
Adaptive Media Streaming on P2P Networks

Masahiro Sasabe, Naoki Wakamiya, and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Email:{m-sasabe,wakamiya,murata}@ist.osaka-u.ac.jp

Abstract— With the growth of computing power and the
proliferation of broadband access to the Internet, the use of
media streaming has become widely diffused. By using the Peer-
to-Peer (P2P) communication architecture, media streaming can
be expected to smoothly react to changes in network conditions
and user demands for media streams. In this paper, to achieve
continuous and scalable media streaming, we introduce our
scalable media search and in-time retrieval methods. Through
several simulation experiments, we show that our methods can
accomplish continuous media play-out for popular media streams
without introducing extra load on the system. However, we also
show that an Least Recently Used (LRU) cache replacement
algorithm cannot provide users with continuous media play-
out for unpopular media streams. To tackle this problem, we
take inspiration from biological systems to propose a new
cache replacement algorithm that considers the balance between
supply and demand for media streams. We demonstrate that
our proposed algorithm can improve the continuity of media
play-out compared with LRU. Furthermore, we find that the
proposed algorithm can adapt to changes in the popularity of
various media.

I. INTRODUCTION

With the growth of computing power and the proliferation of
broadband access to the Internet, such as Asymmetric Digital
Subscriber Line (ADSL) and Fiber To The Home (FTTH), the
use of media streaming has become widely diffused. A user
receives a media stream from an original media server through
the Internet and plays it out on his/her client system as it
progressively arrives. However, with the current Internet, the
major transport mechanism is still only the best effort service,
which offers no guarantees of bandwidth, delay, and packet
loss probability. Consequently, such a media streaming system
cannot provide users with media streams in a dependably
continuous way.

By using the P2P communication technique, media stream-
ing can be expected to flexibly react to network conditions.
There have been several research works on P2P media stream-
ing [1]–[6]. Most of these have constructed an application-
level multicast tree whose root is an original media server
while the peers are intermediate nodes and leaves. Their
schemes were designed for use in live broadcasting. Thus,
they are effective when user demands are simultaneous and
concentrated on a specific media stream. However, when
demands arise intermittently and peers request a variety of
media streams, as in on-demand media streaming services, an
efficient distribution tree cannot be constructed. Furthermore,
the root of the tree, that is, a media server, can be regarded as
a critical point of failure because such systems are based on
the client-server architecture.

In [7], we proposed scalable search and in-time media
retrieval methods for on-demand media streaming on pure P2P
networks. In our system, every peer participating in a service
watches a media stream and deposits it in its local cache
buffer. A media stream is divided into blocks for efficient
use of network bandwidth and cache buffer [8], [9]. By
retrieving blocks from other peers in time, a peer can watch
a desired media stream. Since there is no server that manages
information on peer and media locations, a peer has to find
each block constituting a desired media stream by emitting a
query message into the network. Other peers in the network
reply to the query with a response message and relay the query
to the neighboring peers. If a peer successfully finds a block
cached in other peers, it retrieves it from one of them and
deposits it in its local cache buffer. If there is no room to store
the newly retrieved block, a peer has to perform replacement
on cached blocks with it.

There are several issues to resolve in accomplishing effec-
tive media streaming over pure P2P networks. Scalability is the
most important among them. Flooding, in which a peer relays
a query to every neighboring peer, is a powerful scheme for
finding a desired media stream. However, it has been pointed
out that the flooding lacks scalability because the number of
queries that a peer receives significantly increases with the
growth in the number of peers [10]. In particular, a block-by-
block search by flooding apparently introduces much load on
the network and causes congestion. To tackle this problem,
we proposed two scalable block search methods. Taking into
account the temporal order of reference to media blocks, a
peer sends a query message for a group of consecutive blocks.
Then, the peer performs adaptive block search by regulating
the search range based on the preceding search result.

Since continuous media play-out is the most important
factor for users in media streaming services, we have to
consider a deadline of retrieval for each block. To retrieve
a block by its corresponding play-out time, we proposed
methods to determine an appropriate provider peer (i.e., a
peer having a cached block) from search results by taking
into account the network conditions, such as the available
bandwidth and the transfer delay. By retrieving a block as
fast as possible, the remaining time can be used to retrieve
the succeeding blocks from distant peers.

