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Abstract—TCP overlay networks that control data transmission quality
at the transport layer are being paid a lot of attentions as users’ demands
for diversified Internet services increase. They are expected to enhance
the end–to–end throughput of the TCP connection essentially because the
round trip times and the packet loss ratios of each split TCP connection are
reduced. However, performance degradation may occur due to undesired
interactions among the split TCP connections. In this paper, we introduce
an analysis approach to estimate end–to–end throughput of data transmis-
sion with a TCP proxy mechanism considering of performance degradation.
Our analysis results revealed that we confirmed the effect of the TCP proxy
mechanism. We also found that we cannot ignore performance degrada-
tions due to interactions among split TCP connections especially when the
congestion level of the network they traverse is small.

I. INTRODUCTION

The tremendous Internet development has been greatly
spurred by access/backbone network technologies such as xDSL
and optical fiber. As well, users’ demands for diversified ser-
vices have increased due to the rapid growth of the Internet pop-
ulation. Some of these applications require high quality trans-
port services in terms of end–to–end throughput, packet loss ra-
tio, delay, and so on. However, data transmission quality across
the present Internet cannot be assured, essentially because of its
best–effort basis.

IntServ [1] and DiffServ [2] are possible solutions for the
problem by adding control mechanisms at the network layer. For
example, the Diffserv architecture is based on a simple model
where traffic entering a network is classified and possibly con-
ditioned at the boundaries of the network, and then assigned
to different behavior aggregates. However, they would be nec-
essary to deploy additional mechanisms to all routers that all
traffic–flows traverse in order to provide sufficient benefit from
the introduction of IntServ/DiffServ to the network. Therefore,
because of aspects such as scalability and cost, we believe that
these schemes have almost no chance of being deployed to the
large–scale network.

There are other approaches for quality control mechanism,
which are located under/over IP layer. MPLS (Multi–Protocol
Label Switching) [3] and GMPLS (Generalized MPLS) [4] are
typical examples of the underlay approach. For example, MPLS
allows a particular packet stream to follow a pre–determined
path rather than a path computed by hop–by–hop destination
based routing. Although these approaches are well performed
in the internal of an ISP (Internet Service Provider), they are not
applicable to data transmission passing through multiple ISPs;

they need additional mechanisms such as bandwidth broker [5].
Therefore, they have the same shortcoming as IntServ/Diffserv
architectures in scalability and deployment.

Proxy cache servers in CDNs (Contents Delivery Networks)
[6] and media streaming in P2P (Peer to Peer) network [7] are
typical examples for overlay networking approach. In overlay
networks, packets from a sender host are forwarded to a re-
ceiver host via some other hosts/nodes which exist there. The
route between the sender and receiver hosts these packets tra-
verse is composed of many virtual paths in the overlay networks.
This means that overlay networks can provide various services
without changes to the existing IP infrastructure even if over-
lay networks spread over multiple ISPs. The overlay networks
control data transmission quality by using information of the
underlying IP network by means of monitoring and/or signaling
mechanisms. For example, application–layer overlays in [8-10]
use RTTs (Round Trip Times) and hop–counts between overlay
nodes in order to configure the topology of the overlay networks
and select adequate paths between sender and receiver nodes.
The other researches on the overlay network for IP packet rout-
ing, such as RON (Resilient Overlay Network) [11] and FBR
(Feedback Based Routing) [12], obtain the functioning and qual-
ity of the Internet paths among overlay nodes and use this infor-
mation to decide whether to route packets directly over the In-
ternet or by way of other overlay nodes. However, these overlay
schemes need additional overheads such as signaling messages
and redundant traffic for measuring the network performance
and exchanging information among overlay nodes. Another dis-
advantage is that they need some complicated control mecha-
nisms specific to each application, and that parameter settings
are very sensitive to various network factors.

