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SUMMARY

With the growth of computing power and the proliferation of broadband access to the internet, the use of
media streaming has become widely diffused. By using the peer-to-peer (P2P) communication architecture,
media streaming can be expected to smoothly react to changes in network conditions and user demands
for media streams. In this paper, to achieve continuous and scalable media streaming, we introduce our
scalable media search and in-time retrieval methods. Through several simulation experiments, we show that
our methods can accomplish continuous media play-out for popular media streams without introducing
extra load on the system. However, we also show that an LRU cache replacement algorithm cannot provide
users with continuous media play-out for unpopular media streams. To tackle this problem, we take
inspiration from biological systems to propose a new cache replacement algorithm that considers the
balance between supply and demand for media streams. We demonstrate that our proposed algorithm can
improve the continuity of media play-out compared with LRU. Furthermore, we find that the proposed
algorithm can adapt to changes in the popularity of various media. Copyright # 2004 AEI.

1. INTRODUCTION

With the growth of computing power and the proliferation

of broadband access to the internet, such as ADSL and

FTTH, the use of media streaming has become widely dif-

fused. A user receives a media stream from an original

media server through the internet and plays it out on his/

her client system as it progressively arrives. However, with

the current internet, the major transport mechanism is still

only the best effort service, which offers no guarantees of

bandwidth, delay and packet loss probability. Conse-

quently, such a media streaming system cannot provide

users with media streams in a dependably continuous way.

By using the peer-to-peer (P2P) communication techni-

que, media streaming can be expected to flexibly react to

network conditions. There have been several research

works on P2P media streaming [1, 7, 10, 11, 14]. Most

of these have constructed an application-level multicast

tree whose root is an original media server while the peers

are intermediate nodes and leaves. Their schemes were

designed for use in live broadcasting. Thus, they are effec-

tive when user demands are simultaneous and concentrated

on a specific media stream. However, when demands arise

intermittently and peers request a variety of media streams,

as in on-demand media streaming services, an efficient dis-

tribution tree cannot be constructed. Furthermore, the root

of the tree, that is, a media server, can be regarded as a cri-

tical point of failure because such systems are based on the

client–server architecture.

In Reference [8], we proposed scalable search and in-

time media retrieval methods for on-demand media

streaming on pure P2P networks. In our system, every peer

participating in a service watches a media stream and

deposits it in its local cache buffer. A media stream is

divided into blocks for efficient use of network bandwidth

and cache buffer [6, 12]. By retrieving blocks from other
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peers in time, a peer can watch a desired media stream.

Since there is no server that manages information on peer

and media locations, a peer has to find each block consti-

tuting a desired media stream by emitting a query message

into the network. Other peers in the network reply to the

query with a response message and relay the query to

the neighboring peers. If a peer successfully finds a block

cached in other peers, it retrieves it from one of them and

deposits it in its local cache buffer. If there is no room to

store the newly retrieved block, a peer has to perform

replacement on cached blocks with it.

There are several issues to resolve in accomplishing

effective media streaming over pure P2P networks. Scal-

ability is the most important among them. Flooding, in

which a peer relays a query to every neighboring peer, is

a powerful scheme for finding a desired media stream.

However, it has been pointed out that the flooding lacks

scalability because the number of queries that a peer

receives significantly increases with the growth in the

number of peers [9]. In particular, a block-by-block search

by flooding apparently introduces much load on the net-

work and causes congestion. To tackle this problem, we

proposed two scalable block search methods. Taking into

account the temporal order of reference to media blocks, a

peer sends a query message for a group of consecutive

blocks. Then, the peer performs adaptive block search by

regulating the search range based on the preceding search

result.

Since continuous media play-out is the most important

factor for users in media streaming services, we have to

consider a deadline of retrieval for each block. To retrieve

a block by its corresponding play-out time, we proposed

methods to determine an appropriate provider peer (i.e. a

peer having a cached block) from search results by taking

into account the network conditions, such as the available

bandwidth and the transfer delay. By retrieving a block as

fast as possible, the remaining time can be used to retrieve

the succeeding blocks from distant peers.

