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Abstract

With the growth of computing power and the proliferation
of broadband access to the Internet, the use of media streaming
has become widely diffused. In this paper, we propose a
Peer-to-Peer (P2P) media streaming system which can provide
a large number of users with continuous media streaming
services while dynamically adapting to changes in media
popularity, peer leaves, and changes in network conditions. We
show the effectiveness of proposed methods through several
simulation experiments.

INTRODUCTION

With the growth of computing power and the proliferation of
broadband access to the Internet, such as Asymmetric Digital
Subscriber Line (ADSL) and Fiber To The Home (FTTH), the
use of media streaming has become widely diffused. A user
receives a media stream from an original media server through
the Internet and plays it out on his/her client system as it
progressively arrives. However, with the current Internet, the
major transport mechanism is still only the best effort service,
which offers no guarantees of bandwidth, delay, and packet
loss probability. Consequently, such a media streaming system
cannot provide users with media streams in a dependably
continuous way.

The proxy mechanism widely used in WWW systems offers
low-delay delivery of data by means of a “proxy server,” which
is located near clients. The proxy server deposits multimedia
data that have passed through it in its local buffer, called
the “cached buffer.” Then it provides cached data to users on
demand in place of the original content server. By applying the
proxy mechanism to streaming services, we believe that high-
quality and low-delay streaming services can be accomplished
without introducing extra load on the system [1], [2]. However,
the media servers and proxy servers are statically located in
the network. Users distant from those servers are still forced to
retrieve a media stream over a long and unreliable connection
to a server. If user demands on media and their locations in the
network are known in advance, those servers can be deployed
in appropriate locations. However, they cannot flexibly react
to dynamic system changes, such as user movements and user
demands for media streams. Furthermore, as the number of
users increases, load concentration at the servers is unavoid-
able.

Peer-to-Peer (P2P) is a new network paradigm designed
to solve these problems. In a P2P network, hosts, called
peers, directly communicate with each other and exchange
information without the mediation of servers. One typical
example of P2P applications is a file-sharing system, such
as Napster and Gnutella. Napster is one of the hybrid P2P
applications. A peer finds a desired file by sending an inquiry
to a server that maintains the file information of peers. On the
other hand, Gnutella is one of the pure P2P applications. Since
there is no server, a peer broadcasts a query message over the
network to find a file. If a peer successfully finds a file, it
retrieves the file directly from a peer holding the file (called a
provider peer). Thus, concentration of load on a specific point
of the network can be avoided if files are well distributed in a
P2P network. In addition, by selecting a provider peer nearby
from a set of file holders, a peer can retrieve a file faster than
a conventional client-server based file sharing.

Considering the fact that the client-server architecture lacks
the scalability and adaptability, there have been several re-
search works on media streaming over P2P networks [3]–[6].
Most of these were designed for use in live broadcasting. They
have constructed an application-level multicast tree whose root
is an original media server while the peers are intermediate
nodes and leaves [3]–[5]. A media stream emitted from
a server is distributed over a tree. Each intermediate peer
receives media data from its parent peer, makes copies of data,
and forwards them to its child peers. Thus, they are effective
when user demands are simultaneous and concentrated on a
specific media stream. However, when demands arise inter-
mittently and peers request a variety of media streams, as in
on-demand media streaming services, an efficient distribution
tree cannot be constructed. Furthermore, the root of the tree,
that is, a media server, can be regarded as a critical point of
failure because such systems are based on the client-server
architecture. On the other hand, the other works such as
PROMISE [6] are similar to our proposed system, where a peer
finds a provider peer for the whole or a part of a desired media
stream by itself, retrieves it from the provider, and deposits it
in its local buffer to supply to other peers. However, those
works did not take into account variations in the popularity
among multiple media streams.

In [7], we proposed scalable search and in-time media
retrieval methods for on-demand media streaming on pure P2P



networks. In our system, a media stream is divided into blocks
for efficient use of network bandwidth and cache buffer [8],
[9]. By retrieving blocks from appropriate provider peers in
time, a peer can watch a desired media stream. Since there
is no server that manages information on peer and media
locations, a peer has to find each block constituting a desired
media stream by emitting a query message into the network.
Other peers in the network reply to the query with a response
message and relay the query to the neighboring peers. If a peer
successfully finds a block cached in other peers, it retrieves
it from one of them and deposits it in its local cache buffer.
If there is no room to store the newly retrieved block, a peer
performs replacement on cached blocks with it.