In this paper, we introduce a TCP overlay network as a scal-
able and deployable overlay network. It controls data transmis-
sion qualities at the transport layer, meaning that the IP layer
remains providing only minimum fundamental functions such
as the routing and packet forwarding. It is fundamentally differ-
ent from IntServ/DiffServ that requires sophisticated facilities
to the network layer and RON/FBR that needs additional over-
heads for measuring the network performance. One of the im-
portant mechanisms of TCP overlay networks is to divide the
end–to–end TCP connection into multiple split TCP connec-
tions, as shown in Fig. 1, to control transmission quality at the
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Fig. 1. TCP overlay network.

transport layer. In this paper, we call this splitting mechanism
TCP Proxy.

The advantage of TCP overlay networks is the improvement
of TCP throughput achieved by TCP proxy, where data packets
are relayed from the sender host to the receiver host via the split
TCP connections. Since the shorter TCP loops enable us to real-
ize a shorter RTT and lower packet loss ratio, the TCP through-
put can be increased by TCP proxy. Furthermore, the shorter
RTT and lower packet loss ratio also make it easy to control the
performance of TCP connections. For example, by introduc-
ing the TCP proxy mechanism, differences in the network en-
vironment can be concealed from users; if the network between
sender and receiver hosts includes a wireless network, the end–
to–end throughput of the TCP connection generally deteriorates
due to the high packet loss ratio and large propagation delay
within the wireless network. In this case, performance degrada-
tion can be minimized by splitting the TCP connection at both
the ingress and egress edges of the wireless network. Then, data
transfer in the wireless network becomes isolated from that of
other parts of the network, and vice versa.

By using the TCP overlay network for data transmission, the
upper–layer application by itself does not need to decide paths
among overlay nodes. The paths are selected by TCP proxy
nodes, using information obtained from TCP connections be-
tween TCP proxy nodes. Therefore, the application can omit
annoying tasks such as the measurement of IP network. Fur-
thermore, it is expected that the application exposes good perfor-
mance by obtaining better information from the transport layer.
TCP throughput is a typical example which can not be obtained
by the approaches in [11, 12], and we consider it would reflect
the performance of the upper–layer application.

TCP overlay networks has quite a high applicability to the
deployable network. That is, it is not necessary to introduce
the TCP proxy mechanism to all routers in the network, while
IntServ/DiffServ needs to deploy additional mechanisms to all
routers, due to the end–to–end principle of TCP. The advantage
of the TCP proxy mechanism can be exhibited even when only
one proxy exists in the network, and the larger the number of
the TCP proxy nodes becomes, the larger performance gain can
be obtained. It means that the data transfers traversing multi-
ple ISPs can be easily enhanced by a TCP proxy mechanism.

Furthermore, there is no need to modify the end user’s protocol
stack, since our TCP proxy mechanism automatically splits the
user’s TCP connection.

The idea of TCP proxy is not a new idea. In previous re-
ports [13-17], some schemes have been proposed to improve
data transfer throughput by splitting TCP connections. Some
researches have focused on specific networks such as wireless
and satellite [13-15]. Other reports have clarified the advan-
tage of improvements of data transfer throughput [16, 17] but
do not take account of the serious problems involved in splitting
TCP connections and relaying data packets. However, we be-
lieve that we should not limit to apply to TCP proxy mechanism
only to specific networks, and that the merit of TCP overlay net-
works described above becomes apparent when we consider its
deployment to general networks. In fact we cannot expect that
the TCP proxy mechanism will provide the drastic improvement
in end–to–end throughput described in some previous reports.
As we will discuss later, various kinds of performance degrada-
tions may occur in splitting TCP connections, due to undesired
interactions among the split TCP connections. Those problems
become more obvious when we try to minimize the degree of
modification of the current system in introducing the TCP proxy
mechanism.

In this paper, we introduce an analysis approach to estimate
the end–to–end throughput of data transmission with a TCP
proxy mechanism. We take into account the problems that may
occur in introducing the TCP proxy mechanism on the analysis
approach. From this analysis, we confirm the effect of the TCP
proxy mechanism in various kinds of the networks, and ascer-
tain the degree of the performance degradation.