In this paper, we first evaluate the effectiveness of the

above-mentioned methods through several simulation

experiments. The results show that our methods can

accomplish continuous media play-out for popular media

streams without introducing extra load on the system.

However, we also point out that the continuity of media

play-out deteriorates as the media popularity decreases.

The reason is that popular media streams are cached exces-

sively while unpopular media streams eventually disap-

pear from the network. Although LRU is a simple and

widely used cache replacement algorithm, it fails in con-

tinuous media play-out.

To improve the continuity of media play-out, in this

paper we consider an effective cache replacement algo-

rithm that takes into account the supply and demand for

media streams. Since there is no server, a peer has to make

conjectures about the behavior of other peers by itself. A

peer estimates the supply and demand from P2P messages

that it relays and receives from a flooding-based media

search. Then a peer determines a media to discard to make

room for a newly retrieved block. Furthermore, a peer also

adapts to changes in the supply and demand of media

streams. For this purpose, we propose a novel caching

algorithm based on the response threshold model of divi-

sion of labor and task allocation in social insects [3].

In biology, social insects, such as ants, also construct a

distributed system [2]. In spite of the simplicity of their

individuals, the insect society presents a highly structured

organization. It has been pointed out that social insects

provide us with a powerful metaphor for creating decentra-

lized systems of simple interacting [2]. In particular, a

recently proposed model of division of labor in a colony

of primitively eusocial wasps, based on a simple reinforce-

ment of response thresholds, can be transformed into a

decentralized adaptive algorithm of task allocation [3].

By regarding the replacement of media streams as a task,

we propose a fully distributed and autonomous cache

replacement algorithm that can adapt to changes in envir-

onments, i.e. the supply-to-demand, without parameter

tunings. Through several simulation experiments, we

evaluate the algorithm in terms of the continuity of media

play-out and adaptability to changes in media popularity.

The rest of the paper is organized as follows. In

Section [2], we give an overview of our streaming system

on P2P networks, describe our per-group based search and

retrieval methods, and conduct preliminary simulation

experiments. After describing the problem of proposed

methods, we propose and evaluate a supply-demand based

cache replacement algorithm in Section 3. Finally, we con-

clude the paper and describe future works in Section 4.

2. SEARCH AND RETRIEVAL METHODS

FOR MEDIA STREAMING ON P2P NETWORKS

A peer participating in our system first joins a logical P2P

network for the media streaming. Then, a peer sends a

query message to find a media stream that it wants to

watch. We especially call this query as a media request.

For efficient use of network bandwidth and cache buffer,

a media stream is divided into blocks. A peer searches,

retrieves and stores a media stream on a block-by-block
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basis. In this section, we describe our scalable search

methods to find desired blocks and algorithms to deter-

mine an appropriate provider peer from the search results.

2.1. Per-group based block search and retrieval

In our system, a peer retrieves a media stream and plays it

out in a block-by-block manner. However, a block-by-

block search apparently increases the number of queries

that are transferred on the network and causes network

congestion. To tackle this problem, taking into account

the temporal order of reference in a media stream, our

method employs a per-group search to accomplish scalable

media search.

A peer sends out a query message for every N consecu-

tive blocks, called a round. Figure 1 illustrates an example

of N ¼ 4. PA; PB; PC and PD indicate peers within the

range of the propagation of query messages. Numbers in

parentheses next to peers stand for identifiers of the blocks

that a peer has. At time Tsð1Þ, a query message for blocks 1

to 4 is sent out from P to the closest peer PA. The query is

relayed among peers. Since PA; PB and PD have one or

more blocks out of four requested blocks, they return

response messages. P determines a provider peer for each

block in the round from the search results obtained by the

query. It takes two round trip time (RTT) periods from the

beginning of the search to the start of reception of the first

block of the round. To accomplish continuous media

play-out, P sends a query for the next round at a time

that is 2RTTworst earlier than the start time of the next

round. RTTworst is the RTT to the most distant peer among

the peers that returned response messages in the current

round.

