
Adaptive and Robust P2P Media Streaming

MASAHIRO SASABE† NAOKI WAKAMIYA§

MASAYUKI MURATA§

Cybermedia Center
Osaka University †

1-32 Machikaneyama, Toyonaka, Osaka 560-0043
JAPAN

Graduate School of Information Science and Technology
Osaka University §

1-5 Yamadaoka, Suita, Osaka 565-0871
JAPAN

m-sasabe@cmc.osaka-u.ac.jp http://www.ane.cmc.osaka-u.ac.jp/˜ m-sasabe/

Abstract: - With the growth of computing power and the proliferation of broadband Internet access,
the use of media streaming has become widely diffused. In this paper, based on our previous work, we
propose a Peer-to-Peer (P2P) media streaming system that can provide a large number of users with
continuous media streaming services while dynamically adapting to peer departures and changes in net-
work conditions. For this purpose, we propose a new media retrieval method that dynamically switches
provider peers. Through several simulation experiments, we show that the proposed media retrieval
method improves the completeness of media playout compared with previous methods. Furthermore,
we also show that our search method is more robust to peer departures than flooding methods.

Key-Words: - P2P, media streaming, streaming caching, continuity, adaptability, robustness

1 Introduction
With the growth of computing power and the pro-
liferation of such broadband Internet access as
Asymmetric Digital Subscriber Line (ADSL) and
Fiber To The Home (FTTH), the use of media
streaming has become widely diffused. A user
receives a media stream from an original media
server through the Internet and plays it on his/her
client system as it progressively arrives.

Because client-server architecture lacks scala-
bility and adaptability, there have been several
research works on media streaming with P2P net-
works [1, 2, 3, 4]. Most of these were designed for
live broadcasts by constructing an application-
level multicast tree in which an original media
server is the root and peers are intermediate nodes
and leaves [1, 2, 3]. A media stream emitted from
a server is distributed over a tree. Each inter-
mediate peer receives media data from its parent
peer, makes copies of data, and forwards them to
its child peers. Thus, they are effective when user
demands are simultaneous and concentrated on a
specific media stream. However, when demands

arise intermittently and peers request a variety of
media streams, as in on-demand media streaming
services, an efficient distribution tree cannot be
constructed. On the other hand, such works as
PROMISE [4] are similar to our proposed system
where a peer finds a provider peer for the en-
tire or a part of a desired media stream, retrieves
it from the provider, and deposits it in a local
buffer to supply to other peers. However, those
works failed to address variations in the popular-
ity among multiple media streams. For example,
LRU, the most common caching strategy, proved
to sweep away unpopular media streams from a
P2P network.

In [5], we proposed a novel system for on-
demand media streaming in pure P2P networks.
In our system, a media stream is divided into
blocks that efficiently use network bandwidth and
cache buffers. By retrieving blocks from appro-
priate provider peers in time, a peer can watch
a desired media stream. If there is no room to
store the newly retrieved block, a peer performs
replacement on cached blocks while considering

the balance between the supply and demand of
media streams. We also proposed methods for
scalable block search, in-time block retrieval, and
efficient cache replacement. Our proposed system
provides users with continuous media streaming
on stable and static P2P networks.

However, in actual situations, media stream-
ing fails since peers participating in a service oc-
casionally leave or depart from a P2P network
due to user interactions or system failures. In
addition, network conditions including available
bandwidth and Round Trip Time (RTT) dynam-
ically change. In this paper, we propose a new
block retrieval method that dynamically switches
provider peers based on the estimation of avail-
able bandwidth and RTT. In addition, we ex-
tend our block search method to prepare for peer
departures. Through several simulation exper-
iments, we evaluate our proposed methods for
completeness of media playout under unstable
system conditions.

The rest of the paper is organized as follows.
In section 2, we give an overview of our stream-
ing system on pure P2P networks, propose a new
adaptive retrieval method, and extend our block
search method. In section 3, we evaluate our pro-
posed methods through several simulation exper-
iments. Finally, we conclude the paper and de-
scribe future works in section 4.