The rest of this paper is organized as follows. Section II de-
scribes the TCP proxy mechanism that is a fundamental mech-
anism in TCP overlay networks. We then point out some
problems related with the TCP proxy mechanism. Section III
describes our new analysis approach to estimate end–to–end
throughput of data transmission with the TCP proxy mechanism
considering performance degradation. We also discuss the ef-
fectiveness of the TCP proxy mechanism using our analysis re-
sults. Finally, in Section IV we present our conclusions and note
future works.

II. TCP PROXY MECHANISM

A. Overview

In TCP overlay networks, a TCP proxy is a fundamental
mechanism which splits a TCP connection between sender and
receiver hosts into multiple TCP connections at some network
nodes. Fig. 2 illustrates how data packets are transferred from a
sender host to a receiver host by split TCP connections when a
TCP connection is divided at both TCP proxy A (�����) and
B (�����) as shown in Fig. 1. Here, we define each split TCP
connection as ��, �� , and �� from the sender host. When a
packet from the sender host arrives at ����� via ��, �����
relays them to �� . Similarly, ����� relays packets from ��
to �� . In the TCP overlay networks discussed in this paper,
we use a local ACK packet [18]; a TCP proxy node sends back
a pseudo ACK packet to the upward sender/proxy when it re-
ceives a data packet, without waiting to receive an ACK packet
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Fig. 2. TCP proxy mechanism.

from the downward receiver/proxy, as shown in Fig. 2. By using
local ACK packets, the sender host can transfer new data pack-
ets without waiting for ACK packets to be received from the
receiver host. This is expected to improve data transfer through-
put of the connection �� by shortening the RTT value. Sim-
ilarly, the throughputs of both �� and �� are also improved,
which results in the improvement of end–to–end throughput be-
tween sender and receiver hosts. Furthermore, a TCP proxy has
send/receive socket buffers for storing data packets, just as a
regular TCP host does. Therefore, when a data packet is lost
between ����� and the receiver host, �� can retransmit the
dropped packets from ����� instead of the sender host. It is
also expected to improve data transfer performance compared to
that of a regular TCP connection.

In a strict sense, this proxy mechanism violates TCP seman-
tics. That is, by using local ACK packets, the sender host re-
ceives ACK packets for data packets before the receiver host
receives them, which may deteriorate reliable data transmission
of TCP. However, we believe that reliability can be maintained
since each split TCP connection has the same reliability as a reg-
ular TCP connection. A TCP proxy node steadily relays packets
from the upward connection to the downward connection. An-
other reason is that a TCP proxy node forwards SYN and FIN
packets, which are used in connection establishing and termi-
nation, in an normal manner without using local ACK pack-
ets. In TCP overlay networks, splitting is performed at TCP
proxy nodes where both SYN and SYN/ACK packets are passed
through. Even if packets from a sender host are forwarded to a
receiver host in different routes, a TCP proxy mechanism op-
erates successfully because data transfer is performed via split
TCP connections among TCP proxy nodes. However, we as-
sume that all packets invariably traverse the edge proxy nodes,
which are the nearest proxy nodes from the sender/receiver
hosts. This is because we want not to modify the sender/receiver
TCP implementations. We consider the following two meth-
ods to overcome this problem; one is that the first and last hop
TCP proxy nodes should be located at the focal points of the
network. The other is that a TCP proxy software is installed to
TCP sender/receiver hosts, so that the TCP sender/receiver hosts
virtually behave the first and last hop TCP proxy nodes.
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Fig. 3. The effectiveness of TCP proxy mechanism.

B. Simple throughput estimation

As stated above, improvements of data transfer throughput
are expected from the introduction of the TCP proxy mecha-
nism. This is because a TCP connection is divided into multiple
split TCP connections and each split connection forwards pack-
ets with shorter control loops. We therefore consider that the
expected end–to–end throughput � can be calculated as follows.