2.2. Scalable block search

Since each peer retrieves a media stream sequentially from

the beginning to the end, we can expect that a peer that sent

back a response message for the current round has some

blocks of the next round. In our methods, a peer tries flood-

ing at the first round. However, in the following rounds, it

searches blocks in a scalable way based on the search

results of the previous round.

A query message consists of a query identifier, a media

identifier and a pair of block identifiers to specify the

range of blocks needed, i.e. ð1;NÞ, a time stamp and time

to live (TTL). A peer that has any blocks in the specified

range sends back a response message. A response message

reaches the querying peer through the same path, but in the

reversed direction, which the query message traversed.

The response message contains a list of all cached blocks,

TTL values stored in the received query, and sum of the

time stamp in the query and processing time of the query.

Each entry of the block list consists of a media identifier, a

block number and block size. If TTL is zero, the query

message is discarded. Otherwise, after decreasing the

TTL by one, the query message is relayed to neighboring

peers except for the one from which it received the query.

In the case of Gnutella, a fixed TTL of seven is used. By

regulating TTL, the load of finding a file can be reduced.

We have called this flooding scheme with a fixed TTL of

seven ‘full flooding’, and that with a limited TTL based on

the search results, ‘limited flooding’.

In limited flooding, for the kth round, a peer obtains a

set R of peers based on response messages obtained at

round k � 1. R is a set of peers expected to have at least

one of the blocks belonging to round k. Since time has

passed from the search at round k � 1, some blocks listed

in the response message may have already been replaced

by other blocks. Assuming that a peer is watching a

media stream without interactions such as rewinding,

pausing and fast-forwarding, and that the cache buffer

is filled with blocks, we can estimate the number of

removed blocks by dividing the elapsed time from the

generation of the response message by one block time

Bt. We should note here that we do not take into account

blocks cached after a response message is generated. In

limited flooding, TTL is set to that of the most distant

peer among the peers in R.

To attain an even more efficient search, we also proposed

another search scheme. The purpose of flooding schemes is

to find peers that do not have any blocks of the current

round but do have some blocks of the next round. Flooding

also finds peers that have newly joined our system.

Figure 1. Example of per-group search and retrieval.
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However, in flooding, the number of queries relayed on the

network exponentially increases according to the TTL and

the number of neighboring peers [9]. Therefore, when a

sufficient number of peers are expected to have blocks in

the next round, it is effective for a peer to directly send

queries to those peers. We call this ‘selective search’.

By considering the pros and cons of full flooding,

limited flooding and selective search, there are efficient

methods based on combining them.

FL method is a combination of full flooding and limited

flooding. For blocks of the next round, a peer conducts (1)

limited flooding if the conjectured cache contents of peers

in R satisfy every block of the next round, or (2) full flood-

ing if one or more blocks cannot be found in the conjec-

tured cache contents of peers in R.

FLS method is a combination of full flooding, limited

flooding and selective search. For the next round’s blocks,

a peer conducts (1) selective search if the conjectured

cache contents of peers in R contain every block of the next

round, (2) limited flooding if any one of the next round’s

blocks cannot be found in the conjectured cache contents

of peers in R, or finally, (3) full flooding if none of the pro-

vider peers it knows is expected to have any block of the

next round, i.e. R ¼ �.

2.3. Block retrieval for continuous media play-out

The peer sends a request message for the first block of a

media stream just after receiving a response message from

a peer that has the block, because it cannot predict whether

any better peer exists at that time. In addition, it is essential

for a low-delay and effective media streaming service to

begin the media presentation as quickly as possible. Thus,

in our method, the peer plays out the first block immedi-

ately when its reception starts. Of course, we can also defer

the play-out in order to buffer a certain number of blocks in

preparation for unexpected delays.