2 Adaptive and Robust P2P Media
Streaming

2.1 Overview of Proposed System
Peers participating in our system first join a log-
ical P2P network for media streaming. For effi-
cient use of network bandwidth and cache buffers,
a media stream is divided into blocks. In our sys-
tem, a peer retrieves a media stream and plays
it in a block-by-block manner. To avoid flood-
ing a network with query messages, our method
employs a per-group search scheme that consid-
ers the temporal order of references in a media
stream. A peer sends out a query message for
every N consecutive blocks called a round. Fig-
ure 1 illustrates an example of N = 4. PA, PB ,
PC , and PD indicate peers within the range of the
propagation of query messages. The numbers in
parentheses next to peers stand for the identifiers
of a peer’s blocks. At time Ts(1), a query message
for blocks 1 to 4 is sent out from P to the closest

AP

BP

CP

DP (4, 5, 6)

(6, 7, 8)

(1, 2, 3)

(2)

)1(pT)2(pT)3(pT)4(pT

Block1 Block2 Block3 Block4

)1(rT)2(rT)3(rT)4(rT

PP

AP

BP

CP

DP

Query (upward) and Response (downward)

Request (upward) and Transmit (downward)

Logical topology
Round1

)1(sT

Waiting Time

Play-out
)1(fT)2(fT)3(fT)4(fT

Fig. 1: Example of per-group search and retrieval.

peer PA. The query is relayed among peers, that
is, flooding. Since PA, PB , and PD have one or
more blocks out of the four requested blocks, they
return response messages.

From search results obtained by the query, P
determines a provider peer for each block in the
round from which a block can be retrieved in
time. For this purpose, a peer keeps estimat-
ing the available bandwidth and RTT to other
peers while exchanging query and response mes-
sages. For example, the inline network measure-
ment technique [6] can be used for such estima-
tions without introducing extra load on a net-
work. Then, a peer retrieves blocks from provider
peers as illustrated in Fig.1.

If there is no room to deposit a newly retrieved
block in its cache buffer, P determines a media
stream in which cached blocks are replaced with
new blocks, considering the balance between the
supply and demand for media streams in the net-
work. The probability that media i is chosen as
a replacement victim is given as:

Pr(i) =
s2(i)

s2(i) + θ2(i) + l2(i)
, (1)

where s(i) indicates the ratio of supply S(i) to
demand D(i) for media stream i after the re-
placement and is derived as max

(
S(i)−1
D(i) , 0

)
. S(i)

and D(i) are conjectured from query and response
messages sent by the peer, received, and relayed.
θ(i) is the response threshold of media stream i.
l(i) is the ratio of the number of locally cached
blocks to the number of blocks in media stream i.

To accomplish continuous media playout, P
sends a query for the next round at a time
2RTTworst earlier than the starting time of the
next round. RTTworst is the RTT to the most
distant peer among the peers that returned re-
sponse messages in the current round. The range
of the next search is based on the search results of
the current round. If all blocks in the next round
are expected to be cached in peers that P knows,
it selectively sends query messages to those peers
(selective search). If not all, but some blocks are
assumed to exist, it adopts a strategy that floods
query messages with a limited TTL value (limited
flooding).

In [5], our system could provide users with con-
tinuous media playout under stable system con-
ditions, when all peers stayed in the network and
either the available bandwidth or the RTT did
not change. However, in actual situations, system
conditions dynamically change. In-time block re-
trieval fails if the available bandwidth decreases
due to congestion. A peer cannot find a provider
peer since search results become unreliable due to
peer failures or departures. In the following sub-
sections, we propose a block retrieval method that
adapts to system changes and extend our block
search method to be robust to peer departures.

2.2 Block Retrieval Method
First we introduce our in-time block retrieval
method [5] and then newly propose a block re-
trieval method adaptive to system changes.

2.2.1 In-time Block Retrieval Method
The peer sends a request message for the first
block of a media stream immediately after receiv-
ing a response message from a peer that has the
block, because it cannot predict whether any bet-
ter peer exists at that time. In addition, it is es-
sential for low delay and effective media streaming
service to begin media presentation as quickly as
possible. Thus, in our method, the peer immedi-
ately plays out the first block when its reception
starts. Of course, we can also defer the playout to
buffer a certain number of blocks in preparation
for unexpected delays.

