
1

ImTCP: TCP with an Inline Measurement
Mechanism for Available Bandwidth

Cao Le Thanh Man, Go Hasegawa and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1-3, Yamadagaoka, Suita, Osaka 560-0871, Japan
E-mail: mlt-cao, hasegawa, murata@ist.osaka-u.ac.jp

Abstract—We introduce a novel mechanism for actively
measuring available bandwidth along a network path. In-
stead of adding probe traffic to the network, the new mecha-
nism exploits data packets transmitted in a TCP connection
(inline measurement). We first introduce a new bandwidth
measurement algorithm that can perform measurement es-
timates quickly and continuously and is suitable for inline
measurement because of the smaller number of probe pack-
ets required and the negligible effect on other network traf-
fic. We then show how the algorithm is applied in RenoTCP
through a modification to the TCP sender only. We call
the modified version of RenoTCP that incorporates the pro-
posed mechanism ImTCP (Inline measurement TCP). The
ImTCP sender adjusts the transmission intervals of data
packets, then estimates available bandwidth of the network
path between sender and receiver utilizing the arrival in-
tervals of ACK packets. Simulations show that the new
measurement mechanism does not degrade TCP data trans-
mission performance, has no effect on surrounding traffic
and yields acceptable measurement results in intervals as
short as 1-4 RTTs (round-trip times). We also give examples
in which measurement results help improving TCP perfor-
mance.

Keywords— Available Bandwidth, Inline Measurement,
TCP

I. INTRODUCTION

INFORMATION concerning bandwidth availability in a
network path plays an important role in adaptive con-

trol of the network. Network transport protocols can use
such information to optimize link utilization [1] or im-
prove transmission performance [2]. Service overlay net-
works in particular need fast and accurate information on
available bandwidth, such as:

• P2P (peer-to-peer) networks. When a resource dis-
covery mechanism finds a requested content residing
at multiple peers, bandwidth information is used to
determine which peer should transmit the content.

• Grid networks. When multiple storage sites contain
the same data, bandwidth information is used to de-
termine which storage site is copied or read.

• CDN (content delivery network). When backup data

or cached data is transmitted, bandwidth information
is used to prevent other network traffic from being de-
prived of resources.

Available bandwidth is also used in network topology de-
sign and is a key factor in network troubleshooting when
isolating fault locations [3].

Available bandwidth information can be measured at
routers within a network [4, 5]. This approach may re-
quire a considerable change to network hardware and is
suitable for network administrators only. Some passive
measurement tools can collect traffic information at some
end hosts for performance measurements [6], but this ap-
proach requires a relatively long time for data collection
and bandwidth estimation. Exchanging probe traffic be-
tween two end hosts to find the available bandwidth along
a path (an active measurement) seems the more realistic
approach and has attracted much recent research [7–11].

However, sending extra probe traffic into a network
is a common weakness in all active available bandwidth
measurement tools. This is because the available band-
width must be filled momentarily by the probe traffic,
otherwise the true value of the bandwidth cannot be de-
tected. Depending on the algorithm used, the amount of
required probe traffic differs. According to one study [10],
Pathload [8] generated between 2.5 to 10 MB of probe
traffic per measurement. Newer tools have succeeded in
reducing this. The average per-measurement probe traffic
generated by IGI [11] is 130 KB and by Spruce [10] is
300 KB. A few KB of probe traffic for a single measure-
ment is a negligible load on the network. But for routing
in overlay networks, or adaptive control in transmission
protocols, these measurements may be repeated continu-
ously and simultaneously from numerous end hosts. In
such cases, the few KB of per-measurement probes will
create a large amount of traffic that may damage other data
transmission in the network as well as degrade the mea-
surement itself. For example, in an Internet weather center,
probe traffic requires synchronization to reduce conflicts,
because accuracy in measurement may decrease by some
50% when such conflicts are present [12].

2

In this paper, we propose an active measurement method
that does not add probe traffic to the network, with the
idea of ”plugging” the new measurement mechanism into
an active TCP connection (inline measurement). When a
sender TCP sends data packets, it adjusts the packet trans-
mission intervals, just as active measurement tools do with
probe packets. When the corresponding ACK packets re-
turn, they are considered to be the echoed packets of probe
traffic, such as the ICMP packets of Cprobe [13]. The
sender then utilizes the arrival interval of these packets to
calculate the available bandwidth. While the measurement
accuracy of this method may be affected by delays at the
receiver or by differences in the size of ACK packets and
data packets, this method has the advantage of executing at
only one host (the sender), making it simple to implement
and to use.

We first introduce a measurement algorithm suitable for
inline network measurement that generates periodic mea-
surement results at short intervals, on the order of sev-
eral RTTs. The key idea in measuring rapidly is to limit
the bandwidth measurement range using statistical infor-
mation from previous measurement results. This is done
rather than searching from 0 bps to the upper limit of the
physical bandwidth with every measurement as existing al-
gorithms do [8,9]. By limiting the measurement range, we
can avoid sending probe packets at an extremely high rate
and keep the number of probe packets small.

We then introduce ImTCP (Inline measurement TCP),
a Reno-based TCP that includes the proposed algorithm
for inline network measurement described above. When a
sender transmits data packets, ImTCP first stores a group
up to several packets in a queue and subsequently forwards
them at a transmission rate determined by the measure-
ment algorithm. Each group of packets corresponds to a
probe stream. Then, considering ACK packets as echoed
packets, the ImTCP sender estimates available bandwidth
according to the algorithm. To minimize transmission de-
lay caused by the packet store-and-forward process, we
introduce an algorithm using the RTO (round trip time-
out) calculation in TCP to regulate packet storage time in
the queue. We evaluate the inline measurement system us-
ing simulation experiments. The results show that the pro-
posed algorithm works with the window-based congestion
control algorithm of TCP without degrading transmission
throughput.

We will also present two examples using control modes
of the ImTCP congestion window to show how measure-
ment results can be applied to TCP data transmission. In
background mode, ImTCP uses the results of bandwidth
availability measurements to prevent its own traffic from
degrading the throughput of other traffic. This allows a pri-

oritization of other traffic sharing the network bandwidth.
In full-speed mode, ImTCP uses measurement results to
keep its transmission rate close to the measured value nec-
essary for optimum utilization of the available network
bandwidth. This mode is expected to be used in wireless
and high-speed networks where traditional TCP cannot use
the available bandwidth effectively [14, 15].

The remainder of this paper is organized as follows.
In Section II, we discuss related works concerning inline
measurement. In Section III, we explain the requirements
of an inline measurement algorithm and consider prob-
lems found with existing network measurement methods.
We then introduce our proposed algorithm for inline net-
work measurement. In Section IV, we introduce ImTCP
and evaluate its performance. In Section V, we introduce
two examples of congestion window control mechanisms
for ImTCP. Finally in Section VI, we present concluding
remarks and discuss future projects.

II. INLINE NETWORK MEASUREMENT

The idea of inline measurement has previously appeared
in traditional TCP. To some extent, traditional TCP can be
considered a tool for measuring available bandwidth be-
cause of its ability to adjust the congestion window size
to achieve a transmission rate appropriate to the available
bandwidth. One version of TCP, TCP Vegas [16], also
measures the packet transmission delay. There are, in ad-
dition, other tools that convert the TCP data transmission
stack into network measurement tools; Sting [17] (measur-
ing packet loss) and Sprobe [18] (measuring capacity in a
bottleneck link) are typical examples.