The deadlines for retrieval of succeeding blocks j52 are

determined as follows:

TpðjÞ ¼ Tpð1Þ þ ðj� 1ÞBt ð1Þ

where Tpð1Þ corresponds to the time that the peer finishes

playing out the first block.

Although block retrieval should follow a play-out order,

the order of request messages does not. We do not wait for

completion of reception of the preceding block before

issuing a request for the next block because this introduces

an extra delay of at least one round-trip, and the cumula-

tive delay affects the timeliness and continuity of media

play-out. Instead, the peer sends a request message for

block j at TrðjÞ, which will be given by Equation (3), so

that it can start receiving block j just after finishing the

retrieval of block j� 1, as shown in Figure 1. As a result,

our block retrieval method can maintain the continuity of

media play-out.

The peer estimates the available bandwidth and the

transfer delay from the provider peer by using existing

measurement tools. For example, by using the inline net-

work measurement technique [5], those estimates can be

obtained through exchanging query and response messages

without introducing any measurement traffic. Furthermore,

the estimates are updated through reception of media data.

Every time the peer receives a response message, it derives

the estimated completion time of the retrieval of block j,

that is Tf ðjÞ, from the block size and the estimated band-

width and delay, for each block to which it has not yet sent

a request message. Then, it determines an appropriate peer

in accordance with deadline TpðjÞ and calculates time TrðjÞ
at which it sends a request. The detailed algorithm to deter-

mine the provider peer is given below.

Step 1: Set j to r, which is the maximum block number

among blocks that have already been requested.

Step 2: Calculate set S, a set of peers having block j. If

S ¼ �, that is, there is no candidate provider, set

Tf ðjÞ  Tpð jÞ; j jþ 1 and repeat Step 2 for

the next block. Otherwise, proceed to Step 3.

Step 3: Derive set S0, a set of peers from which a peer can

retrieve block j by deadline Tpð jÞ, from S. Time

required to retrieve block j from provider peer i

becomes the sum of round trip time RðiÞ to peer

i and the transfer time of block j obtained by divid-

ing block size BðjÞ by available bandwidth AðiÞ
from peer i. For each peer i in S, the estimated

completion time of the retrieval of block j from

peer i is derived as maxðTf ð j� 1Þ; Tnowþ RðiÞÞþ
ðBð jÞ=AðiÞÞ, considering the case that the retrieval

of block j� 1 lasts more than RðiÞ and the request

for block j is deferred. Here, Tnow is the time when

this algorithm is performed. If the estimated com-

pletion time is earlier than Tpð jÞ, the peer is put in

S0. If S0 ¼ �, set Tf ðjÞ  Tpð jÞ; j jþ 1 and go

back to Step 2.

Step 4: Determine provider peer PðjÞ of block j from S0.
We propose the following two alternative methods

for determining the provider peer.

SF (select fastest) method selects a peer whose

estimated completion time is smallest among

peers in S0. By retrieving block j as fast as possi-

ble, the remainder TpðjÞ � Tf ðjÞ can be used to
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retrieve the succeeding blocks from distant peers

or peers with insufficient bandwidth.

SR (select reliable) method selects a peer with

the lowest possibility of block disappearance

among those in S0. Since the capacity of a cache

buffer is limited, block j may be replaced by

another block before a request for block j arrives

at the provider peer. The list of block identifiers

in a response message is in ascending order of refer-

enced time. Thus, a block located closer to the head

of the list is likely to be removed in the near future.

In SR method, in order to perform reliable retrieval,

we consider the peer with a buffer in which block j

has the largest number among those of peers in S0.
Step 5: Derive estimated completion time of retrieval

Tf ð jÞ and time TrðjÞ to send a request message

for block j as follows.

Tf ð jÞ ¼ maxðTf ð j� 1Þ; Tnow þ RðPð jÞÞÞ

þ Bð jÞ
AðPð jÞÞ

ð2Þ

Trð jÞ ¼ Tf ð jÞ � RðPð jÞÞ � Bð jÞ
AðPð jÞÞ ð3Þ

Step 6: If j ¼ kN, finish and wait for receiving the next

response message. Here, k is the round number.