The deadlines for the retrieval of succeeding
blocks j ≥ 2 are determined as follows:

Tp(j) = Tp(1) + (j − 1)Bt, (2)

where Tp(1) corresponds to the time that the peer
finishes playing out the first block.

Although block retrieval should follow a play-
out order, the order of request messages does not.
We don’t wait for the completion of the reception
of the preceding block before issuing a request
for the next block because this introduces an ex-
tra delay of at least one round trip. Cumulative
delay affects the timeliness and completeness of
media playout. Instead, the peer sends a request
message for block j at Tr(j) so that it can start
receiving block j immediately after finishing the
retrieval of blocks j − 1, as shown in Fig. 1. As
a result, our block retrieval method can maintain
the completeness of media playout.

The peer estimates the available bandwidth
and the transfer delay from the provider peer by
using existing measurement tools. For example,
by using the inline network measurement tech-
nique [6], those estimates can be obtained by ex-
changing query and response messages without
introducing any measurement traffic. Further-
more, the estimates are updated by the reception
of media data. Our estimation-based control is
effective for dynamically changing P2P networks
since the frequency of peer departures/joins is
relatively small in media streaming services. In
addition, the influence of incorrect estimations is
limited to a block. Every time the peer receives
a response message, it derives the estimated com-
pletion time of the retrieval of block j, that is
Tf (j), from the block size and the estimated band-
width and delay for each block to which it has not
yet sent a request message. Then it determines
an appropriate peer in accordance with deadline
Tp(j) and calculates time Tr(j) at which it sends
a request.

In the provider determination algorithm, the
peer calculates set Sj, a set of peers having block
j. Next, based on the estimation of available
bandwidth and transfer delay, it derives set S

′
j, a

set of peers from which it can retrieve block j by
deadline Tp(j), from Sj. If S

′
j = φ, then the peer

waits for the arrival of the next response mes-
sage. However, it abandons retrieval and play-
ing block j when deadline Tp(j) passes without
finding an appropriate peer. To achieve continu-
ous media playout, block retrieval time must be
shortened. The Select Fastest (SF) method se-
lects a peer whose estimated completion time is

the smallest among those in S
′
j. By retrieving

block j as quickly as possible, the remainder of
Tp(j)−Tf (j) can be used to retrieve the succeed-
ing blocks from distant peers. On the other hand,
an unexpected cache miss introduces extra delay
in the client system. The Select Reliable (SR)
method selects the peer with the lowest possibil-
ity of block disappearance among those in S

′
j. As

a result, this suppresses block disappearance be-
fore a request for block j arrives at the provider
peer. In simulation experiments for this paper,
we employed the SF method.

A peer emits a request message for block j to
provider peer P (j) at Tr(j). On receiving the
request, P (j) initiates block transmission. If it
replaced block j with another block since it re-
turned a response message, it informs the peer
of a cache miss. When a cache miss occurs, the
peer determines another provider peer based on
the above algorithm. However, if it has already
requested a block after j, it gives up retrieving
block j to maintain media playout.

After receiving block j, the peer replaces Tf (j)
with the actual completion time. In the algo-
rithm, the estimated completion time of the re-
trieval of block j depends on block j − 1. There-
fore, if the actual completion time Tf (j) of the
retrieval of block j changes because of changes in
network conditions or estimation errors, the peer
reapplies the algorithm and determines provider
peers for succeeding blocks.

2.2.2 Adaptive Block Retrieval Method
In actual situations, system conditions dynami-
cally change. In-time block retrieval fails if the
available bandwidth decreases due to congestion.
A peer cannot find a provider peer since search
results becomes unreliable due to peer failures or
departures. To tackle this problem, we propose
an adaptive block retrieval method that appro-
priately switches provider peers based on the es-
timated available bandwidth and RTT. As long as
the following condition holds, a peer can retrieve
block j in time.

V (t) + r(j, t)
Bs
Bt

≥ r(j, t)
ΔbwA(i, t)

, (3)

where A(i, t) is the available bandwidth from peer
i at time t, V (t) is the remaining buffer size at t,

and r(j, t) is the remaining size of block j being
retrieved at t. Bs and Bt are block size and time,
respectively. Δbw considers the degree bandwidth
estimation accuracy. When peer i leaves a P2P
network, the available bandwidth is considered
zero.