As for the measurement of available bandwidth in an ac-
tive TCP connection, there is some related research. Band-
width estimation in traditional TCP (Reno TCP) is insuffi-
cient and inaccurate because it is a measure of used band-
width, not available bandwidth. Especially in networks
where the packet loss probability is relatively high, TCP
tends to fail at estimating available bandwidth. More-
over, the TCP sender window size often does not accu-
rately represent the available bandwidth due to the nature
of the TCP congestion control mechanism. The first TCP
measurement algorithm to improve accuracy used a pas-
sive method in which the sender checks ACK arrival in-
tervals to infer available bandwidth [19]. It is a simple
approach based on the Cprobe [13] algorithm, but does
not yield good results [20]. A similar technique is used
in TCP Westwood [21] where the sender also passively ob-
serves ACK packet arrival intervals to estimate bandwidth,
but the results are more accurate due to a robust calcula-
tion. However, because these methods observe only ACK
arrival intervals, changes in available bandwidth cannot be

3

detected quickly. Especially when the available bandwidth
increases suddenly, the TCP data transmission rate cannot
adjust as rapidly and needs time to ramp up because of the
self-clocking behavior of TCP. Meanwhile, as transmis-
sion proceeds at a rate lower than the available bandwidth,
the measurement algorithm yields results lower than the
true value.

Our proposed mechanism uses an active approach for
inline measurement. That is, the sender TCP does not
only observe ACK packet arrival intervals, but also ac-
tively adjusts the transmission interval of data packets. The
sender thus collects more information for a measurement
and improved accuracy can be expected. Moreover, the
proposed mechanism requires a modification of the TCP
sender only, incurring the same deployment cost as the ap-
proaches of [19, 21].

III. INLINE NETWORK MEASUREMENT ALGORITHM

In this section we discuss algorithms for TCP measure-
ment of available bandwidth. We first explain why existing
algorithms are not used, then summarize our proposed al-
gorithm.

A. Existing network measurement methods

We consider the following factors to be necessary for an
inline network measurement algorithm. First, because the
TCP window size limits the number of packets available
for transmission at any one time, the measurement algo-
rithm should use as small a number of packets as possible
for a relatively small TCP window. Second, measurement
should not affect the external traffic. Third, if possible,
the measurement should provide results continuously and
quickly so that up-to-date information on the IP network
can be obtained.

We examined the current active measurement methods
and found that none satisfies the requirements mentioned
above. These current tools can be classified as probe
rate type or probe gap type according to how they con-
vert information from the probe packet into a value of in-
terest. Tools based on probe rate, such as Cprobe [13],
TOPP [7], PathLoad [8], Pathchirp [9] and netest [22] uti-
lize changes in the transmission rate of a group of packets
to infer an available bandwidth value. Such tools, except
for Cprobe, provide good measurement results but require
many packets for one measurement. Cprobe yields a result
after only one group of probe packets, but transmits those
packets at the highest rate possible by the sender host and
impacts other traffic adversely if repeated continuously.
Tools based on probe gap calculate available bandwidth
from the change in time gaps between successive probe
packets. Delphi [23], Spruce [24] are IGI/PTR [11] are

Network

(1) Send probe packets

(2) Echo packets

(3) Receive echoed packets

 Estimate the available bandwith

Sender Receiver

Fig. 1. Outline of proposed measurement algorithm

examples. This type of tool requires a smaller amount of
probe traffic because the calculation depends strongly on
the time gaps of only some probe packets. Such tools are
weak if deployed in a TCP connection because the arrival
intervals of some ACK packets may not reflect the avail-
able bandwidth very well, due to delays at the receiver or
a difference in the size of data and ACK packets. The cal-
culation may then be based on inaccurate data leading to
extremely poor results.

Our proposed measurement algorithm satisfies the
abovementioned requirements using an algorithm based
on the probe rate method and a technique to reduce the
amount of probe traffic.

B. Proposed measurement algorithm

Figure 1 shows an outline of the proposed measurement
algorithm. A sender host transmits measurement packets
to a receiver host, which immediately sends received pack-
ets back to the sender host. The sender then estimates the
available bandwidth of the path using the arrival intervals
of the echoed packets.

In every measurement, we use a search range to find
the value of the available bandwidth. Search range I=
(Bl, Bu) is a range of bandwidth which is expected to in-
clude the current value of the available bandwidth. The
proposed measurement algorithm searches for the avail-
able bandwidth only within the given search range. The
minimum value of Bl, the lower bound of the search range,
is 0, and the maximum value of Bu, the upper bound, is
equal to the physical bandwidth of the link directly con-
nected to the sender host. By introducing the search range,
we can avoid sending probe packets at an extremely high
rate, which seriously affects other traffic. We can also keep
the number of probe packets for the measurement quite
small. As discussed later herein, even when the value of
the available bandwidth does not exist within the search
range, we can find the correct value in a few measure-

4

Bandwidth 0
Link Capacity Search Range

Sub-range

Transmission of
measurement stream i

Bl Bu

BuBl
Bi-1 Bi

Bi-1 Bi

Pi,N Pi,N-1 Pi,N-2 Pi,3 Pi,2 Pi,1

N packets

Fig. 2. Relationship of search range, sub-ranges, streams, and
probe packets

ments. The following are the steps of the proposed al-
gorithm for one measurement of the available bandwidth
A:

1. Set the initial search range.
2. Divide the search range into multiple sub-ranges.
3. Inject a packet stream into the network for each sub-

range and check the increasing trend of the packet
inter-arrival times of the received stream.

4. Find a sub-range which is expected to include the
correct value of the available bandwidth using the in-
creasing trends of sent streams.

5. Calculate the available bandwidth by means of linear
regression analysis for the chosen sub-range.

6. Create a new search range and return to Step 2.
A packet stream is a group of packets sent at one time for
the measurement. In what follows, we explain in detail the
algorithm by which to implement the above steps.

1. Set initial search range
We first send a packet stream according to the Cprobe
algorithm [13] to find a very rough estimation of the
available bandwidth. We set the search range to
(Acprobe/2, Acprobe), where Acprobe is the result of the
Cprobe test.

2. Divide the search range
We divide the search range into k sub-ranges Ii =
(Bi+1, Bi) (i = 1, 2..k). All sub-ranges have the
identical width of the bandwidth. That is,

Bi = Bu − Bu −Bl

k
(i− 1) (i = 1, ..., k + 1)

As k increases, the results of Steps 4 and 6 become
more accurate, because the width of each sub-range
becomes smaller. However, a larger number of packet
streams is required, which results in an increase in the
number of used packets and the measurement time.

3. Send packet streams and check increasing trend

For each of k sub-ranges, a packet stream i (i = 1...k)
is sent. The transmission rates of the stream’s packets
vary to cover the bandwidth range of the sub-range.
We denote the j-th packet of the packet stream i as
Pi,j (1 ≤ j ≤ N , where N is the number of packets
in a stream) and the time at which Pi,j is sent from the
sender host as Si,j , where Si,1 = 0. Then Si,j (j =
2..N) is set so that the following equation is satisfied:

M

Si,j − Si,j−1
= Bi+1 +

Bi − Bi+1

N − 1
(j − 1)

where M is the size of the probe packet. Figure 2
shows the relationship between the search range, the
sub-ranges and the packet streams. In the proposed al-
gorithm, packets in a stream are transmitted with dif-
ferent intervals, for this reason the measurement result
may not be as accurate as the Pathload algorithm [8],
in which all packets in a stream are sent with identical
intervals. However, the proposed algorithm can check
a wide range of bandwidth with one stream, whereas
the Pathload checks only one value of the bandwidth
with one stream. This reduces the number of probe
packets and the time required for measurement. By
this mechanism, the measurement speed is improved
at the expense of measurement accuracy.
We then observe Ri,j , the time the packet Pi,j ar-
rives at the sender host, where Ri,1 = 0. We cal-
culate the transmission delay Di,j of Pi,j using the
function Di,j = Ri,j − Si,j . We then check if
an increasing trend exists in the transmission delay
(Di,j − Di,j−1) (2 ≤ j ≤ N) according to the algo-
rithm used in [8]. As explained in [8], the increasing
trend of transmission delay in a stream indicates that
the transmission rate of the stream is larger than the
current available bandwidth of the network path.
Let Ti be the increasing trend of stream i as follows:

Ti =

⎧⎪⎨
⎪⎩

1 increasing trend in stream i
−1 no increasing trend in stream i

0 unable to determine

As i increases, the rate of stream i decreases. There-
fore, Ti is expected to be 1 when i is sufficiently small.
On the other hand, when i becomes large, Ti is ex-
pected to become −1. Therefore, when neither of the
successive streams m or m + 1 have an increasing
trend (Tm = Tm+1 = −1), the remaining streams are
expected not to have increasing trends (Ti = −1 for
m + 2 ≤ i ≤ k). Therefore, we stop sending the
remaining streams in order to speed up the measure-
ment.