Through several simulation experiments, we have shown
that our mechanisms can accomplish continuous media play-
out for popular media streams without introducing extra load
on the system. However, we have also found that the conti-
nuity of media play-out deteriorates as the media popularity

Peer A

Peer C

Peer B

Peer D

Peer F

Peer E
New peer

1. Join

2. Query2. Query

3. Relay3. Relay

3. Relay3. Relay

3. Relay3. Relay

3. Relay3. Relay

4. Response4. Response

4. Response4. Response

5. Request5. Request

6. Transmit6. Transmit

Search link

Data link Cache buffer

7. Store7. Store

Desired

media stream

Fig. 1. Overview of our media streaming on pure P2P networks

decreases. The reason is that popular media streams are
cached excessively while unpopular media streams eventually
disappear from the network. Although LRU is a simple and
widely used cache replacement algorithm, it fails in continuous
media play-out.

To improve the continuity of media play-out, in this paper
we consider an effective cache replacement algorithm that
takes into account the supply and demand for media streams.
Since there is no server, a peer has to make conjectures about
the behavior of other peers by itself. A peer estimates the
supply and demand from P2P messages that it relays and
receives from a flooding-based media search. Then a peer
determines a media to discard to make room for a newly
retrieved block. Furthermore, a peer also adapts to changes
in the supply and demand of media streams. For this purpose,
we propose a novel caching algorithm based on the response
threshold model of division of labor and task allocation in
social insects [11].

In biology, social insects, such as ants, also construct a
distributed system [12]. In spite of the simplicity of their
individuals, the insect society presents a highly structured
organization. It has been pointed out that social insects pro-
vide us with a powerful metaphor for creating decentralized
systems of simple interacting [12]. In particular, a recently
proposed model of division of labor in a colony of primitively
eusocial wasps, based on a simple reinforcement of response
thresholds, can be transformed into a decentralized adaptive
algorithm of task allocation [11]. By regarding the replacement
of media streams as a task, we propose a fully distributed
and autonomous cache replacement algorithm which can adapt
to changes in environments, i.e., the supply-to-demand. Our
proposed algorithm is also insensitive to parameter settings
since it adaptively changes the response threshold taking into
account the obtained information from the network. Through
several simulation experiments, we evaluate the algorithm in
terms of continuity of media play-out, adaptability to changes
in media popularity, and sensitivity to parameter settings.

The rest of the paper is organized as follows. In Section II,
we give an overview of our streaming system on P2P networks,

AP

BP

CP

DP (4, 5, 6)

(6, 7, 8)

(1, 2, 3)

(2)

)1(pT)2(pT)3(pT)4(pT

Block1 Block2 Block3 Block4

)1(rT)2(rT)3(rT)4(rT

PP

AP

BP

CP

DP

Query (upward) and Response (downward)

Request (upward) and Transmit (downward)

Logical topology
Round1

)1(sT

Waiting Time

Play-out
)1(fT)2(fT)3(fT)4(fT

Fig. 2. Example of per-group search and retrieval

describe our per-group based search and retrieval methods,
and propose a supply-demand-based cache replacement algo-
rithm. Then, in Section III, we evaluate our proposed cache
replacement algorithm through several simulation experiments.
Finally, we conclude the paper and describe future works in
Section IV.

II. MECHANISMS FOR MEDIA STREAMING ON P2P
NETWORKS

Figure 1 illustrates our media streaming system on pure
P2P networks. For efficient use of network bandwidth and
cache buffer, a media stream is divided into blocks. A peer
searches, retrieves, and stores a media stream on a block-by-
block basis. A peer participating in our system first joins a
logical P2P network for the media streaming. Then, a peer
sends a series of query messages to find blocks constituting
the media stream that it wants to watch. We call the first query
a media request. A peer retrieves blocks from other peers and
plays them out. In this section, we describe our scalable search
methods to find desired blocks and algorithms to determine
the optimum provider peer from the search results. Finally,
a cache replacement algorithm that takes into account the
balance between supply and demand for media streams is
given.

