(4 Mbps). The bandwidths and propagation delays of other
links are as described in Figure 2. The router buffer size
is set to 128 KBytes, and packet size is 1,500 Bytes. Our
proposed scheme (and Spring and Mehra for comparison)
is implemented at the receiver host. In this simulation, the
bulk data transfers are performed from the sender hosts
A through C to the receiver host (long–lived connections)
so that the access link bandwidth be fully utilized. At the
same time, 100 short–lived connections, each of which
transfers 30 KBytes data, start being activated from the
sender host D at 100 seconds with random intervals (5 sec
average). The interval to check RTTs of TCP connections
in our proposed scheme is 5 seconds and we set the
parameters in Spring and Mehra as summarized in Table I,
except that the parameters of Mehra (priority, minimal rate
and weight) is not set. Note that the parameters in Table I
are the values recommended in the papers [11], [12] and
there is almost no difference in parameter selection caused
by the changes in network topology and/or simulation.

B. Simulation Results

Figure 3 shows the CDF (cumulative relative frequency)
of data transfer time for short–lived connections, the
change of utilization of the access link during 500 seconds
simulation time, and the change of the average queue
length of the router buffer. In this figure, our proposed
scheme is labeled as “proposed,” the scheme of [11]
as “Spring,” the scheme of [12] as “Mehra,” and the
standard TCP as “traditional.” From Figures 3(a), we can
observe that the traditional scheme, which has no special
control, shows the longest data transfer time for short–
lived connections. This is because the traditional scheme
cannot exactly estimate the access link resources, and
many packet losses occur at the buffer of the last–hop

router due to congestion at the access link. Although
the traditional scheme shows a high enough utilization
of the access link as shown in Figure 3(b), most of the
bandwidth of the access link is occupied by the long–lived
connections, while that of the short–lived connections is
very low.

From Figure 3(a), Mehra shows the shortest data
transfer time for short–lived connections, but the lowest
utilization of the access link from Figure 3(b). Since
Mehra tries to assign the same bandwidth for short–lived
and long–lived connections, meaning that the access link
bandwidth (4 Mbps) is equally shared among three long–
lived connections and one short–lived connection in this
case. Consequently, the access link bandwidth becomes
under–utilized, since the bandwidth assigned to the short–
lived connections cannot be fully utilized. The near–zero
average queue length of Mehra in Figure 3(c) also confirms
the under–utilization of the access link.

From Figure 3(c), Spring shows that the average queue
length at the last–hop router is relatively long. This is
because Spring assigns a receive socket buffer to each TCP
connection so that half of the router buffer is utilized.
This results in an increase in the data transfer time for
short–lived connections, as shown in Figure 3(a). Note
that since the access link bandwidth is not so large, the
queuing delay at the last–hop router cannot be ignored.
On the other hand, our proposed scheme shows that the
average queue length at the last–hop router is small and
the data transfer time for short–lived connections are also
small, while a high utilization of the access link bandwidth
is maintained.

Figure 4 shows the change of the throughput of the
long–lived connections in the simulation time. In this
figure, we label the throughput of the connection from
the sender host A as “flow A,” that from the sender
host B as “flow B” and that from the sender host C as
“flow C,” respectively. The label of “best” represents the
throughput value when the access link bandwidth is shared
most fairly and effectively. From Figure 4, our proposed
scheme, Spring and Mehra show positive fairness among
the long–lived connections, compared with the traditional
scheme. However, Mehra shows the lowest throughput and
the largest fluctuation of the throughput. This is because
Mehra repeats the adjustment to make all TCP connections
share the access link bandwidth equally. On the other
hand, as we can see from Figure 4(a) and Figure 4(b),
our proposed scheme and Spring show almost the same
throughputs as the “best” case.

IV. CONCLUDING REMARKS

In this paper, we have proposed a receiver-based access
link resource management scheme at the receiver host.
Our proposed scheme adjusts virtually the amount of the
receive socket buffer for all TCP connections at the user
hosts in order to avoid congestion at the access link, and
assigns it to each TCP connection so that for a short-
lived connection, the packets be treated with high priority,
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Figure. 4. Simulation Results (2)

and for a long-lived connection, the upper-layer applica-
tion’s QoS and the user’s demands be reflected. We have
evaluated the performance of the our proposed scheme
through extensive simulation experiments, and confirmed
that it can utilize effectively the access link resources, that
is, it can improve the performance of short-lived TCP
connections, and maintain the throughput of long-lived
connections as expected, while keeping the utilization of
the access link bandwidth. Moreover, we have compared
our proposed scheme with the schemes in [11], [12] and
confirmed the advantages of our proposed scheme.

As for future work, we plan to implement the proposed
scheme to the actual receiver host, and to evaluate it
through experiments using the actual network.
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