When Eq.(3) cannot be satisfied, the peer tries
to find an alternative provider peer i′ from which
it can retrieve the remainder of block j in time.
Peer i′ must satisfy the following condition:

r(j, t)
A(i, t)

≥ min
i′∈Sj−i

(
r(j, t)
A(i′, t)

+ 2R(i′, t)
)

, (4)

where Sj is a set of provider peers of block j ob-
tained from the search results and R(i′, t) is the
RTT from peer i′ at time t. If the peer can find
i′, then it retrieves the remainder of block j from
i′. Otherwise, it abandons retrieving block j.

2.3 Robust Block Search Method
In [5], a peer conducts a selective search in the
next round when it finds one provider peer for
each block. It then directly sends a query mes-
sage to each provider peer. Thus, if any provider
peers leaves the P2P network, a peer loses an op-
portunity to find and retrieve the corresponding
block. In the robust block search method, we
introduce parameter x, which defines the num-
ber of provider peers to be found in the cur-
rent round to move to the selective search in the
next round. For example, by setting x to two, a
peer moves to the selective search when it finds
two provider peers and can prepare an alternative
provider peer.

3 Simulation Experiments
We conducted simulation experiments to evaluate
the proposed methods in terms of the complete-
ness of media playout. We define completeness
as the ratio of the number of retrieved blocks in
time to the number of blocks in a media stream.

3.1 Simulation Model
We used a P2P logical network with 100 peers
randomly generated by the Waxman algorithm
with parameters α = 0.15 and β = 0.3.

Forty media streams 60 minutes long were
available. The media coding rate was set to CBR
500 kbps. A media stream was divided into blocks

of 10 sec. Media streams were numbered from 1
to 40 (most to least popular), where the various
levels of popularity followed a Zipf-like distribu-
tion with α = 1.0. Therefore, media stream 1 was
forty times more popular than media stream 40.

At first, none of the 100 peers watched any me-
dia stream. Then, peers randomly began to re-
quest a media stream one by one. The interar-
rival time between two successive media requests
for the first media stream among clients followed
an exponential distribution that averaged 20 min-
utes. Each peer watched a media stream without
such interactions as rewinding, pausing, or fast-
forwarding. Each peer sent a query message for
a succession of six blocks, i.e., N = 6. Blocks ob-
tained were deposited into a cache buffer of three
media streams. When a peer finished watching a
media stream, it became idle during the waiting
time, which also followed an exponential distribu-
tion that averaged 20 minutes.

At the beginning of each simulation experi-
ment, each peer stored three entire media streams
in its cache buffer. The initial population of each
media stream in the network also followed the
same Zipf-like distribution as the media popular-
ity. To prevent the initial condition of the cache
buffer from influencing the system’s performance,
we only used the results after the initially cached
blocks were completely replaced with newly re-
trieved blocks. We show the average values of
twenty sets of simulations in the following figures.

3.2 Changes in Network Conditions
We randomly changed the RTT from 10 to 660
ms and the available bandwidth from 450 and
550 kbps between two arbitrary peers at one-
second intervals. A peer estimated the available
bandwidth and RTT at one-second intervals with
a degree of accuracy of 0.975. We set Δbw to
0.95, which was less than the estimation accu-
racy. Since in this scenario peers did not leave,
we set x to 1.

Figure 2 depicts the completeness of the previ-
ous and the proposed methods. For comparison
purposes, we show the results in a stable environ-
ment where the available bandwidth constantly
exceeds the media coding rate. As shown in this
figure, the completeness of the previous method
is less than 0.5, even for the most popular media
stream under unstable network conditions. This

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

previous method
proposed method

stable environment

Fig. 2: Completeness (40 streams)

is because peers keep retrieving blocks even when
the available bandwidth decreases and they can-
not finish the retrieval in time. In contrast, the
proposed method improves completeness by ap-
propriately changing provider peers. However,
it is still lower than in a stable environment.
For a peer effectively to switch provider peers, it
needs at least one alternative peer i′ that satisfies
Eq.(5).
{

i′ ∈ Sj − i

∣∣∣∣∣V (t) + r(j, t)
Bs
Bt

≥ r(j, t)
A(i′, t)