5

Transmission rate

Arrival rate

Available
Bandwidth

(i)

(ii)

0

Fig. 3. Finding the available bandwidth within a sub-range

4. Choose a sub-range
Based on the increasing trends of all streams, we
choose a sub-range which is most likely to include
the correct value of the available bandwidth. First,
we find the value of a (0 ≤ a ≤ k + 1), which maxi-
mizes (

∑a
j=0 Tj −∑k

j=a+1 Tj). If 1 ≤ a ≤ k, we de-
termine the sub-range Ia is the most likely candidate
of the sub-range which includes the available band-
width value. That is, as a result of the above calcu-
lation, Ia indicates the middle of streams which have
increasing trends and those which do not. If a = 0
or a = k + 1, on the other hand, the algorithm de-
cides that the available bandwidth does not exist in the
search range (Bl, Bu). We determine that the avail-
able bandwidth is larger than the upper bound of the
search range when a = 0, and that when a = k+1 the
available bandwidth is smaller than the lower bound
of the search range.
In this way, we find the sub-range which is expected
to include the available bandwidth according to the
increasing trends of the packet streams.

5. Calculate the available bandwidth
We then derive the available bandwidth A from the
sub-range Ia chosen by Step 4. We first determine the
transmission rate and the arrival rate of the packet Pa,j

(j = 2...N) as M
Sa,j−Sa,j−1

, M
Ra,j−Ra,j−1

, respectively.
We then approximate the relationship between the
transmission rate and the arrival rate as two straight
lines using the linear regression method, as shown in
Figure 3. Since we determine that the sub-range Ia
includes the available bandwidth, the slope of line (i)
which consists of small transmission rates is nearly 1
(the transmission rate and the arrival rate are almost
equal), and the slope of line (ii) which consists of
larger transmission rates is smaller than 1 (the arrival
rate is smaller than the transmission rate). Therefore,
we determine that the highest transmission rate in line

(i) is the value of the available bandwidth.
On the other hand, when we have determined that the
available bandwidth value does not exist in the search
range (Bl, Bu) in Step 4, we temporarily set the value
of available bandwidth as follows:

A =

{
Bl a = 0
Bu a = k + 1

6. Create a new search range
When we have found the value of the available band-
width from a sub-range Ia in Step 5, we accumulate
the value as the latest statistical data of the available
bandwidth. The next search range (B′

l, B
′
u) is calcu-

lated as follows:

B′
l = A−max

(
1.96

S√
q
,
Bm

2

)

B′
u = A + max

(
1.96

S√
q
,
Bm

2

)

where S is the variance of stored values of the avail-
able bandwidth and q is the number of stored val-
ues. Thus, we use the 95% confidential interval of
the stored data as the width of the next search range,
and the current available bandwidth is used as the cen-
ter of the search range. Bm is the lower bound of the
width of the search range, which is used to prevent the
range from being too small. When no accumulated
data exists (when the measurement has just started or
just after the accumulated data is discarded), we use
the same search range as that of the previous measure-
ment.
On the other hand, when we can not find the available
bandwidth within the search range, it is possible to
consider that the network status has changed greatly.
Therefore, we discard the accumulated data because
this data becomes unreliable as statistical data. In this
case, the next search range (B′

l, B
′
u) is set as follows:

B′
l =

{
Bl a = 0
Bl − Bu−Bl

2 a = k + 1

B′
u =

{
Bu + Bu−Bl

2 a = 0
Bu a = k + 1

This modification of the search range is performed in
an attempt to widen the search range in the possible
direction of the change of the available bandwidth.

6

Background

Traffic

Measurement

TrafficSender Receiver

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

100 Mbps, 30 ms

Fig. 4. Network model for evaluation of the proposed measure-
ment algorithm

By this statistical mechanism, we expect the measure-
ment algorithm to behave as follows: when the avail-
able bandwidth does not change greatly over a period
of time, the search range becomes smaller and more
accurate measurement results can be obtained. On
the other hand, when the available bandwidth varies
greatly, the search range becomes large and the mea-
surement can be restarted from the rough estimation.
That is, the proposed algorithm can give a very accu-
rate estimation of the available bandwidth when the
network is stable, and a rough but rapid estimate can
be obtained when the network status changes.

C. Simulation results

This Subsection shows some simulation results in
ns [25] and validates the measurement algorithm proposed
in Subsection III-B. Figure 4 shows the network model
used in the simulation. A sender host connects to a re-
ceiver host through a bottleneck link. The capacity of the
bottleneck link is 100 Mbps and the propagation delay is
30 msec. All of the links from the endhosts to the routers
have a 100-Mbps bandwidth and a 30-msec propagation
delay.

There is background traffic generated by endhosts con-
necting to the routers. The background traffic is made up
of UDP packet flows, in which various packet sizes are
used according to the monitored results in the Internet re-
ported in [26]. The correct value of the available band-
width of the bottleneck link is calculated as the bottleneck
link capacity minus the total rate of UDP traffic. We make
the available bandwidth on the bottleneck link fluctuate by
changing background traffic rates.

The sender host sends probe packets to the receiver host
and the receiver host echoes the packets back to the sender.
The sender, using the algorithm proposed in Subsection

III-B , measures the available bandwidth of the path be-
tween the two hosts. In this situation, the result corre-
sponds to the available bandwidth of the bottleneck link
between the routers.

The number of sub-range k, which a search range is di-
vided into, is decided according to the width of the search
range and the latest result of the measured available band-
width, Aprev;

k =

⎧⎪⎪⎨
⎪⎪⎩

2 (0 ≤ Bu−Bl
Aprev

< 0.15)
3 (0.15 ≤ Bu−Bl

Aprev
< 0.2)

4 (0.2 ≤ Bu−Bl
Aprev

)

Bm, the lower bound of the width of search ranges, is set
to 10% of Aprev. The probe packet size is 1500 Bytes.

Figure 5 shows the measurement results of the available
bandwidth and the search ranges for a simulation time of
300 sec. During the simulation, the background traffic is
changed so that the available bandwidth of the bottleneck
link is 60 Mbps from 0 sec to 50 sec, 40 Mbps from 50
sec to 100 sec, 60 Mbps from 100 sec to 150 sec, 20 Mbps
from 150 sec to 200 sec and 60 Mbps from 200 sec to
300 sec. We also plot the correct values of the available
bandwidth in all figures. Figures 5(a)-5(c) show the results
when the number of the probe packets in a stream (N) is 3,
5 and 8, respectively. These figures indicate that when N
is 3, the measurement results are far from the correct val-
ues. When N becomes larger than 5, on the other hand, the
estimation result accuracy increases. The proposed mea-
surement algorithm can determine the available bandwidth
rapidly, even when the available bandwidth changes sud-
denly. When N is very small, we can not determine the
increasing trend of the streams correctly in Step 3 in the
proposed algorithm, which leads to the incorrect choice of
sub-range in Step 4. Although the accuracy of measure-
ment results increases as N is increased from 5 to 8, N=5
is judged to be the better setting since we place a higher
priority on measurement speed than on measurement ac-
curacy.