A. Per-group Based Block Search and Retrieval

In our system, a peer retrieves a media stream and plays it
out in a block-by-block manner. However, a block-by-block
search apparently increases the number of queries that are
transferred on the network and causes network congestion. To
tackle this problem, taking into account the temporal order of
reference in a media stream, our method employs a per-group
search to accomplish scalable media search.

A peer sends out a query message for every N consecutive
blocks, called a round. Figure 2 illustrates an example of N =
4. PA, PB , PC , and PD indicate peers within the range of the

propagation of query messages. Numbers in parentheses next
to peers stand for identifiers of the blocks that a peer has.
At time Ts(1), a query message for blocks 1 to 4 is sent out
from P to the closest peer PA. The query is relayed among
peers. Since PA, PB , and PD have one or more block out
of four requested blocks, they return response messages. P
determines a provider peer for each block in the round from
the search results obtained by the query. It takes two Round
Trip Time (RTT) periods from the beginning of the search
to the start of reception of the first block of the round. To
accomplish continuous media play-out, P sends a query for
the next round at a time that is 2RTTworst earlier than the
start time of the next round. RTTworst is the RTT to the most
distant peer among the peers that returned response messages
in the current round.

B. Adaptive Block Search

Since each peer retrieves a media stream sequentially from
the beginning to the end, we can expect that a peer that sent
back a responses message for the current round has some
blocks of the next round. In our methods, a peer tries flooding
at the first round. However, in the following rounds, it searches
blocks in a scalable way based on the search results of the
previous round.

A query message consists of a query identifier, a media
identifier, and a pair of block identifiers to specify the range
of blocks needed, i.e., (1, N), a time stamp, and Time To
Live (TTL). A peer that has any blocks in the specified range
sends back a response message. A response message reaches
the querying peer through the same path, but in the reversed
direction, that the query message traversed. The response
message contains a list of all cached blocks, TTL values stored
in the received query, and sum of the time stamp in the query
and processing time of the query. Each entry of the block list
consists of a media identifier, a block number, and block size.
If TTL is zero, the query message is discarded. Otherwise,
after decreasing the TTL by one, the query message is relayed
to neighboring peers except for the one from which it received
the query. In the case of Gnutella, a fixed TTL of seven is
used. By regulating TTL, the load of finding a file can be
reduced. We have called this flooding scheme with a fixed
TTL of seven “full flooding,” and that with a limited TTL
based on the search results, “limited flooding.”

In limited flooding, for the kth round, a peer obtains a set
R of peers based on response messages obtained at round
k − 1. R is a set of peers expected to have at least one of the
blocks belonging to round k. Since time has passed from the
search at round k − 1, some blocks listed in the response
message may have already been replaced by other blocks.
Assuming that a peer is watching a media stream without
interactions such as rewinding, pausing, and fast-forwarding,
and that the cache buffer is filled with blocks, we can estimate
the number of removed blocks by dividing the elapsed time
from the generation of the response message by one block
time Bt. We should note here that we do not take into account
blocks cached after a response message is generated. In limited

flooding, TTL is set to that of the most distant peer among
the peers in R.

To attain an even more efficient search, we also proposed
another search scheme. The purpose of flooding schemes is to
find peers that do not have any blocks of the current round but
do have some blocks of the next round. Flooding also finds
peers that have newly joined our system. However, in flooding,
the number of queries relayed on the network exponentially
increases according to the TTL and the number of neighboring
peers [10]. Therefore, when a sufficient number of peers are
expected to have blocks in the next round, it is effective for
a peer to directly send queries to those peers. We call this
“selective search.”

By considering the pros and cons of full flooding, limited
flooding, and selective search, there are efficient methods
based on combining them, called the FLS method. For the
next round’s blocks, a peer conducts (1) selective search if
the conjectured cache contents of peers in R contain every
block of the next round, (2) limited flooding if any one of the
next round’s blocks cannot be found in the conjectured cache
contents of peers in R, or, finally, (3) full flooding if none of
the provider peers it knows is expected to have any block of
the next round, i.e., R = φ.

