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Abstract. We introduce a novel mechanism for actively measuring avail-
able bandwidth along a network path. Instead of adding probe traffic to
the network, the new mechanism exploits data packets transmitted in
a TCP connection (inline measurement). We call a modified version of
TCP that incorporates the proposed mechanism ImTCP (Inline mea-
surement TCP). ImTCP is based on Reno TCP, with a modification to
the sender program only. The ImTCP sender adjusts the transmission
intervals of data packets, then estimates available bandwidth of the net-
work path between sender and receiver utilizing the arrival intervals of
ACK packets. Simulations show that the new measurement mechanism
does not degrade TCP data transmission performance, has no effect on
surrounding traffic and yields acceptable measurement results in inter-
vals as short as 1-4 RTTs (round-trip times).

1 Introduction

Information concerning bandwidth availability in a network path plays an im-
portant role in adaptive control of the network. Network transport protocols
can use such information to optimize link utilization [1] or improve transmission
performance [2]. Service overlay networks in particular need fast and accurate
information on available bandwidth for optimal route selection [3]. Available
bandwidth information is also used in network topology design and is a key
factor in network troubleshooting when isolating fault locations [4].

Available bandwidth can be measured at routers within a network [5]. This
approach may require a considerable change to network hardware and is suit-
able for network administrators only. Some passive measurement tools can col-
lect traffic information at some end hosts for performance measurements [6], but
this approach requires a relatively long time for data collection and bandwidth
estimation. Exchanging probe traffic between two end hosts to find the avail-
able bandwidth along a path (an active measurement) seems the more realistic
approach and has attracted much recent research [7-12].

Sending extra traffic into the network is the common weakness in all active
available bandwidth measurement tools. Depending on the algorithm used, the
amount of required probe traffic differs. According to one study [12], Pathload [8]
generated between 2.5 to 10 MB of probe traffic per measurement. Newer tools



have succeeded in reducing this. The average per-measurement probe traffic
generated by IGI [11] is 130 KB and by Spruce [12] is 300 KB. A few KB of
probe traffic for a single measurement is a negligible load on the network. But for
routing in overlay networks, or adaptive control in transmission protocols, these
measurements may be repeated continuously and simultaneously from numerous
end hosts. In such cases, the few KB of per-measurement probes will create a
large amount of traffic that may damage other data transmission in the network
as well as degrade the measurement itself.

We propose an active measurement method that does not add probe traffic
to the network, with the idea of ”plugging” the new measurement mechanism
into an active TCP connection (inline measurement). That is, data packets and
ACK packets of an TCP connection are utilized for the measurement, instead
of probe packets. This method has the advantage of requiring no extra traffic to
be sent to the network.

The idea of inline measurement has previously appeared in traditional TCP.
To some extent, traditional TCP can be considered a tool for measuring avail-
able bandwidth because of its ability to adjust the congestion window size to
achieve a transmission rate appropriate to the available bandwidth. One version
of TCP, TCP Vegas [13], also measures the packet transmission delay. There
are, in addition, other tools that convert the TCP data transmission stack into
network measurement tools; Sting [14] (measuring packet loss) and Sprobe [15]
(measuring capacity of the bottleneck link) are typical examples.

As for the measurement of available bandwidth in an active TCP connection,
there is some related research. Bandwidth estimation in traditional TCP (Reno
TCP) is insufficient and inaccurate because it is a measure of used bandwidth,
not available bandwidth. Especially in networks where the packet loss probability
is relatively high, TCP tends to fail at estimating available bandwidth. The first
measurement algorithm applied in TCP used a passive method in which the
sender checks ACK arrival intervals to infer available bandwidth [16]. It is a
simple approach based on the Cprobe [7] algorithm, but does not yield good
results [17]. A similar technique is used in TCP Westwood [18] where the sender
also passively observes ACK packet arrival intervals to estimate bandwidth, but
the results are more accurate due to a robust calculation. However, because these
methods observe only ACK arrival intervals, changes in available bandwidth
cannot be detected quickly.