Otherwise, set j jþ 1 and go back to Step 2.

A peer emits a request message for block j to peer Pð jÞ
at Trð jÞ and sets r to j. On receiving the request, peer Pð jÞ
initiates block transmission. If it replaces block j with

another block since it returned a response message, it

informs the peer of a cache miss. When a cache miss

occurs, the peer determines another provider peer based

on the above algorithm. However, if it has already

requested any block after j, it gives up retrieving block j

in order to keep the media play-out in order.

After receiving block j, the peer replaces Tf ð jÞ with the

actual completion time. In the algorithm, the estimated

completion time of retrieval of block j depends on that

of block j� 1, as in Equation (2). Therefore, if the actual

completion time Tf ð jÞ of the retrieval of block j changes

because of changes of network conditions or estimation

errors, the peer applies the algorithm and determines pro-

vider peers for succeeding blocks. Our proposed algo-

rithm stated above depends on the accuracy of

estimation. One of possible solutions to inaccurate esti-

mates is to introduce some reserved time in Equation

(2). In addition, deferment of the play-out also contributes

to absorb estimation errors.

2.4. Simulation experiments

We conducted simulation experiments to evaluate the

basic characteristics of our proposed methods in terms of

the amount of search traffic and the continuity of media

play-out.

We used a P2P logical network with 100 peers randomly

generated by the Waxman algorithm with parameters

a ¼ 0:15 and b ¼ 0:3. An example of generated networks

is shown in Figure 2. The RTT between two contiguous

peers is also determined by the Waxman algorithm and

ranges from 10 to 660 ms. To investigate the ideal charac-

teristics of our proposed methods, the available bandwidth

between two arbitrary peers does not change during a

simulation experiment and is given at random between

500 and 600 kbps, which exceeds the media coding rate

of CBR 500 kbps.

At first, none of the 100 peers watch any media stream.

Then, peers randomly begin to request a media stream one

by one. The inter-arrival time between two successive

media requests for the first media stream among clients

follows an exponential distribution whose average is

20 min. Forty media streams of 60 min length are avail-

able. Media streams are numbered from 1 (most popular)

to 40 (least popular), where the various levels of popularity

follow a Zipf-like distribution with a ¼ 1:0. Therefore,

media stream 1 is 40 times more popular than media

stream 40. Each peer watches a media stream without such

interactions as rewinding, pausing or fast-forwarding.

When a peer finishes watching a media stream, it becomes

idle during the waiting time, which also follows a expo-

nential distribution whose average is 20 min. A media

Figure 2. Random network with 100 peers.
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stream is divided into blocks of 10 s duration and 625 kby-

tes. Each peer sends a query message for a succession of

six blocks, i.e. N ¼ 6, and retrieves blocks. Blocks

obtained are deposited into a cache buffer of 675 MB,

which corresponds to three media streams. At the begin-

ning of each simulation experiment, each peer stores three

whole media streams in its cache buffer. The initial popu-

lation of each media stream in the network also follows a

Zipf-like distribution whose parameter a is 1.0. To prevent

the initial condition of the cache buffer from influencing

system performance, we only use the results after the initi-

ally cached blocks are completely replaced with newly

retrieved blocks for all peers.

We consider six combinations of three search methods,

i.e. full flooding only, FL, and FLS, and two retrieval

methods, i.e. SF and SR. We conducted 90 set of simula-

tions for each of six methods and show average values in

the following figures.

2.4.1. Evaluation of scalability of search methods. First,

we evaluate search methods from the viewpoint of the scal-

ability in terms of the number of queries. Figure 3 illus-

trates transitions of the average number of queries that a

peer receives. As shown in Figure 3, the FL method only

slightly reduces the number of queries compared with full

flooding. This is because the average number of relays in

limited flooding is relatively large in our simulation

experiments, independent of the block retrieval method.