Through several simulation experiments, we have shown
that our systems can accomplish continuous media play-out for
popular media streams without introducing extra load on the
system. However, we have also found that the completeness of
media play-out deteriorates as the media popularity decreases.
The reason is that popular media streams are cached exces-
sively while unpopular media streams eventually disappear
from the network. Although Least Recently Used (LRU) is a
simple and widely used cache replacement algorithm, it fails
in continuous media play-out.

To improve the completeness of media play-out, in this
paper we consider an effective cache replacement algorithm
that takes into account the supply and demand for media
streams. Since there is no server, a peer has to make con-
jectures about the behavior of other peers by itself. A peer
estimates the supply and demand from P2P messages that it
relays and receives from a flooding-based media search. Then
a peer determines a media stream to discard to make room
for a newly retrieved block. Furthermore, a peer also adapts
to changes in the supply and demand of media streams. For
this purpose, we propose a novel caching algorithm based on
the response threshold model of division of labor and task
allocation in social insects [10].

In biology, social insects, such as ants, also construct a
distributed system [11]. In spite of the simplicity of their
individuals, the insect society presents a highly structured
organization. It has been pointed out that social insects pro-
vide us with a powerful metaphor for creating decentralized
systems of simple interacting [11]. In particular, a recently
proposed model of division of labor in a colony of primitively
eusocial wasps, based on a simple reinforcement of response
thresholds, can be transformed into a decentralized adaptive
algorithm of task allocation [10]. By regarding the replacement
of media streams as a task, we propose a fully distributed
and autonomous cache replacement algorithm which can adapt
to changes in environments, i.e., the supply-to-demand. Our
proposed algorithm is also insensitive to parameter settings
since it adaptively changes the response threshold taking into
account the obtained information from the network. Through
several simulation experiments, we evaluate the algorithm in
terms of the completeness of media play-out, adaptability
to changes in media popularity, and sensitivity to parameter
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Fig. 1. Overview of our media streaming on pure P2P networks

settings.
Furthermore, in an actual situation, media streaming fails

since peers participating a service occasionally leave a P2P
network due to user’s interactions or system failures. Network
conditions including the available bandwidth and Round Trip
Time (RTT) also change dynamically. In this paper, we newly
propose a block retrieval method which dynamically switches
provider peers based on the estimation of the available band-
width and RTT. In addition, we extend our block search
method to prepare for peer leaves. Through several simulation
experiments, we evaluate our proposed methods in terms of
the completeness of media play-out under unstable system
conditions.

The rest of the paper is organized as follows. In the next
section, we first give an overview of our streaming system
on P2P networks, then propose an adaptive and robust block
search method, an adaptive block retrieval method, and a
supply-demand-based cache replacement algorithm. Next, we
evaluate our proposed methods through several simulation
experiments. Finally, we conclude the paper and describe
future works.

ADAPTIVE MEDIA STREAMING ON P2P NETWORKS

Overview of Proposed System

Figure 1 illustrates our media streaming system on pure
P2P networks. A peer participating in our system first joins
a logical P2P network for the media streaming. For efficient
use of network bandwidth and cache buffer, a media stream
is divided into blocks. In our system, a peer retrieves a media
stream and plays it out in a block-by-block manner. To find
a block, a peer emits a query message to a P2P network.
A query message is diffused over a P2P network by being
copied and relayed by peers as shown as ‘Relay’ in Fig. 1.
To avoid flooding a network with query messages, taking into
account the temporal order of reference in a media stream,
our method employs a per-group search scheme. A peer sends
out a query message for every N consecutive blocks, called a
round. Figure 2 illustrates an example of N = 4. PA, PB , PC ,
and PD indicate peers within the range of the propagation of
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query messages. Numbers in parentheses next to peers stand
for identifiers of the blocks that a peer has. At time Ts(1),
a query message for blocks 1 to 4 is sent out from P to the
closest peer PA. The query is relayed among peers, that is,
flooding. Since PA, PB , and PD have one or more block out
of four requested blocks, they return response messages.