We deploy an active method for inline measurement. When the sender TCP
sends data packets, it also adjusts the packet transmission intervals, just as
active measurement tools do with probe packets. When the corresponding ACK
packets return, they are considered to be the echoed packets of probe traffic, such
as the ICMP packets of Cprobe [7]. The sender then utilizes the arrival interval
of these packets to calculate the available bandwidth. The sender thus collects
more information for a measurement and improved accuracy can be expected.

We previously introduced a measurement algorithm suitable for inline net-
work measurement [19] that generates periodic measurement results at short
intervals, on the order of several RTTs. The key idea in measuring rapidly is



to limit the bandwidth measurement range using statistical information from
previous measurement results.

In this paper, we introduce ImTCP (Inline measurement TCP), a Reno-based
TCP that includes the proposed algorithm for inline network measurement. We
introduce a packet store-and-forward system which allows ImTCP sender to
regulate the packet transmission time according to the measurement algorithm.
We then explain how to set important parameter to minimize the transmission
delay caused by the packet store-and-forward process. We evaluate the inline
measurement system using simulation experiments. The results show that the
proposed algorithm works with the window-based congestion control algorithm
of TCP without degrading transmission throughput.

2 Algorithm for Inline Measurement

We examined the current active measurement methods and found that none can
be used for TCP measurement of available bandwidth. These current tools can
be classified as probe rate type or probe gap type according to how they convert
information from the probe packet into a value of interest. Tools based on probe
rate, such as Cprobe, PathLoad, pathChirp [9] and netest [10] utilize changes
in the transmission rate of a group of packets to infer an available bandwidth
value. Such tools, except for Cprobe, provide good measurement results but
require many packets for one measurement. Because the TCP window size limits
the number of packets available for transmission at any one time, we need a
measurement algorithm using a smaller number of packets. Cprobe can yield a
result after only one group of probe packets, but transmits probe packets at the
highest rate possible by the sender host so it impacts other traffic in the network
if repeated continuously. Tools based on probe gap calculate available bandwidth
from the change in time gaps between successive probe packets. IGI/PTR and
Spruce are examples. This type of tool requires a smaller amount of probe traffic
because the calculation depends strongly on the time gaps of only some probe
packets. Such tools are weak if deployed in a TCP connection because the arrival
intervals of some ACK packets may not reflect the available bandwidth very well,
due to delays at the receiver or a difference in the size of data and ACK packets.
The calculation may then be based on inaccurate data leading to extremely poor
results.

Here, we summarize the measurement algorithm proposed for use in ImTCP.
The proposed algorithm is based on the probe rate method and a technique by
which to reduce probe traffic. The algorithm is described in detail in [19]. Mea-
surement packets are sent by a sender host to a receiver host, which immediately
transmits the packets back to the sender host. The sender host, using the arrival
intervals of the echoed packets, estimates the bandwidth available in the path.
When this algorithm is plugged into a TCP connection, the packets sent from a
receiver to a sender are replaced by ACK packets. During every measurement,
the proposed measurement algorithm searches for the available bandwidth only
within a given search range. The search range is a range of bandwidth that is



expected to include the current available bandwidth. By introducing the search
range, we can avoid sending probe packets at an extremely high rate. We can
also keep the number of probe packets for the measurement quite small. The
following are the steps of the proposed algorithm for one measurement:

1. Set the initial search range.
We first send a packet stream (a group of packets sent simultaneously) ac-
cording to the Cprobe algorithm to obtain a very rough estimation of the
available bandwidth and use the result to set the initial search range.

2. Actively probe the search range.
We divide the search range into multiple sub-ranges of identical width of
bandwidth. A packet stream is sent for each of the sub-ranges. The trans-
mission rates of the packets vary to cover the sub-range of the bandwidth
range. Simulation results in [19] show that in order to probe a search range,
only two to four packet streams are required, depending on the width of the
search range compared to the value of the last measurement result.