C. Block Retrieval for Continuous Media Play-out

The peer sends a request message for the first block of a
media stream just after receiving a response message from a
peer that has the block, because it cannot predict whether any
better peer exists at that time. In addition, it is essential for
a low-delay and effective media streaming service to begin
the media presentation as quickly as possible. Thus, in our
method, the peer plays out the first block immediately when
its reception starts. Of course, we can also defer the play-out
in order to buffer a certain number of blocks in preparation
for unexpected delays.

The deadlines for retrieval of succeeding blocks j ≥ 2 are
determined as follows:

Tp(j) = Tp(1) + (j − 1)Bt, (1)

where Tp(1) corresponds to the time that the peer finishes
playing out the first block.

Although block retrieval should follow a play-out order,
the order of request messages does not. We do not wait
for completion of reception of the preceding block before
issuing a request for the next block because this introduces
an extra delay of at least one round-trip, and the cumulative
delay affects the timeliness and continuity of media play-out.
Instead, the peer sends a request message for block j at Tr(j)
so that it can start receiving block j just after finishing the
retrieval of block j − 1, as shown in Fig. 2. As a result, our
block retrieval method can maintain the continuity of media
play-out.

The peer estimates the available bandwidth and the transfer
delay from the provider peer by using existing measurement
tools. For example, by using the inline network measure-
ment technique [13], those estimates can be obtained through

exchanging query and response messages without introduc-
ing any measurement traffic. Furthermore, the estimates are
updated through reception of media data. Every time the
peer receives a response message, it derives the estimated
completion time of the retrieval of block j, that is Tf(j), from
the block size and the estimated bandwidth and delay, for each
block to which it has not yet sent a request message. Then,
it determines an appropriate peer in accordance with deadline
Tp(j) and calculates time Tr(j) at which it sends a request.

In the provider determination algorithm, the peer calculates
set Sj , a set of peers having block j. Next, based on the
estimation of available bandwidth and transfer delay, it derives
set S

′
j , a set of peers from which it can retrieve block j by

deadline Tp(j), from Sj . If S
′
j = φ, the peer waits for the

arrival of the next response message. However, it gives up
retrieving and playing block j when the deadline T p(j) passes
without finding any appropriate peer. To achieve continuous
media play-out, it is desirable to shorten the block retrieval
time. The SF (Select Fastest) method selects a peer whose
estimated completion time is the smallest among those in S

′
j .

By retrieving block j as fast as possible, the remainder of
Tp(j) − Tf(j) can be used to retrieve the succeeding blocks
from distant peers. On the other hand, an unexpected cache
miss introduces extra delay in the client system. The SR
(Select Reliable) method selects the peer with the lowest
possibility of block disappearance among those in S

′
j . As a

result, this suppresses block disappearance before a request for
block j arrives at the provider peer. In simulation experiments
for this paper, we employed the SF method.

A peer emits a request message for block j to provider peer
P (j) at Tr(j). On receiving the request, P (j) initiates block
transmission. If it replaced block j with another block since
it returned a response message, it informs the peer of a cache
miss. When a cache miss occurs, the peer determines another
provider peer based on the above algorithm. However, if it
has already requested any block after j, it gives up retrieving
block j in order to keep the media play-out in order.

After receiving block j, the peer replaces Tf(j) with the
actual completion time. In the algorithm, the estimated com-
pletion time of retrieval of block j depends on that of block
j − 1. Therefore, if the actual completion time Tf (j) of the
retrieval of block j changes because of changes of network
conditions or estimation errors, the peer applies the algorithm
again and determines provider peers for succeeding blocks.
Our proposed algorithm stated above depends on the accuracy
of estimation. One of possible solutions to inaccurate estimates
is to introduce some reserved time to the derivation of Tf(j). In
addition, deferment of the play-out also contributes to absorb
estimation errors.