To accomplish continuous media play-out, P sends a query
for the next round at time that is 2RTTworst earlier than the
start time of the next round. RTTworst is the RTT to the most
distant peer among the peers that returned response messages
in the current round. Range of the next search is determined
based on the search results of the current round as described
later.

From search results obtained by the query, P determines
a provider peer for each block in the round, from which a
block can be retrieved in time. Then, a peer retrieves blocks
from provider peers as illustrated in Fig. 2. If the in-time
block retrieval is expected to fail due to changes in network
conditions, a peer switches provider peers. We will propose a
block retrieval method adaptive to system changes.

If there is no room for depositing a newly retrieved block in
its cache buffer, P determines a media stream of which cached
blocks are replaced with the new block, taking into account
the balance between the supply and demand for media streams
in the network. The detail of the cache replacement is given
later.

Adaptive and Robust Block Search Method

Since each peer retrieves a media stream sequentially from
the beginning to the end, we can expect that a peer that sent
back a responses message for the current round has some
blocks of the next round. In our methods, a peer tries flooding
at the first round. However, in the following rounds, it searches
blocks in a scalable way based on the search results of the
previous round.

A query message consists of a query identifier, a media
identifier, and a pair of block identifiers to specify the range
of blocks needed, i.e., (1, N), a time stamp, and Time To
Live (TTL). A peer that has any blocks in the specified range
sends back a response message. A response message reaches
the querying peer through the same path, but in the reversed
direction, that the query message traversed. The response
message contains a list of all cached blocks of the requested
media stream, TTL values stored in the received query, and
sum of the time stamp in the query and processing time of
the query. Each entry of the block list consists of a media
identifier, a block number, and block size. If TTL is zero, the
query message is discarded. Otherwise, after decreasing the
TTL by one, the query message is relayed to neighboring peers
except for the one from which it received the query. In the case
of Gnutella, a fixed TTL of seven is used. By regulating TTL,
the load of finding a file can be reduced. We have called this
flooding scheme with a fixed TTL of seven “full flooding,” and
that with a limited TTL based on the search results, “limited
flooding.”

In limited flooding, for the kth round, a peer obtains a set
R of peers based on response messages obtained at round
k − 1. R is a set of peers expected to have at least one of the
blocks belonging to round k. Since time has passed from the
search at round k − 1, some blocks listed in the response
message may have already been replaced by other blocks.
Assuming that a peer is watching a media stream without
interactions such as rewinding, pausing, and fast-forwarding,
and that the cache buffer is filled with blocks, we can estimate
the number of removed blocks by dividing the elapsed time
from the generation of the response message by one block
time Bt. We should note here that we do not take into account
blocks cached after a response message is generated. In limited
flooding, TTL is set to that of the most distant peer among
the peers in R.

To attain an even more efficient search, we also proposed
another search scheme. The purpose of flooding schemes is to
find peers that do not have any blocks of the current round but
do have some blocks of the next round. Flooding also finds
peers that have newly joined our system. However, in flooding,
the number of queries relayed on the network exponentially
increases according to the TTL and the number of neighboring
peers [12]. Therefore, when a sufficient number of peers are
expected to have blocks in the next round, it is effective for
a peer to directly send queries to those peers. We call this
“selective search.”

By considering the pros and cons of full flooding, limited
flooding, and selective search, there is an efficient method
based on combining them, called the FLS method. For the
next round’s blocks, a peer conducts (1) selective search if
the conjectured cache contents of peers in R contain every
block of the next round, (2) limited flooding if any one of the
next round’s blocks cannot be found in the conjectured cache
contents of peers in R, or, finally, (3) full flooding if none of
the provider peers it knows is expected to have any block of



the next round, i.e., R = φ.
If any of provider peers leaves a P2P network, a peer

loses a chance to find and retrieve the corresponding block.
To improve the robustness, we introduce parameter x, which
defines the number of provider peers to be found in the current
round to move to the selective search in the next round. For
example, by setting x to two, a peer moves to the selective
search when it finds two provider peers and it can prepare an
alternative provider peer.