We next show another result in which we change the
available bandwidth slowly as follows: from 0 sec to 50
sec, the available bandwidth is 60 Mbps; from 50 sec to
100 sec, decreases to 40 Mbps; from 100 sec to 150 sec,
increases to 60 Mbps; from 150 sec to 210 sec, decreases
to 20 Mbps; from 120 sec to 270 sec, increases to 60 Mbps;
and from 270 sec to 300 sec the available bandwidth is 60
Mbps. The simulation results are shown in Figure 6. When
N = 3, the estimation results are not accurate, but when N

is 5 or 8, the results becomes acceptable.
From these simulation results, we can conclude that the

proposed algorithm can measure well the available band-

7

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n

d
w

id
th

 (
M

b
p

s
)

Time (s)

Search Range
Result

A-bw

(a) N=3

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n

d
w

id
th

 (
M

b
p

s
)

Time (s)

Search Range
Result

A-bw

(b) N=5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

Search Range
Result

A-bw

(c) N=8

Fig. 5. Results of the proposed measurement algorithm (1)

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n

d
w

id
th

 (
M

b
p

s
)

Time (s)

Search Range
Result

A-bw

(a) N=3

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n

d
w

id
th

 (
M

b
p

s
)

Time (s)

Search Range
Result

A-bw

(b) N=5

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
a
n

d
w

id
th

 (
M

b
p

s
)

Time (s)

Search Range
Result

A-bw

(c) N=8

Fig. 6. Results of the proposed measurement algorithm (2)

width, independent of the degree of change in available
bandwidth.

IV. IMTCP: TCP WITH INLINE NETWORK

MEASUREMENT

A. Overview

In this Section we show how to apply the measurement
algorithm mentioned in Section III to TCP by considering
data packets as probe packets and ACK packets as echoed
packets.

Because the program for inline network measurement
must know the current size of the TCP congestion win-
dow, it should be implemented at the bottom of TCP layer
as shown in Figure 7. When a new TCP data packet is
generated at the TCP layer and is ready to be transmit-
ted, it is stored in an intermediate FIFO buffer (hereafter
called the ImTCP buffer) before being passed to the IP

layer. On the other hand, when an ACK packet arrives
at the sender host, the measurement program records its
arrival time and passes it to the TCP layer for TCP pro-
tocol processing. When ImTCP performs a measurement,
the program creates packet streams; it waits until a suffi-
cient number of packets are in the ImTCP buffer then sends
them at the transmission rate determined by the measure-
ment algorithm. This is repeated until all streams required
for a measurement have been transmitted. When ImTCP
is not performing a measurement, it passes all TCP data
packets immediately to the IP layer.

The program dynamically adapts to changes in the TCP
window size. It stores no data packets when the current
window size is smaller than the number of packets required
for a measurement stream. This is because the TCP sender
cannot transmit a number of data packets larger than the
window size. On the other hand, when the window size is
sufficiently large, the program creates all streams required

8

TCP layer

Application programs

IP layer

Network interface

Data packets

ACK

packets

Measurement

program

ImTCP

buffer
Record the arrival time

Calculate results

TCP protocol processing

Fig. 7. Placement of measurement program at TCP sender

for a measurement in every RTT.

B. Packet storing mechanism

Figure 8 shows the structure of the measurement pro-
gram. It consists of three units. The ImTCP Buffer unit
stores TCP data packets and passes each packet to the IP
layer under control of the Control unit. It informs the Con-
trol unit when a new TCP packet arrives. The Control unit
determines when to send the packets stored in the buffer.
It receives search ranges from the Measurement unit and
creates the measurement streams. The Measurement unit
checks the arrival times of ACK packets and calculates
measurement results using corresponding sent packet de-
parture times passed from the Control unit.

Details of the Measurement unit were introduced in
Subsection III-B. Here, we explain the operation of the
Control unit. The Control unit has four functional states,
STORE PACKET, PASS PACKET, SEND STREAM and
EMPTY BUFFER, as shown in Figure 9. The Control unit
is initially in the STORE PACKET state. In what follows,
we describe the detailed behaviors of the Control unit in
each state;

• STORE PACKET state
– Start storing packets for the creation of measurement

streams. Set the packet storing timer to end packet
storing after certain length of time T . The timer
value T is discussed in Subsection IV-C.

– Go to the SEND STREAM state if the number of
stored packets equals to m. The value of m is dis-
cussed in Subsection IV-C.

– Go to the EMPTY BUFFER state if the current TCP
window size becomes smaller than N or the packet
storing timer expires. N is the number of packets
needed to create a measurement stream.

• EMPTY BUFFER state
– Pass currently stored packets to the IP layer until the

Control Unit

Measurement

Unit

ImTCP

Buffer

Queue length

Packet sending timing

Packet

sending

times

Search

ranges

Window size

ACK packet

seq. number

ACK packet

arrival times

Fig. 8. Structure of the measurement program

Last stream of

a measurement

sent

ACK packets return

SEND STREAMEMPTY BUFFER

Finish

Packet storing timeout

or

Window size < N Buffer length = m

STORE PACKET PASS PACKET

One stream sent

(not the last one of measurement)

Fig. 9. State transition in the Control unit

buffer becomes empty.
– Return to the STORE PACKET state.

• SEND STREAM state
– Send a measurement stream. The transmission rate

of the stream is determined according to the mea-
surement algorithm. During stream transmission,
packets arriving at the buffer are stored in the
ImTCP buffer.

– After the transmission of the stream, if the stream
is the last of a measurement, go to PASS PACKET
state, if not, go to the EMPTY BUFFER state.

• PASS PACKET state
– Pass every packet in the buffer immediately to the IP

layer.
– Go to the STORE PACKET state when all ACK

packets of the transmitted measurement streams
have arrived at the sender.

9

C. Parameter settings

C.1 Number of packets required to start a measurement
stream (m)

The timing for sending packets in a measurement stream
is determined by the measurement algorithm. If N pack-
ets were stored prior to the beginning of transmission, the
long storage time would slow the TCP transmission speed.
Instead, transmission begins when only a partial number of
packets (m out of N packets) have arrived in the ImTCP
buffer. The timing is such that the former part of the stream
is being transmitted as the latter part of the stream is still
arriving at the buffer, and the latter packets are expected to
arrive in time for transmission. Thus, we reduce the effect
of the packet storing mechanism on TCP transmission.

If we set m to a very small value (for example, 1 packet),
the latter part of the stream will not be available when the
former part of the stream has already been transmitted, in
which case the stream transmission fails. Therefore, m
must be large enough to ensure successful transmission of
the measurement stream, but no larger. The algorithm for
determining m is given below. In the algorithm, m is ad-
justed according to whether or not transmission of the pre-
vious measurement streams was successful.

• Set m = N initially. The minimum of m is 2, and the
maximum of m is N .

• If F successive measurements are completed success-
fully, and m is greater than its minimum of 2, then
decrement m by 1. We set F to 2.

• If a stream creation fails, and m is less than its max-
imum of N , then decrement m by 1 and create the
stream again.

C.2 Number of packets in a measurement stream (N)

When network traffic changes rapidly, the fluctuating
bandwidth may reduce the transmission rate (Rsend) of
measurement streams less than that the arrival rate of pack-
ets at the ImTCP buffer (Rarrival). In this case, packets
congest the buffer during stream transmission. We can
calculate the number of packets present in the buffer at
completion of a measurement stream transmission as:

m + N (
Rarrival

Rsend
− 1) (1)

After transmitting a measurement stream, the Control unit
transitions to the EMPTY BUFFER state and quickly
sends all remaining packets in the buffer. We want to
keep the number of transmitted packets as small as pos-
sible, however, to avoid degrading the TCP transmission
rate. Considering that value m in Equation (1) is deter-
mined by algorithm C.1 of Section IV, we must choose a

small value for N to reduce the number of packets in the
ImTCP buffer. With a small N , measurements are per-
formed quickly but with less accuracy. However, giving
TCP performance priority over measurement accuracy, a
small value for N is suitable.