D. Supply-Demand-based Cache Replacement Algorithm

Although LRU is a simple and widely used scheme, it has
been shown that LRU cannot accomplish continuous media
play-out under heterogeneous media popularity [7]. This is
because popular media streams are cached excessively while

unpopular media streams eventually disappear from the P2P
network.

In this section, to solve this problem, we propose a bio-
inspired cache replacement algorithm that considers the bal-
ance between supply and demand for media streams. Since
there is no server in a pure P2P network, a peer has to make
conjectures about the behavior of other peers by itself. It is
important to avoid the situation where a peer aggressively col-
lecting information on supply and demand by communicating
with other peers, since this brings extra load on the system and
deteriorates the system scalability. Therefore, in our scheme,
a peer estimates them based on locally available and passively
obtained information, i.e., search results it obtained and P2P
messages it relayed. Then, each peer autonomously determines
a media stream to replace so that the supply and demand
is well-balanced according to the media popularity in the
network. For this purpose, we use the response threshold
model [11].

In the response threshold model of the division of labor,
the ratio of individuals that perform a task is adjusted in a
fully-distributed and self-organizing manner. The demands to
perform a task increases as time passes and decreases as it
becomes accomplished as s(t + 1) = s(t) + δ − αNact/N ,
where δ and α are parameters, Nact is the number of individ-
uals performing a task among N individuals. The probability
P (Xi = 0 → Xi = 1) that an individual i performs a task
is given by the demand, i.e., stimulus s, and the response
threshold θi as s2

s2+θ2
i

, for example. The probability P (X i =
1 → Xi = 0) is given by a constant p. When the individual
i performs the task, the threshold to the task is decreased as
θi = θi − ξ, and thus it tends to devote itself to the task.
Otherwise, the threshold is increased as θi = θi + ϕ. After
performing the task several times, it becomes a specialist in the
task. Through threshold adaptation without direct interactions
among individuals, the ratio of individuals that perform a
specific task is eventually adjusted to some appropriate level.
As a result, they form two distinct groups that show different
behaviors toward the task, i.e., one performing the task and
the other hesitating to perform the task. When individuals
performing the task are withdrawn, the associated demand
increases and so does the intensity of the stimulus. Eventually,
the stimulus reaches the response thresholds of the individuals
in the other group, i.e., those not specialized for that task.
Some individuals are stimulated to perform the task, their
thresholds decrease, and finally they become specialized for
the task. Consequently, the ratio of individuals allocated to the
task again reaches the appropriate level.

By regarding the replacement of media streams as a task,
we propose a cache replacement algorithm based on the
response threshold model. In the cache replacement, a task
corresponds to discarding a block of a media stream. However,
per-block based decision consumes much computational power
and memory. In addition, it leads to fragmentation of cached
streams, and a cache becomes a miscellany of variety of inde-
pendent blocks of media streams. Thus, we define a stimulus

as the ratio of supply to demand for a media stream. By
introducing the response threshold model, a peer continuously
replaces blocks of the same stream with newly retrieved blocks
once a stream is chosen as a victim, i.e., a media stream to
be replaced. As a result, fragmentation of media streams can
be avoided. Each peer discards blocks based on the following
algorithm when there is no room in the cache buffer to store
a newly retrieved block.

Step1 Estimate the supply and demand for media streams
per round. For a set of cached media streams M ,
a peer calculates supply S(i) and demand D(i) for
media stream i ∈ M from search results it received
and messages it relayed at the previous round. S(i) is
the ratio of total number of blocks for media stream
i in received and relayed response messages to the
number of blocks in media stream i. Here, to avoid
overestimation, only response messages received are
taken into account for S(i) when a peer watches
stream i. D(i) is the number of query messages for
media stream i, which the peer emitted and relayed.