Block Retrieval Method

We first introduce our in-time block retrieval method [7],
then newly propose a block retrieval method adaptive to
system changes.

In-time Block Retrieval Method

The peer sends a request message for the first block of a
media stream just after receiving a response message from a
peer that has the block, because it cannot predict whether any
better peer exists at that time. In addition, it is essential for
a low-delay and effective media streaming service to begin
the media presentation as quickly as possible. Thus, in our
method, the peer plays out the first block immediately when
its reception starts. Of course, we can also defer the play-out
in order to buffer a certain number of blocks in preparation
for unexpected delays.

The deadlines for retrieval of succeeding blocks j ≥ 2 are
determined as follows:

Tp(j) = Tp(1) + (j − 1)Bt, (1)

where Tp(1) corresponds to the time that the peer finishes
playing out the first block.

Although block retrieval should follow a play-out order,
the order of request messages does not. We do not wait for
completion of reception of the preceding block before issuing
a request for the next block because this introduces an extra
delay of at least one round-trip, and the cumulative delay
affects the timeliness and completeness of media play-out.
Instead, the peer sends a request message for block j at Tr(j)
so that it can start receiving block j just after finishing the
retrieval of block j − 1, as shown in Fig. 2. As a result, our
block retrieval method can maintain the completeness of media
play-out.

The peer estimates the available bandwidth and the transfer
delay from the provider peer by using existing measurement
tools. For example, by using the inline network measure-
ment technique [13], those estimates can be obtained through
exchanging query and response messages without introduc-
ing any measurement traffic. Furthermore, the estimates are
updated through reception of media data. Every time the
peer receives a response message, it derives the estimated
completion time of the retrieval of block j, that is Tf(j), from
the block size and the estimated bandwidth and delay, for each
block to which it has not yet sent a request message. Then,
it determines an appropriate peer in accordance with deadline
Tp(j) and calculates time Tr(j) at which it sends a request.

In the provider determination algorithm, the peer calculates
set Sj , a set of peers having block j. Next, based on the
estimation of available bandwidth and transfer delay, it derives
set S

′
j , a set of peers from which it can retrieve block j by

deadline Tp(j), from Sj . If S
′
j = φ, the peer waits for the

arrival of the next response message. However, it gives up
retrieving and playing block j when the deadline T p(j) passes
without finding any appropriate peer. To achieve continuous
media play-out, it is desirable to shorten the block retrieval
time. The SF (Select Fastest) method selects a peer whose
estimated completion time is the smallest among those in S

′
j .

By retrieving block j as fast as possible, the remainder of
Tp(j) − Tf (j) can be used to retrieve the succeeding blocks
from distant peers. On the other hand, an unexpected cache
miss introduces extra delay in the client system. The SR
(Select Reliable) method selects the peer with the lowest
possibility of block disappearance among those in S

′
j . As a

result, this suppresses block disappearance before a request for
block j arrives at the provider peer. In simulation experiments
for this paper, we employed the SF method.

A peer emits a request message for block j to provider peer
P (j) at Tr(j). On receiving the request, P (j) initiates block
transmission. If it replaced block j with another block since
it returned a response message, it informs the peer of a cache
miss. When a cache miss occurs, the peer determines another
provider peer based on the above algorithm. However, if it
has already requested any block after j, it gives up retrieving
block j in order to keep the media play-out in order.

After receiving block j, the peer replaces Tf(j) with the
actual completion time. In the algorithm, the estimated com-
pletion time of retrieval of block j depends on that of block
j − 1. Therefore, if the actual completion time Tf(j) of the
retrieval of block j changes because of changes of network
conditions or estimation errors, the peer applies the algorithm
again and determines provider peers for succeeding blocks.

Adaptive Block Retrieval Method

In an actual situation, system conditions dynamically
change. The in-time block retrieval fails if the available
bandwidth decreases due to congestions. A peer cannot find
a provider peer since search results becomes unreliable due
to peer failures or leaves. To tackle this problem, we propose
an adaptive block retrieval method that appropriately switches
provider peers based on the estimated available bandwidth
and RTT. As far as the following condition holds, a peer can
retrieve block j in time.