3. Find a sub-range which is expected to include the available bandwidth.
We then check to see if an increasing trend exists in the transmission delay
of each stream when the echoed packets arrives at the sender host. Because
the increasing trend of the transmission delay in a stream indicates that the
transmission rate of the stream is larger than the current available bandwidth
of the network path, we can choose a sub-range which is most likely to
include the correct value of the available bandwidths. That is, the sub-range
corresponding to the stream indicates the middle of streams which have
increasing trends and those which do not.

4. Determine the available bandwidth.
We examine the arrival rates of every two successive packets of the stream
corresponding to the sub-range chosen in Step 3. Since the arrival rate being
larger than the transmission rate indicates that the transmission rate of
the two packets is larger than the available bandwidth, we determine the
available bandwidth as the largest rate of the pairs, for which the arrival
rate is the same as the transmission rate.

5. Create a new search range and return to Step 2.
We use the 95% confidence interval of previous measurement results as the
width for the next search range, and the current available bandwidth is used
as the center of the search range. When the available bandwidth can not
be found within the search range (i.e., there is no appropriate sub-range in
Step 3), the network status may have changed greatly so that the available
bandwidth shift out of the search range. We then widen the search range in
the possible direction of change of the available bandwidth.

3 ImTCP: TCP with Inline Network Measurement

3.1 Overview

We next insert a measurement program into the sender program of TCP Reno
to create ImTCP sender. The measurement program is located at the bottom of



TCP layer

Application programs

IP layer

Network interface

Data packets

ACK

packets

Measurement 

program

ImTCP

buffer
Record the arrival time

Calculate results

TCP protocol processing
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the TCP layer as shown in Figure 1. When a new data packet is generated at the
TCP layer and is ready to be transmitted, the packet is stored in an intermediate
FIFO buffer (hereafter referred to as the ImTCP buffer). The measurement
program decides the time at which to send the packets in the buffer. On the
other hand, when an ACK packet arrives at the sender host, the measurement
program records its arrival time and passes the packet to the TCP layer for TCP
protocol processing.

When the current window size is smaller than the number of packets required
for a packet stream, ImTCP does not perform measurement, which means that
the program passes all data packets immediately to the IP layer. When the win-
dow size is sufficiently large, ImTCP performs measurements. The measurement
program waits until the number of packets in the ImTCP buffer is sufficient to
form a packet stream, and then sends the stream at the transmission rate deter-
mined by the measurement algorithm. The program sends all streams required
for a measurement (from two to four streams) and then calculates the measure-
ment result from the time intervals of the corresponding ACK packets. While
waiting for the ACK packets, the program passes all data packets immediately
to the IP layer. The measurement requires the longest time when the window
size is so small that only one measurement stream can be created in one RTT.
In this case, it requires up to four RTTs. Thus, a measurement result is yielded
in one to four RTTs.

The measurement program does not require any special changes in the TCP
receiver program, except that a probe packet must be sent back for each re-
ceived packet. Therefore, delayed ACKs must be disabled at the TCP receiver,
otherwise ImTCP will not perform measurement properly. For example, a CDN
company may disable delayed ACKs at all CDN servers so as to utilize ImTCP
in its own private network. When delayed ACKs can not be disabled at the TCP
receiver, in order to avoid degradation of the measurement accuracy, the mea-
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surement program should double the number of packets per stream and Step 3
of the proposed measurement algorithm should be changed so that three-packet
intervals are used rather than two-packet intervals.

3.2 Packet storing mechanism

The measurement program consists of three units. The ImTCP Buffer unit stores
TCP data packets and passes each packet to the IP layer under control of the
Control unit. ImTCP Buffer unit informs the Control unit when a new TCP
packet arrives. The Control unit determines when to send the packets stored in
the buffer. The Control unit receives search ranges from the Measurement unit
and creates the measurement streams. The Measurement unit checks the arrival
times of ACK packets and calculates the measurement results.