Step2 Determine a media stream to replace. Based on the
“division of labor and task allocation”, we define
ratio Pr(i) that media stream i is replaced as follows:

Pr(i) =
s2(i)

s2(i) + θ2(i) + l2(i)
, (2)

where s(i) is derived as max
(

S(i)−1
D(i) , 0

)
, which

indicates the ratio of supply to demand for media
stream i after the replacement. s(i) means how
excessively media stream i exists in the network after
it is discarded. l(i) is the ratio of the number of
locally cached blocks to the number of blocks in
media stream i. In our previous work, we found that
continuous media play-out could not be sufficiently
accomplished without l(i) due to the fragmentation
of cached streams. l(i) is used to restrain the re-
placement of a fully or well-cached stream. Among
cached streams except for the stream being watched,
e.g., stream m, a victim is chosen with probability

Pr(i)∑
i∈M−m

Pr(i)
. Then, a peer discards blocks from the

head or the tail of the stream at random. As in [14],
thresholds are regulated using Eq.(3). Thus, media i
is to be discarded more often once it is chosen as a
victim.

∀j ∈ M, θ(j) =
{

θ(j) − ξ if j = i
θ(j) + ϕ if j �= i

(3)

Inspired by biological systems, we can accomplish fully dis-
tributed but globally well-balanced cache replacement. Fur-
thermore, our proposed algorithm is insensitive to parameter
settings since it adaptively changes the response threshold in
accordance with the obtained information from the network.
With slight modification of equations of the response threshold
model, we can apply our proposed algorithm to other caching
problems in distributed file sharing systems.

34

33

32

31

30

29

28

99

27

9

98

26

8

97

25

7

96

24

6

95

23

5

94

22

4

93

21

3

92

20

19

2

91

18

1

89

90

17

0

88

16

87

15

86

14

85

13

84

12

83

11

82

10

81

79

80

78

77
76

75

74

73

72

71

69

70

68

67

66

65

64

63

62

61

59

60

58

57

56

55

54

53

52

51

49

50

48

47

46

45

44

43

42

41

40

39

38

37

36

35

Fig. 3. Random network with 100 peers

III. SIMULATION EXPERIMENTS

We conducted simulation experiments to evaluate our pro-
posed cache replacement algorithm in terms of continuity of
media play-out, adaptability to changes in media popularity,
and sensitivity to parameter settings.

A. Simulation Model

We used a P2P logical network with 100 peers randomly
generated by the Waxman algorithm with parameters α = 0.15
and β = 0.3. An example of generated networks is shown in
Fig. 3. The round trip time between two contiguous peers is
also determined by the Waxman algorithm and ranges from
10 ms to 660 ms. To investigate the ideal characteristics of
our proposed methods, the available bandwidth between two
arbitrary peers does not change during a simulation experiment
and is given at random between 500 kbps and 600 kbps, which
exceeds the media coding rate of CBR 500 kbps.

At first, none of the 100 peers watch any media stream.
Then, peers randomly begin to request a media stream one
by one. The inter-arrival time between two successive media
requests for the first media stream among clients follows an
exponential distribution whose average is 20 minutes. Forty
media streams of 60 minutes length are available. Media
streams are numbered from 1 (most popular) to 40 (least
popular), where the various levels of popularity follow a Zipf-
like distribution with α = 1.0. Therefore, media stream 1
is forty times more popular than media stream 40. Each
peer watches a media stream without such interactions as
rewinding, pausing, or fast-forwarding. When a peer finishes
watching a media stream, it becomes idle during the waiting
time, which also follows a exponential distribution whose
average is 20 minutes. A media stream is divided into blocks
of 10-sec duration and 625 KBytes. Each peer sends a query
message for a succession of six blocks, i.e., N = 6, and
retrieves blocks. Blocks obtained are deposited into a cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

LRU
Proposal

Fig. 4. Completeness (LRU vs. Proposal)

buffer of 675 MB, which corresponds to three media streams.
Our algorithm can be effectively applied to other environ-
ments, since the replacement of cached blocks with newly
retrieved blocks is always needed as long as most peers have
a cache buffer that is insufficient to deposit all of the available
streams. At the beginning of each simulation experiment, each
peer stores three whole media streams in its cache buffer.
The initial population of each media stream in the network
also follows a Zipf-like distribution whose parameter α is 1.0.
Based on the values used in [12], we set the parameters of
the cache replacement algorithm as follows: ξ = 0.01 and
ϕ = 0.001. θ(i) is initially set to 0.5, but it dynamically
changes between 0.001 and 1. s(i) is normalized by dividing
by

∑
i

s(i). To prevent the initial condition of the cache buffer

from influencing system performance, we only use the results
after the initially cached blocks are completely replaced with
newly retrieved blocks for all peers. We show the average
values of 40 sets of simulations in the following figures.