According to simulation experiments in III-C, the pro-
posed measurement algorithm yields successful measure-
ment results if, and only if, 5 ≤ N . Therefore, we choose
N = 5.

C.3 Packet storing timer (T)

We avoid degrading the TCP transmission speed, caused
by storing data packets before they are passed to the IP
layer, by appropriately setting a timer to stop the cre-
ation of a stream. Obviously, there is a trade-off between
measurement frequency and TCP transmission speed when
choosing the timer value. That is, for large timer values,
the program can create measurement streams frequently so
measurement frequency increases. In this case, however,
because TCP data packets may be stored in the intermedi-
ate buffer for a relatively long period of time, TCP trans-
mission speed may deteriorate. Moreover, long packet de-
lays may lead to TCP timeout events. On the other hand,
for small timer values, the program may frequently fail to
create packet streams, leading a low frequency of measure-
ment success. In the following discussion, we derive the
appropriate value for the packet storing timer by applying
an algorithm similar to the RTO calculation in TCP [27].

If we assume a normal distribution of packet RTTs with
average ART T and variance DRT T , ART T and DRT T can
be inferred from the TCP timeout function [27]. We use
the following notation;

• X : RTT of a TCP data packet
• Y : The time since the first of N successive data pack-

ets is sent until the ACK of the last packet arrives at
the sender

• Z: The time necessary for N successive ACK packets
to arrive at the sender

We illustrate X , Y and Z in Figure 10. We need to know
the distribution of Z to determine the appropriate value for
the packet storing timer. From Figure 11, we can see that:

Z = Y −X (2)

From the assumption mentioned above, X has a normal
distribution N (ART T , DRT T). Note that Y is the pe-
riod of time from sending the first packet until the last
packet is sent (we denote the length of this period as K)
plus the RTT of the last packet. That is, we can con-
clude that the distribution of Y is N (ART T + K, DRT T).
From Equation (2) we then obtain the distribution of Z, as
N (K, 2 ·DRT T).

10

Sender Router Receiver

K

Z

Y

X

Packet 1

Packet N

Ack 1

Ack N

Fig. 10. Packets transmission times in TCP

Here, we provide a simple estimate of K. In a TCP
flow, due to the self-clocking phenomenon, the TCP packet
transmission rate is a rough estimate of the available band-
width of the network link. The average time needed to
send N successive TCP data packets is

K =
M

A
(N − 1) (3)

where M is the packet size and A is the value of available
bandwidth which can obtain from the measurement results.
From the distribution of Z and Equation (3), we determine
the waiting time for N ACK packets as below:

T =
M

A
(N − 1) + 4 ·DRT T

Using this value for the timer, the probability of success-
fully collecting N packets reaches approximately 98% due
to the characteristics of the normal distribution. Thus, we
are using a relatively short timer length that reduces addi-
tional processing delays caused by the measurement pro-
gram but provides a high probability of collecting a suffi-
cient number of packets for creating measurement streams.

C.4 Measurement frequency

As explained in Subsection III-B, the measurement al-
gorithm uses previous measurement results to determine
a search range for the next measurement. Therefore, it
is natural that only one measurement operation should be
performed for one RTT. If the TCP window size is suf-
ficiently large, we can perform multiple measurements
for one RTT by introducing a quite complex mechanism.
However, many difficulties must be overcome to accom-
plish this, including interaction of measurement tasks, de-
lays caused by multiple streams. We therefore decided that
ImTCP should perform at most one measurement opera-
tion per RTT. One RTT is long enough for ImTCP to re-
cover the transmission rate after a measurement.

Thus, a measurement result is yielded in from one to
four RTTs. Four RTTs per measurement occurs when the
number of sub-range in a measurement reaches its max-
imum value (four) and the window size is so small that
the measurment program can create only one measurement
stream per RTT.

D. Other issues

D.1 Effect of Delayed ACK option

When a TCP receiver uses the delayed ACK option,
it sends only one ACK packet for every two data pack-
ets. In this case, the proposed algorithm does not work
properly since it assumes the receiver host will send back
a probe packet for each received packet. To solve this
problem, Step 3 in Subsection III-B of the proposed algo-
rithm should be changed so that intervals of three pack-
ets are used rather than intervals of two packets. That
is, we calculate the transmission delay (Di,2j′+2 −Di,2j′)
(1 ≤ j ′ ≤ �N/2�) for the probing packets in stream i in
order to check its increasing trend. This modification has
almost the same effect as halving the number of packets
in one stream, resulting in a degradation in measurement
accuracy. Therefore, the number of packets in a stream
should be increased appropriately.

D.2 Effect of packet fragmentation

In the case where TCP packets are transmitted through
a queue or node for which the MTU (Maximum Trans-
mission Unit) is smaller than the packet size, the packets
will be fragmented into several pieces in the network. The
problem here becomes a question of whether measurement
result will still be accurate if the packets in measurement
streams become fragmented somewhere on the way to the
receiver. We argue that fragmentation has little effect on
the measurement results. The measurement algorithm is
based on the increasing trend of the packet stream in or-
der to estimate available bandwidth. Even with fragmen-
tation, the stream still shows an increasing trend when and
only when the transmission rate is larger than the avail-
able bandwidth. However, fragmentation does increase the
packet processing overhead, which may in turn raise the
increasing trend of packet streams if it occurs at a bottle-
neck link. This may lead to a slight underestimation in the
measurement results.

E. Simulation results

E.1 Measurement accuracy

Our first simulation uses the same topology as described
in Subsection III-C except that the UDP sender and re-
ceiver are replaced by an ImTCP sender and an ImTCP

11

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p
s)

Time (s)

Result
A-bw

Fig. 11. Measurement results of ImTCP

0

20

40

60

80

100

120

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

ImTCP

TCP

WestWood

A-bw

Fig. 12. Average measurement results of ImTCP and TCP West-
wood

receiver, respectively. Figure 11 show the measurement
results for ImTCP in this case. Comparing Figure 11 with
the measurement results of the algorithm where the num-
ber of packets (N) in a measurement stream is also five
(Figure 5(b)), we can see that our measurement method
can be successfully applied to TCP with no degradation in
measurement accuracy.

Figure 12 shows the average measurement results of ev-
ery 0.5 sec of ImTCP in this simulation. For compari-
sion, we also show the measurement results of TCP West-
wood (we use the latest version of TCP Westwood we have
found [21]) in the same network conditions. Figure 13
shows the change in throughput of ImTCP in this simula-
tion. We also show the case of Reno TCP and TCP West-
wood. From the figures, we can see that ImTCP performs
the measurement with a throughput almost the same as that
of Reno TCP. An important point we can see from Figure
12 and 13 is that ImTCP yields accurate results even when

0

20

40

60

80

100

0 50 100 150 200 250 300

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

ImTCP WestWood

RenoTCP

A-bw

Fig. 13. Throughput of ImTCP and Reno TCP

 Sender

Receiver

 ImTCP/RenoTCP

 connection

100 Mbps

10 ms

20 Web servers

220 Web clients

100 Mbps

10 ms

10..100 Mbps

10..100 ms

10..100 Mbps

10..100 ms

50 Mbps

10 ms

Web traffic

buffer=1000 pkts

Fig. 14. Network model for evaluation of ImTCP’s effect on
Web traffic

the current throughput is lower than the available band-
width. For example, from 0 sec to 30 sec in the simulation,
although the throughput of ImTCP is less than 60 Mbps,
the available bandwidth value is still realized, as shown in
Figure 12. In contrast, TCP Westwood can not detect the
real value of available bandwidth if it is much larger than
the transmission throughput. This is the main difference
between the measurement results of TCP Westwood and
ImTCP.