+ 2R(i′, t)

}
(5)

The number of alternative peers depends on
the number of media streams against the capac-
ity of the entire P2P network. Figure 3 illustrates
the results of a case with ten media streams. As
shown in the figure, the completeness of the pro-
posed method is more than 0.9 independent of
media popularity. Although not shown in the fig-
ures, we conducted additional experiments with
various numbers of media streams and found that
completeness of more than 0.9 could be attained
for all media popularity when the number of me-
dia streams was less than 12 against network ca-
pacity of 100 × 3 = 300 media streams.

3.3 Departures of Provider Peers
To evaluate the robustness to peer departures, we
next considered the following scenario. First, one
designated peer was randomly chosen. Then, we
removed peers while the designated peer was re-
trieving the first media stream. Peers to be re-
moved were randomly chosen among peers that

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

C
om

pl
et

en
es

s

Media

previous method
proposed method

Fig. 3: Completeness (10 streams)

deposited blocks of the first media stream of the
designated peer. The interarrival time between
two successive removals followed an exponential
distribution that averaged ten minutes. To inves-
tigate the impact of peer departures, there was
no reconstruction or recovery of the P2P network
when peers left and links were broken. In this sce-
nario the available bandwidth and RTT did not
change.

Figure 4 shows that the completeness of x = 1
is higher than x = 2, contrary to our expecta-
tions. With x = 2, a peer conducts limited flood-
ing more often than cases with x = 1. In lim-
ited flooding, query messages are diffused over a
P2P network and relayed by peers. Thus, the
possibility that a peer can find an appropriate
provider peer decreases due to breaks in the net-
work caused by the disappearance of peers. On
the other hand, in selective search, query mes-
sages are directly sent to provider peers without
mediations from other peers. As a result, even
though only 6 % peers left the network in Fig. 4,
the completeness of x = 1 becomes superior to
x = 2. Thus, we can conclude that the selective
search is more robust to peer departures than the
limited flooding from simulation results.

4 Conclusions
In this paper, we proposed an adaptive block re-
trieval method for continuous media streaming on
unstable P2P networks. Through several simula-
tion experiments, we showed that completeness
was successfully improved from previous meth-
ods. In addition, we found that selective search

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40

C
om

pl
et

en
es

s

Media

x=1
x=2

no leave

Fig. 4: Completeness with peer departures

was more efficient than flooding methods when
peers failed and left.

As a future research work, we plan to imple-
ment our proposed methods on an actual system
to verify practicality and evaluate applicability.

Acknowledgement
This research was partially supported by the Min-
istry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientists (B), 17700058,
2005.

References

[1] AllCast. Available at http://www.allcast.com.

[2] Padmanabhan V.N., Wang H.J., and Chou P.A.
Resilient Peer-to-Peer Streaming. Microsoft Re-
search Technical Report MSR-TR-2003-11, Mar.
2003.

[3] Tran D.A., Hua K.A., and Do T.T. A Peer-to-Peer
Architecture for Media Streaming. IEEE Journal
on Selected Areas in Communications, vol. 22(1),
Jan. 2004, pp. 121–133.

[4] Hefeeda M., Habib A., Botev B., Xu D., and Bhar-
gava B. PROMISE: Peer-to-Peer Media Streaming
Using CollectCast. In Proceedings of ACM Multi-
media 2003. Berkeley, Nov. 2003.

[5] Sasabe M., Wakamiya N., Murata M., and Miya-
hara H. Effective Methods for Scalable and Con-
tinuous Media Streaming on Peer-to-Peer Net-
works. European Transactions on Telecommuni-
cations, vol. 15(6), Nov. 2004, pp. 549–558.

[6] Man C., Hasegawa G., and Murata M. Available
Bandwidth Measurement via TCP Connection. In
Proceedings of IFIP/IEEE MMNS 2004 E2EMON
Workshop. San Diego, Oct. 2004.