The Measurement unit is described in detail in Section 2. Here, we explain
the operation of the Control unit. The Control unit has four functional states,
STORE PACKET, PASS PACKET, SEND STREAM and EMPTY BUFFER,
as shown in Figure 2. The Control unit is initially in the STORE PACKET state.
In the following, we describe the detailed behavior of the Control unit in each
state.

– STORE PACKET state
• Start storing packets for the creation of measurement streams. Set the

packet storing timer to end packet storing after a certain length of time
T . The timer value T is discussed in Subsection 3.3.

• Go to the SEND STREAM state if the number of stored packets is m.
The value of m is discussed in Subsection 3.3.

• Go to the EMPTY BUFFER state if the current TCP window size be-
comes smaller than N or if the packet storing timer expires. N is the
number of packets needed to create a measurement stream.



– EMPTY BUFFER state
• Pass currently stored packets to the IP layer until the buffer becomes

empty.
• Return to the STORE PACKET state.

– SEND STREAM state
• Send a measurement stream. The transmission rate of the stream is de-

termined according to the measurement algorithm. During stream trans-
mission, packets arriving at the buffer are stored in the ImTCP buffer.

• After the transmission of the stream, if the stream is the last for a mea-
surement, go to the PASS PACKET state, if not, go to the EMPTY
BUFFER state.

– PASS PACKET state
• Pass every packet in the buffer immediately to the IP layer.
• Go to the STORE PACKET state when all ACK packets of the trans-

mitted measurement streams have arrived at the sender.

3.3 Parameter settings

– Number of packets in a measurement stream (N)
We must choose a small value for N in order to reduce the number of packets
stored in the ImTCP buffer for the measurement because storing a large
number of packets may slow data transmission. According to simulation
experiments in [19], the proposed measurement algorithm yields successful
measurement results with acceptable accuracy if 5 ≤ N . Therefore, we choose
N = 5.

– Number of packets required to start a measurement stream (m)
If we set m to be large, then the packets will be stored in the ImTCP
buffer for a long time, this slows the TCP transmission speed. If we set
m to be very small (for example, 1 packet), then the latter part of the
stream will not be available when the former part of the stream has already
been transmitted, in which case stream transmission fails. Therefore, m must
be just large enough to ensure successful transmission of the measurement
stream, and no larger. The algorithm for determining m is given below. In
the algorithm, m is adjusted according to whether or not transmission of the
previous measurement streams was successful.
• Set m = N initially. The minimum value of m is 2, and the maximum

value of m is N .
• If F successive measurements are completed successfully, and m is greater

than its minimum value of 2, then decrement m by 1. We set F to 2.
• If a stream creation fails, and m is less than its maximum value of N ,

then decrement m by 1 and create the stream again.
– Packet storing timer (T )

We determined that the time period required for N packets to arrive at
the ImTCP buffer is a good bound for the time waiting packets for a mea-
surement stream (T ). In fact, if the timer is too short, the probability for m
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packets to gather at the ImTCP buffer is low, so the program may frequently
fail to create packet streams. If the timer is too large, TCP data packets may
be stored for a long time, and consequently TCP transmission speed may
deteriorate.
The time for N packets to arrive at the ImTCP buffer can be considered
as the time for N successive ACK packets to arrive at the sender (Z), if
we suppose that one data packet is sent immediately when an ACK packet
arrives. We also assume a normal distribution of data packet RTT (X) with
average ARTT and variance DRTT , both of which can be inferred from the
TCP timeout function [20]. Note that the time from the sending of the first
of N successive data packets until the ACK of the last packet arrives at
the sender (Y ) is K plus the RTT of the last packet, where K is the time
from the sending of the first packet until the last packet is sent. Therefore,
the distribution of Y is N(ARTT + K, DRTT ). Since Z = Y − X, we can
obtain the distribution of Z, as N(K, 2 · DRTT ). Considering that the TCP
packet transmission rate is a rough estimate of the available bandwidth, we
approximate K by M

A (N − 1), where M is the packet size and A is the value
of available bandwidth which can be obtained from the measurement results.
From the distribution of Z we determine: T = M

A (N − 1) + 4 ·DRTT . Using
this value for the timer, the probability of N packets arriving at the ImTCP
buffer reaches approximately 98% due to the characteristics of the normal
distribution.