E.2 Effect of ImTCP on other traffic

To investigate the effect of inline measurement on other
traffic sharing the network, we compare the case of ImTCP
to that of Reno TCP using the network model depicted in
Figure 14. We activate ImTCP and Reno TCP in turn in
the network involving a large number of active Web doc-

12

0

10

20

30

40

50

200 250 300 350 400

B
an

d
w

id
th

 (
M

b
p

s)

Time (s)

A-bw
Measurement result

Fig. 15. Measurement result of ImTCP in Web traffic environ-
ment

ument accesses. There are 220 Web clients downloading
Web pages from 20 Web servers through a 50 Mbps shared
link. We use a Pareto distribution for the Web object size
distribution. According to previous studies in [28], we
use 1.2 as the Pareto shape parameter with 12 KBytes as
the average object size. The number of objects in a Web
page is eight. The TCP sender and TCP receiver connect
to a shared link through 100 Mbps links. We use a large
buffer (1000 packets) in the router at the shared link to
help ImTCP/Reno TCP connections achieve high through-
put because, here, the effect of ImTCP/Reno TCP connec-
tions on Web traffic is the focus of the simulation.

We run the simulation for 500 sec and find that the aver-
age throughput of ImTCP is 25.2 Mbps while that of Reno
TCP is 23.1 Mbps. The results therefore show that data
transmission speed of ImTCP is almost the same as that
of Reno TCP. Figure 15 confirms that the ImTCP mea-
surement result reflects the change in available bandwidth
well.

We compare the effect of ImTCP and Reno TCP on Web
page download time in Figure 16. This figure shows cumu-
lative density functions (CDFs) of the Web page download
time of Web clients. We can see that ImTCP and Reno
TCP have almost the same effect on the download time of
a Web page. This indicates that inline measurement does
not affect other traffic sharing the link with ImTCP.

E.3 Bandwidth utilization and fair share

Two important characteristics of the Internet transport
protocol are full utilization of link bandwidth and fair shar-
ing of bandwidth among connections. We use the follow-
ing simulation to show that ImTCP has these two charac-
teristics.

We use the network topology shown in Figure 17 with

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D

F

Download time (s)

Web only

Reno

ImTCP

Fig. 16. Comparison of Web page download times

 50 Mbps

 50 ms

100 Mbps

 10 ms
100 Mbps

 10 ms

ImTCP senders
TCP receivers

Buffer = 200 packets

Fig. 17. Network model for investigating bandwidth utilization
and fair share

many ImTCP connections sharing a bottleneck link. Us-
ing a small buffer (200 packets) in the router at the bot-
tleneck link to force conflict among connections, we vary
the number of ImTCP connections while observing total
throughput and fairness among the connections.

The line in Figure 18(a) shows the Jain’s fairness in-
dex [29] for the ImTCP connections. This index takes a
value from 0 to 1; a share is considered fair as its index
is near 1. We can see that the ImTCP connections share
the bandwidth link fairly. Figure 18(b) shows the link uti-
lization of ImTCP as we vary the number of connections.
Also shown are the results when ImTCP is replaced by
Reno TCP. Due to the small buffer size of the bottleneck
link, when the number of connections are small the total
throughput is not very high. When the number of connec-
tions is large, total throughput increases. We can see that
ImTCP and Reno TCP have almost the same link utiliza-
tion regardless of the number of connections.

13

0

0.2

0.4

0.6

0.8

1

2 4 6 10 16 24 40 50

Ja
in

’s
 f

ai
rn

es
s

in
d
ex

#flows

1

(a) Fairness between ImTCP conections

0

10

20

30

40

50

1 2 4 6 10 16 24 40 50

To
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

#flows

Link capacity

Reno TCP ImTCP

(b) Link utilization of ImTCP

Fig. 18. Fairness and link utilization of ImTCP

cross traffic

RenoTCP Senders
TCP Receivers

 50 Mbps 50 ms

100 Mbps
10 ms

100 Mbps
 10ms

ImTCP senders

Buffer=
500 packets

0.1 Mbps

Fig. 19. Network model for investigating Reno TCP compati-
bility

0

0.5

1

1.5

2

2 4 6 10 16 20 24 40 50

Im
T

C
P

 t
hr

ou
gh

pu
t/

R
en

oT
C

P
 t

hr
ou

gh
pu

t

#flow

Fig. 20. Comparision of ImTCP and Reno TCP throughput.
The number on the lines are the number of RTT between
two measurements of ImTCP.

E.4 TCP-friendliness and TCP-compatibility

ImTCP is TCP-friendly; it achieves the same through-
put as Reno TCP under the same condition, as shown in
Figure 18(b). Although ImTCP buffers packet stream at
the sender host, the buffered packets is quickly transmitted
after each transmission of a packet stream (in the EMPTY
BUFFER state). Therefore, there is almost no degradation
in transmission speed of data packets.

A network protocol is called TCP-compatible if the con-
nections using this protocol fairly share the bandwidth in
an bottleneck link with Reno TCP [30]. We examine the
TCP-compatibility of ImTCP by observing the throughput
of ImTCP connections when they coexist with Reno TCP
connections and non-TCP traffic. The non-TCP traffic is
indicated by a 0.1 Mbps UDP flows with randomly var-
ied packet size (300-600 bytes). All TCP and non-TCP
traffic conflict at the 50 Mbps bottleneck link (see Figure
19). We use the same number of ImTCP and Reno TCP
connections.

The ratio of the total throughput of ImTCP connections
to that of Reno TCP connections is shown in Figure 20.
When the ratio is around 1, ImTCP is TCP-compatible.
The horizontal axis shows the total number of the TCP
connections. In the current version of ImTCP, there is
no time interval between 2 measurements. The result of
this version is shown by the line numbered 0. We can
see that ImTCP receives lower throughput than Reno TCP.
The reason is as follows. Some of packets of ImTCP
may not be transmitted in burst due to the affect of pack-
ets buffering at the sender. On the other hand, traditional
TCP connections in competing environment have the trend
to transmit packets in a bursty fashion. When the pack-
ets of ImTCP collide with the bursts of packets of Reno

14

TCP, they have higher probability to be dropt. There-
fore, ImTCP with high measurement frequency may lost
more packets when conflicting with Reno TCP, leading to
a lower throughput.

The simple and effective way to overcome this problem
is increasing the measurement interval of ImTCP. We next
consider the cases when the measurement intervals are 12,
15 and 20 RTTs, and show the results by the line num-
bered 12, 15 and 20, respectively, in Figure 20. Note that
the RTT in this case is 0.14 seconds and each measurement
takes at most 4 RTTs. Therefore, 12, 15 and 20 RTT inter-
val means ImTCP releases measurement results in 2.24(s),
2.66(s) and 3.36(s), respectively. When the measurement
interval is relatively small, ImTCP achieves lower through-
put than Reno TCP. On the other hand, when the measure-
ment interval is equal to or larger than 20 RTTs, ImTCP is
compatible to Reno TCP. In other words, when the mea-
surement frequency is smaller than a certain value (in this
simulation, that is 1/3.36 times per second) there is a
trade-off relationship between the TCP compatibility and
the measurement frequency.

In such a heavy congested network that there is no
available bandwidth even when ImTCP does not exist,
ImTCP must be TCP-compatible in order to gain the equal
throughput to other connections. Moreover, in this envi-
ronment, the measurement results themselves usually do
not bring so much valuable information so they will be
not required updated frequently. Therefore, in this case,
ImTCP must take a low measurement frequency. When
the network is vacant, ImTCP will not conflict with other
connections so much. In this case, TCP-compatibility does
not strictly required, because ImTCP is TCP-friendly so
that ImTCP will perform exactly like traditional TCP. Be-
sides, the information about the vacancy in the network
will be of interest. In this case, ImTCP should increase
its measurement frequency. Thus, there should be a dy-
namic adjustment for the measurement frequency accord-
ing to the network status. We will consider the problem in
our future works.