V (t) + r(j, t)
Bs

Bt

≥ r(j, t)
∆bwA(i, t)

, (2)

where A(i, t) is the available bandwidth from peer i at time t,
V (t) is the remaining buffer size at t, r(j, t) is the remaining
size of block j being retrieved at t. Bs and Bt are block size
and block time, respectively. ∆bw takes into account the degree
of accuracy of bandwidth estimation. When peer i leaves a P2P
network, the available bandwidth is considered to be zero.



When Eq.(2) cannot be satisfied, the peer tries to find an
alternative provider peer i ′ from which it can retrieve the
remainder of block j in time. Peer i ′ must satisfy the following
condition:

r(j, t)
A(i, t)

≥ min
i′∈Sj−i

(
r(j, t)
A(i′, t)

+ 2R(i′, t)
)

, (3)

where Sj is the set of provider peers of block j obtained from
the search results and R(i′, t) is the RTT from peer i′ at time
t. If the peer can find i′ then it retrieves the remainder of block
j from i′. Otherwise, it gives up retrieving block j.

Supply-Demand-based Cache Replacement Algorithm

Although LRU is a simple and widely used scheme, it has
been shown that LRU cannot accomplish continuous media
play-out under heterogeneous media popularity [7]. This is
because popular media streams are cached excessively while
unpopular media streams eventually disappear from the P2P
network.

In this section, to solve this problem, we propose a bio-
inspired cache replacement algorithm that considers the bal-
ance between supply and demand for media streams. Since
there is no server in a pure P2P network, a peer has to make
conjectures about the behavior of other peers by itself. It is
important to avoid the situation where a peer aggressively col-
lecting information on supply and demand by communicating
with other peers, since this brings extra load on the system and
deteriorates the system scalability. Therefore, in our scheme,
a peer estimates them based on locally available and passively
obtained information, i.e., search results it obtained and P2P
messages it relayed. Then, each peer autonomously determines
a media stream to replace so that the supply and demand
is well-balanced according to the media popularity in the
network. For this purpose, we use the response threshold
model [10].

In the response threshold model of the division of labor,
the ratio of individuals that perform a task is adjusted in a
fully-distributed and self-organizing manner. The demands to
perform a task increases as time passes and decreases as it
becomes accomplished as s(t + 1) = s(t) + δ − αNact/N ,
where δ and α are parameters, Nact is the number of individ-
uals performing a task among N individuals. The probability
P (Xi = 0 → Xi = 1) that an individual i performs a task
is given by the demand, i.e., stimulus s, and the response
threshold θi as s2

s2+θ2
i

, for example. The probability P (X i =
1 → Xi = 0) is given by a constant p. When the individual
i performs the task, the threshold to the task is decreased as
θi = θi − ξ, and thus it tends to devote itself to the task.
Otherwise, the threshold is increased as θi = θi + ϕ. After
performing the task several times, it becomes a specialist in the
task. Through threshold adaptation without direct interactions
among individuals, the ratio of individuals that perform a
specific task is eventually adjusted to some appropriate level.
As a result, they form two distinct groups that show different
behaviors toward the task, i.e., one performing the task and
the other hesitating to perform the task. When individuals

performing the task are withdrawn, the associated demand
increases and so does the intensity of the stimulus. Eventually,
the stimulus reaches the response thresholds of the individuals
in the other group, i.e., those not specialized for that task.
Some individuals are stimulated to perform the task, their
thresholds decrease, and finally they become specialized for
the task. Consequently, the ratio of individuals allocated to the
task again reaches the appropriate level.

By regarding the replacement of media streams as a task,
we propose a cache replacement algorithm based on the
response threshold model. In the cache replacement, a task
corresponds to discarding a block of a media stream. However,
per-block based decision consumes much computational power
and memory. In addition, it leads to fragmentation of cached
streams, and a cache becomes a miscellany of variety of inde-
pendent blocks of media streams. Thus, we define a stimulus
as the ratio of supply to demand for a media stream. By
introducing the response threshold model, a peer continuously
replaces blocks of the same stream with newly retrieved blocks
once a stream is chosen as a victim, i.e., a media stream to
be replaced. As a result, fragmentation of media streams can
be avoided. Each peer discards blocks based on the following
algorithm when there is no room in the cache buffer to store
a newly retrieved block.