Since TTL is determined in accordance with the previous

search results, the number of relays chosen for limited

flooding immediately after full flooding tends to remain

large. On the other hand, selective search can considerably

reduce the number of queries.

2.4.2. Evaluation of continuity of media play-out. We

defined the waiting time as the time between the emission

of the first query message for the media stream and the

beginning of reception of the first block. Although not

shown in figures, we observed that, independent of the

combination of methods, the waiting time decreases as

the popularity increases and, independent of popularity,

all media streams that are successfully found can be played

out within 3.5 s. This is small enough from a viewpoint of

service accessibility [15].

Figure 4(a) and (b) illustrate the completeness with 95%

confidence interval of each media stream after 20 000

media requests occur. To evaluate the continuity of media

play-out, we define the completeness as the ratio of the

number of retrieved blocks in time to the number of blocks

in a media stream. As shown in Figure 4(a) and (b), inde-

pendent of method, media streams from 1 to 10 are played

out almost continuously from the beginning to the end. On

the other hand, as media popularity decreases, the comple-

teness also deteriorates. In our experiments, most of the

blocks that cannot be retrieved in time are blocks that have

already been replaced by blocks of more popular streams.

In spite of the less number of query messages, FLS method

can accomplish equivalent completeness compared with

other two methods. Comparing Figure 4(a) and (b), we find

that there is little difference between SF and SR. This is

because the remaining time is not used effectively and

unexpected cache miss hardly occurs in our experiments.

Figure 3. Cumulative number of queries. Figure 4. Completeness. (a) SF method. (b) SR method.
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3. SUPPLY-DEMAND-BASED CACHE

REPLACEMENT ALGORITHM

Although LRU is a simple and widely used scheme, simu-

lation results showed that LRU cannot accomplish contin-

uous media play-out under the condition of heterogeneous

media popularity. This is because popular media streams

are cached excessively while unpopular media streams

eventually disappear from the P2P network.

In this section, to solve this problem, we propose a bio-

inspired cache replacement algorithm that considers the

balance between supply and demand for media streams.

Since there is no server in a pure P2P network, a peer

has to make conjectures about the behavior of other

peers by itself. It is important to avoid the situation where

a peer aggressively collecting information on supply and

demand by communicating with other peers, since this

brings extra load on the system and deteriorates the system

scalability. Therefore, in our scheme, a peer estimates

them based on locally available and passively obtained

information, i.e. search results it obtained and P2P mes-

sages it relayed. Then, each peer autonomously determines

a media stream to replace so that the supply and demand is

well balanced according to the media popularity in the net-

work. For this purpose, we use the response threshold

model [3].

In the response threshold model of the division of labor,

the ratio of individuals that perform a task is adjusted in a

fully-distributed and self-organizing manner. The demand

to perform a task increases as time passes and decreases

when it is performed. The probability that individual i per-

forms a task is given by the demand, i.e. stimulus s, and

response threshold �i as s2=ðs2þ�2
i Þ, for example. When

individual i performs the task, �i is decreased and thus it

tends to devote itself to the task. Otherwise, �i is increased.

After performing the task several times, it becomes a spe-

cialist in the task. Through threshold adaptation without

direct interactions among individuals, the ratio of indivi-

duals that perform a specific task is eventually adjusted

to some appropriate level. As a result, they form two dis-

tinct groups that show different behaviors toward the task,

i.e. one performing the task and the other hesitating to per-

form the task. When individuals performing the task are

withdrawn, the associated demand increases. Eventually,

the stimulus reaches the response thresholds of the indivi-

duals in the other group, i.e. those not specialized for that

task. Some individuals are stimulated to perform the task,

their thresholds decrease, and finally they become specia-

lized for the task. Finally, the ratio of individuals allocated

to the task reaches the appropriate level again.