� � ���
�
����

This expression shows that end–to–end throughput equals the
smallest throughput ���� of each split TCP connection �. The
average throughput � of a TCP connection can be estimated by
using Eq.(1), which is described in [19]:
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Here, we denote � as the option of the delayed ACK, where the
receiver host replies to one ACK packet every �ACK packets. �,
��� , and �� are the packet loss ratio, round trip time, and time
duration of the initial timeout, respectively. Fig. 3 illustrates the
effectiveness of the TCP proxy mechanism in a 32 hop network
using the above estimation. In this figure, the x-axis is the num-
ber of split TCP connections, each of which has identical hop
counts; and the y-axis is the normalized throughput, which is
defined as the ratio of the throughput when using TCP proxies
to that without TCP proxies. We also set the link bandwidths,
the packet loss ratios and the propagation delays of each hop as
100 [Mbps], 0.0005 and 0.01 [s], respectively. From this figure,
we can observe that end–to–end throughput is greatly improved
as the number of split TCP connections becomes large. This is
because both of the RTTs and packet loss ratios of each split
TCP connection become small.

C. Problems in TCP proxy mechanism

The above calculation is for an ideal case, where we do not
consider any bad effects from splitting the TCP connections.
In a practical case, however, some performance degradations
may occur due to undesired interactions among the split TCP



connections. Here, we introduce two major problems causing
degradation of the data transfer throughput, especially in regard
to buffering at the TCP proxy nodes. Fig. 4(a) illustrates one
problem caused by temporary congestion at a split TCP connec-
tion A. When a packet loss occurs at the split TCP connection
A due to network congestion, the TCP proxy temporarily stops
relaying data packets from the receive buffer of the split TCP
connection A to the send buffer of the split TCP connection B
until the lost packet is retransmitted and arrives at the proxy.
This is because a TCP receiver deals with the received data in
an in–order fashion. Then, the send buffer of connection B may
become empty since connection B continues sending packets.
As a result, the throughput of connection B deteriorates. This
problem does not occur when we do not use a TCP proxy since
all incoming packets are immediately forwarded by the normal
router regardless of the order of the arriving packets.

Fig. 4(b) depicts another problem where the throughput of
the split TCP connection B deteriorates when it experiences net-
work congestion. We consider the situation where connection B
temporarily cannot send data packets from the send buffer at the
TCP proxy B due to network congestion. When the duration of
the congestion is long, the buffers at the TCP proxy B (the send
buffer for connection B and the receive buffer for connection A)
become full since split TCP connection A continues transmitting
packets to the TCP proxy B. When there is no remaining space
in the receive buffer, TCP proxy B sends local ACK packets
with zero size of the advertised window. This causes connection
A to stop sending data packets for a while. Then, the buffers at
proxy B become empty when the connection B recovers from
the congestion and starts sending packets again. Therefore, the
throughput of connection B may deteriorate.

Those problems are caused by the introduction of a TCP
proxy mechanism in the network, meaning that we put TCP end-
points in the network routers, in addition to the sender/receiver
hosts. Therefore, we should take them into account when eval-
uating the performance of the TCP overlay network. However,
we consider the problem shown in Fig. 4(b) is not so serious
in an actual network. This is because major operating systems
including Linux and FreeBSD have a mechanism to avoid per-
formance degradation from a zero advertised window [20, 21];
when the received data is retrieved from the receive socket buffer
to the application buffer and there becomes some available space
in the receive buffer, the receiver–side TCP sends an additional
ACK packet to the sender to inform the new value of the ad-
vertised window. In the next section, we consider the problem
in Fig. 4(a) as the major reason for performance degradation in
splitting TCP connections.