4 Simulation results

4.1 Measurement accuracy

Our first simulation in ns-2 uses the network model described in Figure 3. The
ImTCP sender sends data to the receiver and, at the same time, measures the
available bandwidth of the share link. The background traffic is made up of
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UDP packet flows. The correct value of the available bandwidth of the share
link is calculated as the share link capacity minus the total rate of background
traffic. During the simulation, the background traffic is changed so that the
available bandwidth is 60 Mbps from 0 sec to 50 sec, 40 Mbps from 50 sec to
100 sec, 60 Mbps from 100 sec to 150 sec, 20 Mbps from 150 sec to 200 sec and
60 Mbps from 200 sec to 300 sec. Figure 4(a) shows the measurement results
and correct values of the available bandwidth (A-bw). From the result, we can
conclude that the proposed algorithm can measure well the available bandwidth,
independent of the degree of change in available bandwidth. Figure 4(b) shows
the average measurement results for every 0.5 sec. For comparison, we also show
the measurement results of TCP Westwood (using the latest available version
[18]) under the same network conditions. The figure indicates that when the
available bandwidth increases suddenly, TCP Westwood yields results that are
lower than the true value because the data transmission rate cannot adjust as
rapidly and needs time to ramp up because of the self-clocking behavior of TCP.
In contrast, the measurement results of ImTCP can reflect well the changes in
the available bandwidth.

4.2 Effect of ImTCP on other traffic

We activate ImTCP and Reno TCP in turn on a network involving a large num-
ber of active Web document accesses, as shown in Figure 5(a). We use a large
buffer (1000 packets) in the router at the shared link to help ImTCP/Reno TCP
connections achieve high throughput because, here, the effect of ImTCP/Reno
TCP connections on Web traffic is the focus of the simulation. We run the simu-
lation for 500 sec and find that the average throughput of ImTCP is 25.2 Mbps
while that of Reno TCP is 23.1 Mbps. This indicates that the data transmis-
sion speed of ImTCP is almost the same as that of Reno TCP (but not exactly
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the same, due to the difference in the behaviour of TCP senders). Figure 6(a)
confirms that the ImTCP measurement result reflects well the change in the
available bandwidth.

We compare the effect of ImTCP and Reno TCP on Web page download
time (for Web clients) in Figure 6(b). This figure shows the cumulative den-
sity functions (CDFs) of Web page download time for Web clients. ImTCP and
Reno TCP have almost the same effect on Web page download time. This indi-
cates that inline measurement does not affect other traffic sharing the link with
ImTCP.

4.3 Bandwidth utilization and fair share

We use the network topology shown in Figure 5(b) with several ImTCP con-
nections sharing a bottleneck link. By using a small buffer (200 packets) in the
router at the bottleneck link to force conflict among connections, we vary the
number of ImTCP connections while observing the total throughput and fair-
ness among the connections. The line in Figure 7(a) denotes the Jain’s fairness
index [21] for the ImTCP connections. This index takes a value from 0 to 1;
the fairness of a share is considered to increase as its Jain’s fairness index ap-
proaches 1. We can see that the ImTCP connections share the bandwidth link
fairly. Figure 7(b) shows the link utilization of ImTCP as we vary the number of
connections. Also shown are the results when ImTCP is replaced by Reno TCP.
ImTCP and Reno TCP have almost the same link utilization regardless of the
number of connections.
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5 Conclusions and Future Works

In the present paper, we introduced ImTCP, a version of TCP that can measure
the available bandwidth. We evaluated ImTCP through simulation experiments
and verified that the proposed measurement algorithm works well with no degra-
dation of TCP data transmission speed. We are now implementing ImTCP in a
real environment. In the future, we will also investigate a bandwidth measure-
ment algorithm that can be deployed at the TCP receiver.
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