B. Evaluation of Continuity of Media Play-out

We define the waiting time as the time between the emission
of the first query message for the media stream and the
beginning of reception of the first block. Although not shown
in the figures, we observed that the waiting time decreases as
the popularity increases. However, independent of popularity,
all media streams successfully found can be played out within
1.7 sec. This is small enough from a viewpoint of service
accessibility [15].

To evaluate the continuity of media play-out, we define com-
pleteness as the ratio of the number of retrieved blocks in time
to the number of blocks in a media stream. Figure 4 depicts the
completeness with a 95 % confidence interval of each media
stream after 20000 media requests. We find that our proposed
algorithm can improve the completeness of unpopular media
streams without affecting popular streams. As time passes, the
completeness for unpopular media streams slightly decreases
even with our algorithm. To improve completeness, we can
assume a repository or a peer with a larger cache buffer that
posses media streams statically or for a longer duration of

time. We conducted several experiments and verified that this
improvement could be attained under variety of conditions.

C. Evaluation of Adaptability to Changes in Media Popularity

We changed the popularity of each media stream over
time based on a model used in [16]. In the model, the
media popularity changes every L media requests. Another
well-correlated Zipf-like distribution with the same parameter
(α = 1.0) is used for the change. The correlation between
two consecutive Zipf-like distributions is modeled by using a
parameter n that can be any integer between 1 and the number
of media streams, i.e., 40. First, the most popular media stream
in the current Zipf-like distribution becomes the r1th popular
in the next Zipf-like distribution, where r1 is randomly chosen
between 1 and n. Then, the second popular media stream
in the current distribution becomes the r2th popular in the
next distribution, where r2 is randomly chosen between 1 and
min(40, n + 1), except that r1 is not allowed. Thus, as time
passes, initially popular media streams become less popular
while initially unpopular media streams become more popular.
We set n = 5 in the experiments and the demand changes
every L media requests.

Figure 5 illustrates the transition of the completeness of
the proposed algorithm. To clarify the transition, we show the
completeness at instants when 5000, 10000, 15000, and 20000
media requests occur. To evaluate the adaptability to the speed
of popularity change, we set L to 200, 500, and 1000. As
shown in Fig. 5, in the case of L = 200 where the popularity
changes fast, the completeness of initially unpopular media
streams, identified by a large number, becomes higher than
that of initially popular media streams with a smaller number
as time passes and demand changes. On the other hand, in
the case of L = 1000, where the popularity changes rather
more slowly, the completeness of media streams with a small
number is kept higher than that of media streams with a large
number. Thus, we can conclude that our proposed algorithm
can adapt to changes in media popularity.

D. Evaluation of Sensitivity to Parameter Settings

Our cache replacement algorithm has a set of parameters,
θ(i), ξ, and ϕ. θ(i) is dynamically adjusted by Eq.(3). We
conducted several simulation experiments by changing ξ and
ϕ in Eq. 3, which are associated with the degree of adherence
to a specific victim in cache replacement. As Figs. 5 through
7 illustrate, there is almost no difference among different ξ
and ϕ. It follows that the proposed algorithm is insensitive
to parameter settings. Thus, we do not need to give careful
consideration to the problem of parameter setting as in other
algorithms that need several critical parameters to be carefully
determined in advance. Furthermore, the proposed algorithm
flexibly adapts to a variety of network environments without
any parameter adjustment.