III. THROUGHPUT ANALYSIS

A. Model and Assumptions

We use the network model as shown in Fig. 5 in our analy-
sis. We focus on a TCP connection which traverses 
	� nodes
from the sender host ���� to the receiver host ��
�. We de-
fine link bandwidth, packet loss ratio, and propagation delay of
a link as ����� �  � 
� as ���, ���, and ���, respec-
tively. We assume that the TCP connection is divided into 	
split TCP connections at 	� � TCP proxy nodes. A split TCP
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connection ���� � � � 	� is established between the TCP
proxy ������� and the TCP proxy �����, where �� is the
position of the TCP proxy. ����� has the receive socket buffer
for �� , the size of which is ���, and the send socket buffer for
����, the size of which is �����. The goal of our analysis is to
estimate the average end–to–end throughput � of the data trans-
fer from ���� to ��
�, considering the performance problem
depicted in Fig. 4(a). Since our analysis is based on the analy-
sis of the average throughput of a TCP connection in [19], we
use the same assumptions as those in [19]. We further introduce
a new assumption that a TCP proxy sends a local ACK packet
when it receives a data packet from the upward sender/proxy.
We do not consider a processing overhead at TCP proxy nodes
because we are interested in the average end–to–end throughput
in this paper. However, the processing overhead should be taken
into account especially when we evaluate transfer delays of the
fixed–sized data. We are now investigating the effect of process-



ing overhead and we will show the results in the final–version
paper.

B. Analysis

Our analysis makes an iterative calculation. First, we calcu-
late the average throughput ����� of �� without consideration
of the interaction among split TCP connections. That is, �����
is the average throughput of �� where we do not consider the
interaction between �� and ����, and between �� and ����.
Then, we define ���� � �������� �����, which is the first value
of the iterative calculation. In the �–th iteration, we calculate
����� and ���� based on �����, ����� �� and ���� �� considering
the performance degradation problem. The iteration stops when
the following condition becomes satisfied, and then we consider
���� as the average throughput �.

����� ��� �����

���� ��
� � (2)

����� is determined by three factors; (A) the throughput given
by using Eq.(1), (B) the bandwidth–delay product of the net-
work between������� and�����, and (C) the receive buffer
size of ��, ��� . In the case of (A), the average throughput of
�� is derived from Eq.(1) as follows:

�
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Here, ��, �� (packet loss ratio of ��) and ���� (RTT of ��)
are calculated as follows:

�� � � � ���� (3)
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Eq.(3) is a very rough estimation of RTO (Retransmission Time-
Out) presented in [22]. In the case of (B), the average through-
put of �� equals the minimum link bandwidth of the traversing
network;

�
��

� ��� � ���
�����������

���

In the case of (C), it is calculated as follows:
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Therefore, ����� and ���� in the first iteration are calculated as
follows:
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���� � ���
�����

����� (4)

We then calculate the average throughput of the �–th iteration.
We calculate �����, the throughput of split TCP connections ��,
��, � � �, �� in this order, and we assume that ����� equals ����.
When we take into account the interactions among split TCP
connections, we should consider the remaining space in the re-
ceive buffer, which depends on the throughputs of both � � and
����. Here, we model packet arrival/departure at/from the re-
ceive buffer as M/M/1/K queuing model, where � � ���. We
consider ���� �� as the average packet arrival rate at the receive
buffer of �� and ����� as the average service rate in the send
buffer of ��. The remaining space ���� in the receive buffer
of �� is then calculated as follows:
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where � � ��� 	 ��� and �
�

� � ��� � ��������. Therefore,
we can calculate the average throughput of �� as follows:
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In order to calculate ����� (2 � � � 	), we take into account
undesired interactions between �� and ����, and between ��
and ����. See Fig. 6. We consider the time duration between
two successive packet drops in ����, which we define as one
cycle. We denote ����� as the probability that the number of
packets stored in the send buffer of �� is � �� � � � ���� at
the beginning of the cycle. We also denote ����� as the average
throughput of �� when there are � packets in the send buffer of
��. We can therefore calculate the average throughput of � � in
the �–th iterative calculation;

�
����

� ��� �


���
���

����� � ����� (5)

In what follows, we explain the derivation of ����� and �����.
We model the behavior in the send buffer of �� as M/M/1/K
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queue to calculate �����. We consider ������� as the average
packet arrival rate to the send buffer of �� and ����� as the aver-
age service rate in the send buffer of��. ����� is then calculated
as follows:
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where � � ��� and �
��

� � �������������. We consider the cy-
cle is divided into two parts; the time from the beginning of the
cycle to the arrival of the retransmitted packet at�������, and
the time from that to the end of the cycle. We denote �� as the
average time duration of the former part and � � as the average
number of packets which �� transmits in �� . � and� are also
defined as those of the latter part. If there are remaining packets
in the send buffer when the retransmitted packet arrives, no per-
formance degradation occurs as shown in Fig. 7. Therefore, we
can calculate ����� in that case as follows:

����� � ����� ��� � ����� � ��

Otherwise, we can calculate it as follows:

����� �
�� 	�
�� 	 �

(6)

In the following, we discuss the derivation of�� , �� , � and �
by using Fig. 7. �� is the number of packets stored in the send
buffer of �� when a packet loss occurs in ����. Therefore, ��

is calculated as follows:

�� � �

�� is the time duration for the retransmission of the lost packet.
It depends on whether the retransmission is caused by fast re-
transmit or timeout in TCP mechanism [23]. It is a reasonable
assumption that it takes about ������ in fast retransmit, and
RTO (Retransmission TimeOut) in timeout. Therefore, �� is
calculated as follows:
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Here, we denote ��� � �� as the average window size of ��
when a packet loss occurs and	�
��� ����� � ��� is the prob-
ability that the lost packet is detected by the timeout. These two
values can be found in [19]. �  is the average number of packets
which�� transmits between two successive packet drops. Then,

� �
�

����

� is the time duration for �� to transmit � packets. It is as-
sumed that when the retransmitted packet arrives at �������,
�� has enough packets in the send buffer. We therefore can cal-
culate � as follows:

� �

�

����
	�
��������� ������

By using these �� , �� , � and �, we can calculate ����� in
Eq.(6). We then obtain �

����

� ��� in Eq.(5).
Furthermore, ����� may be limited by����, the bandwidth–

delay product of the networks, as is in the case of ��. Then,
����� is calculated as follows:
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where� � ���	����� and �
�

� � ��������������. We then
obtain end–to–end throughput ���� of the �–th iteration, consid-
ering the performance degradation that occurs in introducing the
TCP proxy mechanism as follows.

���� � �����

We continue this iterative calculations until Eq.(2) is satisfied,
and finally derive the analysis results � as ���� when the iteration
stops.

C. Numerical examples

In this subsection, we first confirm the correctness of our anal-
ysis approach by comparing the simulation results. All simula-
tions were run using NS simulator [24]. We next discuss perfor-
mance gain obtained by introducing the TCP proxy mechanism.
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Fig. 9. Confirmation of the analysis results.

We then discuss the degree of performance degradation caused
by the problems described in Subsection II-C, and the network
characteristics where the performance degradation is large.

We use the network topology shown in Fig. 8. The net-
work topology is composed of three networks; LAN1, WAN
and LAN2. The TCP proxy is deployed at the edge of each net-
work and a TCP connection between sender and receiver hosts
is divided into three split TCP connections (�����, ���� ,
�����) at two TCP proxies on �� and ��. We used TCP
Reno version which is the most popular in the Internet. Other
versions of TCP such as SACK, NewReno, and Vegas can be
applicable in a TCP proxy mechanism, but the degree of the
performance gain remains almost the same since it is indepen-
dent of the details of the congestion control algorithm of TCP.
We denote �����, ���� , ����� as the propagation delay,
�����, ���� , ����� as the packet loss ratio, ������,
����� , ������ as the link bandwidth of each network.
������, ����� and ������ are enough to not limit the
performance of the TCP connection. We use 0.01 as the value of
� in Eq.(2). Note that the other values of �make no difference in
the simulation results. In the following numerical examples, we
show the results when the packet loss ratio and propagation de-
lay between a TCP proxy on�� and the receiver host is large. It
means that we assume that users access the Internet via satellite
or wireless networks. Note that the correctness of our analysis
approach is proved to be almost identical in other cases.