V. TRANSMISSION MODES OF IMTCP

Here we introduce two examples in which ImTCP con-
trols the transmission using measurement results to obtain
performance that is not realizable with traditional TCP.

A. Background transmission

The transmission for backup data or cached data (back-
ground traffic) should not degrade throughput of other traf-
fic (foreground traffic), which may be more important. We
introduce an example showing that ImTCP successfully
uses the results of bandwidth availability measurements to

FTP traffic

Background
TCP connection

Sender

Receiver

 50M Mbps 10 ms

100 Mbps
10 ms

100 Mbps
 10ms

10 Mbps
 10ms

FTP senders
FTP receivers

Buffer=
100 packets

Fig. 21. Network model for evaluation of ImTCP background
mode

prevent its own traffic from degrading the throughput of
other traffic. We call this type of ImTCP data transmission
background mode.

The main idea is to set an upper bound on the conges-
tion window size according to estimated values so that the
transmission rate does not exceed the available bandwidth.
This reduces the effect ImTCP has on other traffic in the
same network links. We use the following control mecha-
nism. When

g · RTT · A > m ·N
we set

MaxCwnd = g · RTT · A
where A is the estimated value of available bandwidth,
MaxCwnd is the upper bound of the congestion window
size and N is the number of packets for a measurement
stream. The parameter g can range from 0 to 1. When g

is small, ImTCP uses less bandwidth and interferes only
very slightly with foreground traffic. When g is near 1,
ImTCP uses more bandwidth and its effect on foreground
traffic grows. We set the upper bound of the congestion
window size (MaxCwnd) to g · RTT · A only when the
value is large enough for ImTCP to continue performing
measurements well. We do not use the value to restrain the
window size when it becomes smaller than 5 ·N (Note that
up to four packet streams are needed for a measurement.
Therefore, when the congestion window size is smaller
than 5 ·N , the measurement task becomes difficult).

We first examine the behavior of the background mode
of ImTCP when the foreground traffic is persistent TCP
connections. We generate foreground traffic from four
TCP connections, each of which passes through a 10 Mbps
bottleneck link before passing the 50 Mbps share link, as
shown in Figure 21. Therefore, in case when there is no

15

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

M
b

p
s

Time (s)

Foreground

Reno TCP

(a) Reno TCP

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

M
b

p
s

Time (s)

Foreground

ImTCP BackgroundMeasurement result

(b) ImTCP background

Fig. 22. Comparison of ImTCP background and Reno TCP
performance

background traffic, the total transmission rate in the fore-
ground is approximately 40 Mbps, as can be seen for 0-30
sec in Figure 22. At 30 sec in the simulation, we activate
the background flow through the shared link. The back-
ground traffic does not pass through any link with smaller
bandwidth than the shared link. In the simulation, g is set
to 0.9.

Figure 22 shows the change in throughput of foreground
transfer and background transfer as a function of simula-
tion time. In the case where we use Reno TCP for the
background transfer, we find that the background traffic
greatly affects the foreground, as can be seen in Figure
22(a), where the average throughput of foreground traf-
fic becomes 30 Mbps and that of the background is 16
Mbps. When we use ImTCP background mode for back-

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

C
D

F

Download time (s)

Web only

RenoTCP

ImTCP background

Fig. 23. Average of Web page download time

ground transfer, we find that ImTCP can exactly estimate
the available bandwidth in the shared link (10 Mbps) and
successfully prevent its transmission rate from exceeding
the estimated values. The average throughput of the fore-
ground traffic is 39 Mbps total and that of the background
traffic about 9 Mbps (Figure 22(b)), which matches well
with the setting of the value of g (=0.9).

We also examine the behavior of ImTCP in background
mode when foreground traffic is originated with Web doc-
ument transfers. We replace the ImTCP connection in the
simulation in Figure 14 with a background mode ImTCP
connection. Figures 23 compare the download time for
Web pages under ImTCP and Reno TCP. We find that
ImTCP has only a very small effect on the download time
of the foreground Web traffic. The average throughput of
ImTCP in this case is about 72% that of Reno TCP. Fig-
ure 24 shows the measurement value and throughput of
ImTCP connection as a function of simulation time in this
case. Note that the throughput of ImTCP does not ap-
proach the actual value of available bandwidth. This indi-
cates that ImTCP background mode is successfully avoid-
ing interference with Web traffic. And we can also say that
the measurement results in this case confirm that ImTCP
in background mode performs the measurement very well.

B. Full-speed transmission

We introduce another example of a modified congestion
control mechanism to show that ImTCP can enhance link
utilization using its measurement results.

TCP considers packet loss events as indicators of band-
width starvation and consequently decreases the transmis-
sion rate whenever packet losses occur. Therefore, in wire-
less networks where packets may be lost due to channel
noise, TCP tends to use the available bandwidth ineffec-
tively [31]. Similarly, in satellite networks and high-speed

16

0

10

20

30

40

50

120 140 160 180 200

Ba
nd

w
id

th
 (M

bp
s)

Time (s)

A-bw
Measurement result

ImTCP background

Fig. 24. Throughput and measurement result of ImTCP back-
ground mode

networks, where the bandwidth-delay product of an end-
to-end path is extremely large, TCP with traditional con-
gestion avoidance requires a long time and an extraordi-
narily low packet loss probability to fully utilize the link
bandwidth [15].

To improve TCP throughput in abovementioned net-
works, we introduce an available-bandwidth-aware win-
dow size adjustment. The idea is to use the measurement
result to adjust the increasing speed of the congestion win-
dow size. When the available bandwidth is large, the win-
dow size increases quickly to make full use of available
bandwidth, and when the available bandwidth is small due
to the existence of other traffic, the window size increases
slowly. We call this type of ImTCP data transmission full-
speed mode.

In the congestion avoidance phase, we do not increase
the congestion window size (Cwnd) by one in every RTT.
Instead, we use the following adjustment.

Cwnd ← Cwnd + max

(
1, h · (1− Cwnd

V
)
)

V = A · RTT

In the equation, h (h ≥ 1) is a parameter that determines
how fast the window size increases. If h is large, ImTCP
can successfully utilize the bandwidth link, but it may en-
croach bandwidth share of other connections and cause un-
fairness in the network. When h is small or equal to 1,
ImTCP behaves the same as Reno TCP.

We use the topology in Figure 25 to investigate the
performance of ImTCP in full-speed mode. The ImTCP
sender and ImTCP receiver is connected by two routers
with Gigabit links. Therefore, the 500 Mbps link between

TCP Sender

TCP Receiver

1 Gbps

 10 ms

500 Mbps

50 ms

1 Gbps

 10 ms

Buffer size

 = 2000 packets

Fig. 25. High speed network topology

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300

#p
kt

s

Time (s)

HSTCP

RenoTCP

ImTCP full-speed

Fig. 26. Comparision of TCP window sizes

the two routers becomes the bottleneck link in the path. We
assume the buffer of the TCP receiver is large so the TCP
throughput can achieve 500 Mbps. The buffer size of the
router at the bottle neck link is also large (2000 packets).
We compare the throughput obtained when using ImTCP
in full-speed mode, High-Speed TCP (HSTCP) [15] and
Reno TCP for data transmission in the network.