3.1. Description of algorithm

By regarding the replacement of media streams as a task,

we propose a cache replacement algorithm based on the

response threshold model. In the cache replacement, a task

corresponds to discarding a block of a media stream. How-

ever, per-block based decision consumes much computa-

tional power and memory. In addition, it leads to

fragmentation of cached streams, and a cache becomes a

miscellany of a variety of independent blocks of media

streams. Thus, we define a stimulus as the ratio of supply

to demand for a media stream. By introducing the response

threshold model, a peer continuously replaces blocks of

the same stream with newly retrieved blocks once a stream

is chosen as a victim, i.e. a media stream to be replaced. As

a result, fragmentation of media streams can be avoided.

Each peer discards blocks based on the following algo-

rithm when there is no room in the cache buffer to store

a newly retrieved block.

Step 1: Estimate the supply and demand for media streams

per round. For a set of cached media streams M, a

peer calculates supply SðiÞ and demand DðiÞ for

media stream i 2 M from search results it received

and messages it relayed at the previous round. SðiÞ
is the ratio of total number of blocks for media

stream i in received and relayed response messages

to the number of blocks in media stream i. Here, to

avoid overestimation, only response messages

received are taken into account for SðiÞ when a

peer watches stream i. DðiÞ is the number of query

messages for media stream i, which the peer

emitted and relayed.

Step 2: Determine a media stream to replace. Based on

the ‘division of labor and task allocation’, we

define ratio PrðiÞ that media stream i is replaced

as follows:

PrðiÞ ¼
s2ðiÞ

s2ðiÞ þ �2ðiÞ þ l2ðiÞ ð4Þ

where sðiÞ is derived as maxðSðiÞ � 1Þ=DðiÞ; 0,

which indicates the ratio of supply to demand for

media stream i after the replacement. sðiÞ means

how excessively media stream i exists in the net-

work after it is discarded. lðiÞ is the ratio of the

number of locally cached blocks to the number of

blocks in media stream i. lðiÞ is used to restrain the

replacement of a fully or well-cached stream.

Among cached streams except for the stream being

watched, for example stream m, a victim is chosen
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with probability ðPrðiÞ=
P

i2M�m PrðiÞÞ. Then, a

peer discards blocks from the head or the tail of

the stream at random. As in Reference [4], thresh-

olds are regulated using Equation (5). Thus, media

i is to be discarded more often once it is chosen as a

victim.

8j 2 M; �ðjÞ ¼ �ðjÞ � � if j ¼ i

�ðjÞ þ ’ if j 6¼ i

�
ð5Þ

Inspired by biological systems, we can accomplish fully

distributed but globally well-balanced cache replacement.

Furthermore, our proposed algorithm is insensitive to para-

meter settings since it adaptively changes the response

threshold in accordance with the obtained information

from the network. With slight modification of equations

of the response threshold model, we can apply our pro-

posed algorithm to other caching problems in distributed

file sharing systems.

3.2. Simulation experiments

Since, it was shown that the FLS method can accomplish

continuous media play-out with a smaller amount of search

traffic compared with full flooding, we only show the results

of the combination of the FLS and SF methods in this sec-

tion. We conducted simulation experiments to evaluate our

proposed cache replacement algorithm in terms of the con-

tinuity of media play-out and adaptability to changes in

media popularity. The simulation model and scenario are

the same as those used in Subsection 2.4. Based on the

values used in Reference [2], we set the parameters as fol-

lows: � ¼ 0:01 and ’ ¼ 0:001. �ðiÞ is initially set to 0.5, but

it dynamically changes between 0.001 and 1. sðiÞ is normal-

ized by dividing by
P

i sðiÞ. We show the average values of

40 sets of simulations in the following figures.

3.2.1. Evaluation of continuity of media play-out. Figure 5

compares the completeness with a 95% confidence interval

of each media stream among LRU and the proposed

approach. We find that our proposed algorithm can

improve the completeness of unpopular media streams

without affecting the popular streams. We conducted sev-

eral experiments and verified that this improvement could

be attained under a variety of conditions.