Step1 Estimate the supply and demand for media streams
per round. For a set of cached media streams M ,
a peer calculates supply S(i) and demand D(i) for
media stream i ∈ M from search results it received
and messages it relayed at the previous round. S(i) is
the ratio of total number of blocks for media stream
i in received and relayed response messages to the
number of blocks in media stream i. Here, to avoid
overestimation, only response messages received are
taken into account for S(i) when a peer watches
stream i. D(i) is the number of query messages for
media stream i, which the peer emitted and relayed.

Step2 Determine a media stream to replace. Based on the
“division of labor and task allocation”, we define
ratio Pr(i) that media stream i is replaced as follows:

Pr(i) =
s2(i)

s2(i) + θ2(i) + l2(i)
, (4)

where s(i) is derived as max
(

S(i)−1
D(i) , 0

)
, which

indicates the ratio of supply to demand for media
stream i after the replacement. s(i) means how
excessively media stream i exists in the network after
it is discarded. l(i) is the ratio of the number of
locally cached blocks to the number of blocks in
media stream i. In our previous work, we found that
continuous media play-out could not be sufficiently
accomplished without l(i) due to the fragmentation
of cached streams. l(i) is used to restrain the re-
placement of a fully or well-cached stream. Among
cached streams except for the stream being watched,
e.g., stream m, a victim is chosen with probability
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Fig. 3. Random network with 100 peers

Pr(i)∑
i∈M−m

Pr(i)
. Then, a peer discards blocks from the

head or the tail of the stream at random. As in [14],
thresholds are regulated using Eq.(5). Thus, media i
is to be discarded more often once it is chosen as a
victim.

∀j ∈ M, θ(j) =
{

θ(j) − ξ if j = i
θ(j) + ϕ if j �= i

(5)

Inspired by biological systems, we can accomplish fully dis-
tributed but globally well-balanced cache replacement. Fur-
thermore, our proposed algorithm is insensitive to parameter
settings since it adaptively changes the response threshold in
accordance with the obtained information from the network.
With slight modification of equations of the response threshold
model, we can apply our proposed algorithm to other caching
problems in distributed file sharing systems.

SIMULATION EXPERIMENTS

Simulation Model

We used a P2P logical network with 100 peers randomly
generated by the Waxman algorithm with parameters α = 0.15
and β = 0.3. An example of generated networks is shown in
Fig. 3.

Forty media streams of 60 minutes length were available.
The media coding rate was set to CBR 500 kbps. A media
stream was divided into blocks of 10-sec. Thus, one block
amounts to 625 KBytes. Media streams were numbered from
1 (most popular) to 40 (least popular), where the various levels
of popularity followed a Zipf-like distribution with α = 1.0.
Therefore, media stream 1 was forty times more popular than
media stream 40.

At first, none of the 100 peers watched any media stream.
Then, peers randomly began to request a media stream one
by one. The inter-arrival time between two successive media
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requests for the first media stream among clients followed
an exponential distribution whose average was 20 minutes.
Each peer watched a media stream without such interactions as
rewinding, pausing, or fast-forwarding. Each peer sent a query
message for a succession of six blocks, i.e., N = 6. Blocks
obtained were deposited into a cache buffer of 675 MB, which
corresponds to three media streams. When a peer finished
watching a media stream, it became idle during the waiting
time, which also followed an exponential distribution whose
average was 20 minutes.

At the beginning of each simulation experiment, each peer
stored three whole media streams in its cache buffer. The initial
population of each media stream in the network also followed
the Zipf-like distribution with α = 1.0. Based on the values
used in [11], we set the parameters of the cache replacement
algorithm as follows: ξ = 0.01 and ϕ = 0.001. θ(i) was
initially set to 0.5, but it dynamically changed between 0.001
and 1. s(i) was normalized by dividing by

∑
i s(i). To prevent

the initial condition of the cache buffer from influencing
system performance, we only used the results after the initially
cached blocks were completely replaced with newly retrieved
blocks.