Figure 26 shows the changes in the window size of TCP
connections. Reno TCP requires a long time to reach a
large window size. HSTCP increases the window size
quickly to fully use the free bandwidth, however, the in-
creasing speed is non-sensitive to the available bandwidth
such that packet loss events occur frequently. Therefore,
overall, the throughput of HSTCP is not as large as ex-
pected. ImTCP increases the window size quickly when
the window size is small and decreases the speed when its
transmission rate reaches the available bandwidth to avoid
packet losses. Therefore, the throughput of ImTCP is bet-
ter than the others.

Finally, we compare the throughput of ImTCP in full-

17

TCP Sender

TCP Receiver

10 Mbps

 10 ms

2 Mbps

100 ms

10 Mbps

 10 ms

Buffer size

 = 200 packets

Fig. 27. Wireless network topology

0

0.5

1

1.5

2

2.5

1 0.1 0.01 e-02 e-03 e-05 e-06 e-07

Th
ro

ug
hp

ut
 (M

bp
s)

Packet loss ratio

RenoTCPImTCP full-speed

TCP Westwood

Link Capacity

Fig. 28. TCP throughput in wireless network

speed mode with Reno TCP in a wireless network. We
insert a 2 Mbps network link in the path between a TCP
sender and TCP receiver to simulate a wireless link, as
shown in Figure 27. We vary the packet loss rate of the
network links and find that ImTCP can achieve a larger
throughput than TCP Westwood and Reno TCP when the
loss rate is high, as shown in Figure 28.

Parameter h is set to 100 in this case. When the packet
loss rate is high, a higher value for parameter h can help
ImTCP obtain higher available bandwidth. When the
packet loss rate is low, the value of h should be low so
that ImTCP will share bandwidth fairly with other traffic.
We will investigate an appropriate adaptive control mech-
anism for h in future works.

VI. CONCLUSIONS

In this paper, we introduced a method for measuring
the available bandwidth in a network path between two
end hosts using an active TCP connection. We first con-
structed a new measurement algorithm that uses a rela-

tively small number of probe packets yet provides peri-
odic measurement results quickly. We then applied the
proposed algorithm to an active TCP connection and in-
troduced ImTCP, a version of TCP that can measure the
available bandwidth. We evaluated ImTCP through simu-
lation experiments and found that the proposed measure-
ment algorithm works well with no degradation of TCP
data transmission speed. We also introduced examples of
ImTCP special transmission modes.

In future projects, we will develop new transmission
modes for ImTCP as well as evaluate the performance of
the modes introduced in this paper. We have implemented
a tool based on the measurement algorithm and found that
it yields results equal in accuracy to that of the simulations.
We will also consider a bandwidth measurement algorithm
that can be deployed at the TCP receiver.

REFERENCES

[1] R.Wang, G.Pau, K.Yamada, M.Sanadidi and M.Gerla, “TCP
startup performance in large bandwidth delay networks,” in Pro-
ceedings of INFOCOM ’04, 2004.

[2] D.Katabi, M.Handley and C.Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of ACM SIG-
COMM 2002, 2002.

[3] “The Internet Bandwidth Tester (TPTEST),” available at http:
//tptest.sourceforge.net/about.php.

[4] T. Oetiker and D. Rand, “Multi router traffic grapher,”
available at http://people.ee.ethz.ch/˜oetiker/
webtools/mrtg/.

[5] R.Anjali, C.Scoglio, L.Chen, I.Akyildiz and G.Uhl, “ABEst: An
available bandwidth estimator within an autonomous system,” in
Proceedings of IEEE GLOBECOM 2002, Nov. 2002.

[6] Srinivasan Seshan, Mark Stemm, and Randy H. Katabi, “SPAND:
Shared passive network performance discovery,” in Proceedings
of the 1st Usenix Symposium on Internet Technologies and Sys-
tems (USITS ’97), Dec. 1997, pp. 135–146.

[7] Bob Melander, Mats Bjorkman, and Per Gunningberg, “A new
end-to-end probing and analysis method for estimating bandwidth
bottlenecks,” in Proceedings of IEEE GLOBECOM 2000, Nov.
2000.

[8] Manish Jain and Constantinos Dovrolis, “End-to-end available
bandwidth: Measurement methodology, dynamics, and relation
with TCP throughput,” in Proceedings of ACM SIGCOMM 2002,
Aug. 2002.

[9] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell,
“PathChirp: Efficient available bandwidth estimation for network
paths,” in Proceedings of Passive and Active Measurement Work-
shop, 2003.

[10] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proceedings of the In-
ternet Measurement Conference, 2003.

[11] N.Hu and P.Steenkiste, “Evaluation and characterization of avail-
able bandwidth probing techniques,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 6, Aug. 2003.

[12] ”B. Gaidioz and R. Wolski and B. Tourancheau, “Synchroniz-
ing network probes to avoid measurement intrusiveness with the
network weather service,” in Proceedings of the 9th IEEE Sym-
posium on High Performance Distributed Computing, 2000.

18

[13] Robert L. Carter and Mark E. Crovella, “Measuring bottleneck
link speed in packet-switched networks,” Tech. Rep. TR-96-006,
Boston University Computer Science Department, Mar. 1996.

[14] H. Balakrishnan, N. Padmanabhan, S. Seshan and H. Katz, “A
comparison of mechanisms for improving TCP performance over
wireless links,” IEEE/ACM Transactions on Networking, vol. 5,
no. 6, pp. 756–769, 1997.

[15] S. Floyd, “Highspeed TCP for large congestion windows,” RFC
3649, Dec. 2003.

[16] M. Gerla, Y. Sanadidi, R. Wang, A. Zanella, C. Casetti and S.
Mascolo, “TCP Vegas: New techniques for congestion detection
and avoidance,” in Proceedings of the SIGCOMM ’94 Sympo-
sium, Aug. 1994, pp. 24–35.

[17] Stefan Savage, “Sting: A TCP-based network measurement tool,”
in Proceedings of USITS ’99, Oct. 1999.

[18] “Sprobe,” available at http://sprobe.cs.washington.
edu.

[19] J. C. Hoe, “Improving the start-up behavior of a congestion con-
trol sheme for TCP,” in Proceedings of the ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications. 1996, vol. 26,4, pp. 270–
280, ACM Press.

[20] Mark Allman and Vern Paxson, “On estimating end-to-end net-
work path properties,” in Proceedings of SIGCOMM ’99, 1999,
pp. 263–274.

[21] M.Gerla, B.Ng, M.Sanadidi, M.Valla, R.Wang, “TCP West-
wood with adaptive bandwidth estimation to improve effi-
ciency/friendliness tradeoffs,” To appear in Computer Commu-
nication Journal.

[22] “Network Test,” available at http://www-didc.lbl.gov/
NCS/netest/.

[23] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks and
R. Baraniuk, “Multifractal cross-traffic estimation,” in Proceed-
ings of ITC Specialist Seminar on IP Traffic Measurement, Mod-
elling, Management, Sept. 2000.

[24] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study of
available bandwidth estimation tools,” in Proceedings of Internet
Measurement Conference 2003.

[25] NS Home Page, “http://www.isi.edu/nsnam/ns/,” .
[26] “NLANR web site,” available at http://moat.nlanr.net/

Datacube/.
[27] Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols,

Addison-Wesley, 1994.
[28] A. Feldmann, C. Gilbert, P. Huang and W. Willinger, “Dynamics

of IP traffic: A study of the role of variability and the impact of
control,” in Proceedings of SIGCOMM ’99, 1999, pp. 301–313.

[29] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling, Wiley-Interscience, 1991.

[30] S. Jin, L. Guo, I. Matta and A. Bestavros, “TCP-friendly SIMD
congestion control and its convergence behavior,” in Proceedings
of ICNP’01: The 9th IEEE International Conference on Network
Protocols, Nov. 2001.

[31] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The im-
pact of multihop wireless channel on TCP throughput and loss,”
in Proceedings of IEEE INFOCOM 2003, Mar. 2003.