Fig. 9 shows end–to–end throughput when ���� is 5, 50,
500 [ms]. In this figure, the achievable throughput is very high
when ���� is 5 and 50 [ms] and ���� is less than 0.01. In
these regions, we can find that throughput equals that of�����,
although the throughput of ����� is the smallest among the
three connections. This confirms the effective of the TCP proxy,
which eliminates the adverse impact caused by an increase of
���� . On the other hand, when ���� is larger than 0.01, the
throughput of ���� is the smallest among the three connec-
tions. Therefore, the larger ���� is, the smaller the end–to–
end throughput is. This phenomenon also occurs when ����

is larger than 0.0001 and ���� is 500 [ms]. From this fig-
ure, the analysis results give a reasonable estimation of end–to–
end throughput. However, when ���� is small and ���� is
large, and���� is large and ���� is small, there is a signif-
icant difference between analysis and simulation results. From
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Fig. 10. The effectiveness in introducing a TCP proxy mechanism.

our investigation, this difference is not caused by our analysis,
but by the analysis in [19]. The authors in [19] said that the ac-
curacy of the analysis in [19] is not assured when packet loss
ratio is less than 0.001 or RTT value is less than 0.1 sec. An-
other reason is that the analysis in [19] does not consider the
time spent in slow start phase, it cannot give good throughput
estimation when packet loss ratio is large and/or RTT value is
relatively large.

We next discuss performance gain obtained by introducing
the TCP proxy mechanism. We use the network model depicted
in Fig. 8 and set ������ to 10 [Gbps] in order not to limit the
throughput by the link bandwidth. We compare the following
two cases; one is when the end–to–end connection is established
between sender and receiver hosts (case 1), the other is when
one end–to–end connection is split at two proxies (case 2). In
case 1, the average end–to–end throughput is calculated by using
Eq.(1). In case 2, it is calculated by using the proposed analysis
methods described in Subsection III-B and performance degra-
dation depicted in Fig. 4(a) occurs. Fig. 10 shows the change of
performance ratio when ����� and ����� are set to various
values. Here, we define the performance ratio as the ratio of av-
erage end–to–end throughput in case 2 to that in case 1. From
this figure, we can observe that the ratio is always larger than 1
independent of the values of ����� and����� and the degree
of performance improvement is up to about 3 times. It means
that a TCP proxy mechanism is very useful even if we consider
performance degradation among split TCP connections.

In order to examine the characteristics of performance degra-
dation, we use the same network (Fig. 8), where we set �����
to 0.01, ����� to 0.05 [s], ���� to 0.01 and ���� to 0.05
[s]. Fig. 11 shows the ratio of the performance degradation as
a function of ����� and �����. Here, the ratio is defined
as the throughput obtained in the analysis in Subsection III-B,
divided by the expected throughput shown in Eq.(4) without per-
formance degradation. From this figure, when ����� is about
0.01 and ����� is about 0.05, performance degradation tends
to become large. That is, when the difference of the network
congestion level between WAN and LAN2 is small, there is se-
rious performance degradation. In such a situation, since the
average number of packets stored in the send buffer of the split
TCP connection is small, performance degradation frequently
takes place. The degree of performance degradation is up to
about 40% of the expected throughput in this example, which
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means that we cannot ignore problems caused by splitting the
TCP connection.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, we have introduced an analysis approach to es-
timate end–to–end throughput of data transmission with a TCP
proxy mechanism considering the problems that will occur in in-
troducing the TCP proxy mechanism. From our analysis results,
we confirmed the effect of the TCP proxy mechanism. Further-
more, we found that we cannot ignore performance degradation
caused by these problems, especially when the congestion level
of the network where the split TCP connections traverse is small.
We believe that the performance degradation can be minimized
by enlarging the send buffer size of the split TCP connection.
This is because performance degradation occurs since the num-
ber of packets stored in the send buffer of the TCP proxy be-
comes zero.

In future investigations, we confirm the effectiveness of our
solution as discussed above. We need to evaluate the perfor-
mance of the TCP proxy mechanism considering the handling
of multiple TCP connections, focusing on the processing over-
head of incoming packets, and so on. We also need to investigate
the performance of the TCP proxy mechanism when it handles
Web traffic, where its file transfer delay is severely affected by
the processing delays of a TCP proxy. Further, we intend to dis-
cuss issues relating to the design of TCP overlay networks in
large scaled networks.
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