IV. CONCLUSIONS

In this paper, we discussed effective methods for continuous
media streaming on pure P2P networks. First, we introduced

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(a) Number of media requests: 5000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(b) Number of media requests: 10000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(c) Number of media requests: 15000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(d) Number of media requests: 20000

Fig. 5. Completeness with changes in media popularity (ξ = 0.01, ϕ = 0.001)

adaptive block search methods and a block retrieval method
for continuous media play-out. Next, inspired by biological
systems, we proposed a supply-demand-based cache replace-
ment algorithm for P2P media streaming. Through several
simulation experiments, we showed that our proposed mecha-
nism can accomplish continuous media play-out independent
of media popularity. Furthermore, we also demonstrated that
our proposed algorithm could adapt to changes in media
popularity.

As future research work, we should evaluate our proposed
methods in more realistic situations where network conditions
dynamically change and a peer randomly joins and leaves our
system. We also plan to implement our mechanisms on a real
system to verify the practicality of our proposal. An actual
system have characteristics different from our assumptions or
models in this paper. For example, peers are heterogeneous
in terms of the capacity of cache buffer and access link. We
expect that our proposed scheme can provide heterogeneous

peers with continuous video streaming services. Furthermore,
we will investigate the accuracy of estimations and how it
affects the performance of our proposal. Although we consider
that our proposal can adapt to estimation errors to some
extent, we improve the algorithms taking into account real
environments.

ACKNOWLEDGMENTS

This research was supported in part by “The 21st Century
Center of Excellence Program”, Special Coordination Funds
for promoting Science and Technology from the Ministry of
Education, Culture, Sports, Science and Technology of Japan,
and by the Telecommunication Advancement Organization of
Japan.

REFERENCES

[1] AllCast, available at http://www.allcast.com.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(a) Number of media requests: 5000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(b) Number of media requests: 20000

Fig. 6. Completeness with changes in media popularity (ξ = 0.1, ϕ = 0.01)

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(a) Number of media requests: 5000

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

L=200
L=500

L=1000

(b) Number of media requests: 20000

Fig. 7. Completeness with changes in media popularity (ξ = 0.001, ϕ = 0.0001)

[2] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-
peer streaming,” Microsoft Research Technical Report MSR-TR-2003-11,
Mar. 2003.

[3] Share Cast, available at http://www.scast.tv.
[4] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An efficient peer-to-peer

scheme for media streaming,” in Proceedings of IEEE INFOCOM2003,
San Francisco, Mar. 2003.

[5] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On peer-to-peer
media streaming,” in Proceedings of ICDCS2002, vol. 1, Vienna, July
2002, pp. 363–371.

[6] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE:
Peer-to-Peer media streaming using CollectCast,” in Proceedings of
ACM Multimedia 2003, Berkeley, Nov. 2003, pp. 45–54.

[7] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara, “Scalable and
continuous media streaming on Peer-to-Peer networks,” in Proceedings
of P2P 2003, Linköping, Sept. 2003, pp. 92–99.

[8] W. Jeon and K. Nahrstedt, “Peer-to-peer multimedia streaming and
caching service,” in Proceedings of ICME2002, Lausanne, Aug. 2002.

[9] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache
allocation for efficient streaming media distribution,” in Proceedings of
IEEE INFOCOM 2002, New York, June 2002.

[10] R. Schollmeier and G. Schollmeier, “Why peer-to-peer (P2P) does
scale: An analysis of P2P traffic patterns,” in Proceedings of P2P2002,
Linköping, Sept. 2002.

[11] E. Bonabeau, A. Sobkowski, G. Theraulaz, and J.-L. Deneubourg,
“Adaptive task allocation inspired by a model of division of labor in
social insects,” in Proceedings of BCEC1997, Skovde, 1997, pp. 36–45.

[12] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

[13] Cao Man, Go Hasegawa and Masayuki Murata, “Available bandwidth
measurement via tcp connection,” IFIP/IEEE MMNS 2004., in press,
Oct. 2004.

[14] M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg, “Dy-
namic scheduling and division of labor in social insects,” Adaptive
Behavior, vol. 8, no. 2, pp. 83–96, 2000.

[15] Zona Reaserch Inc., “The economic impacts of unacceptable web
site download speeds,” available at http://www.webperf.net/info/wp
downloadspeed.pdf.

[16] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of
multimedia streams,” in Proceedings of the 10th International WWW
Conference, 2001, pp. 36–44.