Evaluation in Stable P2P Networks

We conducted simulation experiments to evaluate our pro-
posed cache replacement algorithm in terms of the complete-
ness of media play-out, adaptability to changes in media pop-
ularity, and sensitivity to parameter settings. In this scenario,
we considered the stable P2P network where the available
bandwidth and RTT did not change and we set x to 1 and
employed the in-time block retrieval method. We set the RTT
from 10 ms to 660 ms and the available bandwidth from
500 kbps to 600 kbps between two arbitrary peers. We show
the average values of 40 sets of simulations in the following
figures.

Evaluation of Continuous Media Play-out

We define the waiting time as the time between the emission
of the first query message for the media stream and the



beginning of reception of the first block. Although not shown
in the figures, we observed that the waiting time decreases as
the popularity increased. However, independent of popularity,
all media streams successfully found can be played out within
1.7 sec. This is small enough from a viewpoint of service
accessibility [15].

We define the completeness as the ratio of the number
of retrieved blocks in time to the number of blocks in a
media stream. Figure 4 depicts the completeness with a 95 %
confidence interval of each media stream after 20000 media
requests. We find that our proposed algorithm can improve the
completeness of unpopular media streams without affecting
popular streams. As time passes, the completeness for unpop-
ular media streams slightly decreases even with our algorithm.
To improve completeness, we can assume a repository or a
peer with a larger cache buffer that posses media streams
statically or for a longer duration of time. We conducted
several experiments and verified that this improvement could
be attained under variety of conditions.

Evaluation of Adaptability to Changes in Popularity

We changed the popularity of each media stream over
time based on a model used in [16]. In the model, the
media popularity changes every L media requests. Another
well-correlated Zipf-like distribution with the same parameter
(α = 1.0) is used for the change. The correlation between
two consecutive Zipf-like distributions is modeled by using a
parameter n that can be any integer between 1 and the number
of media streams, i.e., 40. First, the most popular media stream
in the current Zipf-like distribution becomes the r1th popular
in the next Zipf-like distribution, where r1 is randomly chosen
between 1 and n. Then, the second popular media stream
in the current distribution becomes the r2th popular in the
next distribution, where r2 is randomly chosen between 1 and
min(40, n + 1), except that r1 is not allowed. Thus, as time
passes, initially popular media streams become less popular
while initially unpopular media streams become more popular.
We set n = 5 in the experiments and the demand changes
every L media requests.

Figure 5 illustrates the transition of the completeness of
the proposed algorithm. To clarify the transition, we show the
completeness at instants when 5000, 10000, 15000, and 20000
media requests occur. To evaluate the adaptability to the speed
of popularity change, we set L to 200, 500, and 1000. As
shown in Fig. 5, in the case of L = 200 where the popularity
changes fast, the completeness of initially unpopular media
streams, identified by a large number, becomes higher than
that of initially popular media streams with a smaller number
as time passes and demand changes. On the other hand, in
the case of L = 1000, where the popularity changes rather
more slowly, the completeness of media streams with a small
number is kept higher than that of media streams with a large
number. Thus, we can conclude that our proposed algorithm
can adapt to changes in media popularity.

Evaluation of Sensitivity to Parameter Settings

Our cache replacement algorithm has a set of parameters,
θ(i), ξ, and ϕ. θ(i) is dynamically adjusted by Eq.(5). We
conducted several simulation experiments by changing ξ and
ϕ in Eq. 5, which are associated with the degree of adherence
to a specific victim in cache replacement. Although not shown
in figures, we found that there was almost no difference among
different ξ and ϕ. It follows that the proposed algorithm is
insensitive to parameter settings. Thus, we do not need to give
careful consideration to the problem of parameter setting as
in other algorithms that need several critical parameters to be
carefully determined in advance. Furthermore, the proposed
algorithm flexibly adapts to changes in media popularity
without any parameter adjustment.

Evaluation in Unstable P2P Networks

We conducted simulation experiments to evaluate the pro-
posed improvements in terms of the completeness of media
play-out under unstable P2P networks. We show the average
values of 20 sets of simulations in the following figures.