3.2.2. Evaluation of adaptability to changes in media

popularity. We changed the popularity of each media

stream over time based on a model used in Reference

[13]. In the model, the media popularity changes every L

media requests. Another well-correlated Zipf-like distribu-

tion with the same parameter (a ¼ 1:0) is used for the

change. The correlation between two consecutive Zipf-like

distributions is modeled by using a parameter n that can be

any integer between 1 and the number of media streams,

i.e. 40. First, the most popular media stream in the current

Zipf-like distribution becomes the r1th popular in the next

Zipf-like distribution, where r1 is randomly chosen

between 1 and n. Then, the second popular media stream

in the current distribution becomes the r2th popular in the

next distribution, where r2 is randomly chosen between 1

and minð40; nþ 1Þ, except that r1 is not allowed. Thus, as

time passes, initially popular media streams become less

popular while initially unpopular media streams become

more popular. We set n ¼ 5 in the experiments and the

demand changes every L media requests.

Figure 6 illustrates the transition of the completeness of

the proposed algorithm. To clarify the transition, we show

the completeness at instants when 5000; 10 000; 15 000

and 20 000 media requests occur. To evaluate the adapt-

ability to the speed of popularity change, we set L to

200; 500 and 1000. As shown in Figure 6, in the case of

L ¼ 200 where the popularity changes fast, the complete-

ness of initially unpopular media streams, identified by a

large number, becomes higher than that of initially popular

media streams with a smaller number as time passes and

demand changes. On the other hand, in the case of

L ¼ 1000, where the popularity changes rather more

slowly, the completeness of media streams with a small

number is kept higher than that of media streams with a

large number. Thus, we can conclude that our proposed

algorithm can adapt to changes in media popularity. To

further improve completeness, we can assume a repository

or a peer with a larger cache buffer that posses media

streams statically or for a longer duration of time.

Figure 5. Completeness (LRU vs. proposal).
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We conducted several simulation experiments by chan-

ging � and ’ in Equation (5), which are associated with the

degree of adherence to a specific victim in cache replace-

ment. Although not shown in figures, we find there is

almost no difference among different � and ’. Thus, we

do not need to give careful consideration to a problem of

parameter setting as in other algorithms that need several

critical parameters to be carefully determined in advance.

Furthermore, the proposed algorithm flexibly adapts to a

variety of network environment without any parameter

adjustment.

4. CONCLUSIONS

In this paper, we proposed two scalable search methods

and two block retrieval methods for use in scalable and

continuous media streaming on P2P networks. Through

several simulation experiments, we showed that the FLS

method can provide users with continuous media play-

out without introducing extra load on the system. How-

ever, we also found that the continuity of media play-out

deteriorates for unpopular media streams. To tackle this

problem, inspired by biological systems, we further pro-

posed an effective cache replacement algorithm that

considers the supply and demand for media streams. Simu-

lation experiments showed that our proposed algorithm

can improve the continuity of media play-out compared

with LRU. In addition, the proposed algorithm can adapt

to changes in media popularity. As future research work,

we should evaluate our proposed methods in more realistic

situations where network conditions dynamically change

and a peer randomly joins and leaves our system. We also

plan to implement our mechanisms on a real system to ver-

ify the practicality of our proposal. An actual system has

characteristics different from our assumptions or models

in this paper. For example, peers are heterogeneous in

terms of the capacity of cache buffer and access link. We

expect that our proposed scheme can provide heteroge-

neous peers with continuous video streaming services.

Furthermore, we will investigate the accuracy of estima-

tions and how it affects the performance of our proposal.

Figure 6. Completeness with changes in media popularity (� ¼ 0:01; ’ ¼ 0:001). (a) Number of media requests: 5000. (b) Number of
media requests: 10 000. (c) Number of media requests: 15 000. (d) Number of media requests: 20 000.
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Although, we consider that our proposal can adapt to esti-

mation errors to some extent, we improve the algorithms

taking into account real environments.
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