Evaluation with Changes in Network Condition

We randomly changed RTT from 10 ms to 660 ms and the
available bandwidth from 450 kbps and 550 kbps between two
arbitrary peers at one-second intervals. A peer estimated the
available bandwidth and RTT at one-second intervals with the
degree of accuracy of 0.975. We set ∆bw to 0.95 which was
less than the estimation accuracy. Since peers did not leave in
this scenario, we set x to 1.

Figure 6 depicts the completeness of the in-time block
retrieval method and the adaptive block retrieval method. For
comparison purposes, results in a stable environment are also
shown. As shown in this figure, the completeness of the in-
time block retrieval method is less than 0.5 even for the most
popular media stream under unstable network conditions. This
is because peers keep retrieving blocks even when the available
bandwidth decreases and they cannot finish the retrieval in
time. In contrast, the adaptive block retrieval method can im-
prove the completeness by appropriately changing a provider
peer. However, it is still lower than in a stable environment.

For a peer effectively to switch provider peers, it needs to
have at least one alternative peer i′ which satisfies Eq.(6).{

i′ ∈ Sj − i

∣∣∣∣∣V (t) + r(j, t)
Bs

Bt

≥ r(j, t)
A(i′, t)

+ 2R(i′, t)

}
(6)

The number of alternative peers depends on the number of
media streams against the capacity of the whole P2P network.
Figure 7 illustrates the results of the case with 10 media
streams. As shown in the figure, the completeness of the
adaptive block retrieval method is more than 0.9 independently
of the media popularity. Although not shown in figures, we
conducted additional experiments with the various number of
media streams and found that the completeness of more than
0.9 could be attained for all media popularity when the number
of media streams was less than 12 against the network capacity
of 100 × 3 = 300 media streams.
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(a) Number of media requests: 5000
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(b) Number of media requests: 10000
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(c) Number of media requests: 15000
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(d) Number of media requests: 20000

Fig. 5. Completeness with changes in media popularity (ξ = 0.01, ϕ = 0.001)
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Fig. 6. Completeness (40 streams)
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Fig. 7. Completeness (10 streams)
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Fig. 8. Completeness with peer leaves

Evaluation with Leaves of Provider Peers

To evaluate the robustness to peer leaves, we next con-
sidered the following scenario. First, one designated peer
was randomly chosen. Then, we removed peers while the
designated peer was retrieving the first media stream. Peers to
be removed were randomly chosen among peers that deposited
blocks of the media stream which the designated peer was
interested in. The inter arrival time between two successive
removals followed an exponential distribution whose average
was 10 minutes. To investigate the impact of peer leaves, there
was no reconstruction or recovery of the P2P network when
peers left and links were broken and the available bandwidth
and RTT did not change in this scenario.

Figure 8 shows that the completeness of x = 1 is higher
than that of x = 2, on the contrary to our expectation. With
x = 2, a peer conducts the limited flooding more often
than the case with x = 1. In the limited flooding, query
messages are diffused over a P2P network by being relayed by
peers. Thus, the possibility that a peer can find an appropriate
provider peer decreases due to breaks of the network caused
by disappearance of peers. On the other hand, in the selective
search, query messages are directly sent to provider peers
without mediations of other peers. As a result, even though
only 6 % peers left the network in Fig. 8, the completeness
of the case of x = 1 becomes superior to that of x = 2. Thus,
we can conclude that the selective search is more robust to
peer leaves than the limited flooding from simulation results.

CONCLUSIONS

In this paper, we proposed an adaptive and robust block
search method, an adaptive block retrieval method, and a
supply-demand-based cache replacement algorithm inspired by
biological systems. Through several simulation experiments,
we showed that our proposed cache replacement algorithm
could accomplish continuous media play-out independent of
media popularity and adapt to changes in media popularity.
Furthermore, we demonstrated that the adaptive block retrieval

method could improve the completeness compared to the in-
time block retrieval method. In addition, we found that the
selective search was more efficient than flooding methods
when peers failed and left.

As a future research work, we plan to implement our
proposed methods on a real system to verify the practicality
and evaluate the applicability.
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