
An Inline Measurement Method for Capacity
of End-to-end Network Path

Cao Le Thanh Man, Go Hasegawa and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

E-mail: �mlt-cao, hasegawa, murata�@ist.osaka-u.ac.jp

Abstract— We previously proposed a new version of
TCP, called Inline measurement TCP (ImTCP), in [1].
The ImTCP sender adjusts the transmission intervals of
data packets and then utilizes the arrival intervals of ACK
packets for available bandwidth estimation. This type of
active measurement is preferred for TCP connections be-
cause the obtained results are as accurate as those of other
conventional types of active measurement, even though no
extra probe traffic is injected onto the network. In the
present research, we combine a new capacity measurement
function with ImTCP in order to enable simultaneous
measurement of both capacity and available bandwidth
in ImTCP. The capacity measurement algorithm is a new
packet-pair-based measurement technique that utilizes the
estimated available bandwidth values for capacity calcu-
lation. This new algorithm promises faster measurement
than current packet-pair-based measurement algorithms
for various situations and works well for high-load net-
works, in which current algorithms do not work properly.
Moreover, the new algorithm provides a confidence interval
for the measurement result.

I. INTRODUCTION

The capacity of an end-to-end network path, which is
considered to be the smallest capacity of network links
along a path, is the maximum possible throughput that
the network path can provide. Traffic may reach this
maximum throughput when there is no other traffic along
the path. The available bandwidth indicates the unused
bandwidth of a network path, which is the maximum
throughput that newly injected traffic may reach without
affecting the existing traffic. The two bandwidth-related
values are obviously important with respect to adaptive
control of the network. In addition, these two values
are often both required at the same time. Although
network transport protocols should optimize link utiliza-
tion according to capacity, congestion should be also
avoided through the use of available bandwidth infor-
mation. For route selection or server selection in service
overlay networks, information concerning both capacity
and available bandwidth offers a better selection than
either capacity or available bandwidth information alone.
For example, when the available bandwidth fluctuates
frequently and the transmission time is long, the capacity
information may be a better criterion for the selection.

However, when the available bandwidth appears to be
steady during the transmission, the available bandwidth
should be used for the selection. Moreover, the billing
policy of the Internet service provider is based on both
the capacity and the available bandwidth of the access
link that they are providing to the customer.

Several passive and active measurement approaches
exist for capacity or available bandwidth. Although ac-
tive approaches are preferred because of their accuracy
and measurement speed, sending extra traffic onto the
network is a disadvantage that is common to all active
measurement tools. For example, Pathload [2] generates
between ��� and �� MB of probe traffic per measure-
ment. The average per-measurement probe traffic gener-
ated by Spruce [3] is ��� KB. For routing in overlay
networks, or adaptive control in transport protocols,
these measurements may be repeated continuously and
simultaneously from numerous end hosts. In such cases,
the probes will create a large amount of traffic that may
degrade the transmission of other data on the network,
as well as the measurement accuracy itself.

We therefore propose an active measurement method
that does not add probe traffic to the network. The
proposed method uses the concept of ”plugging” the new
measurement mechanism into an active TCP connection
(inline measurement). We previously introduced ImTCP
(Inline measurement TCP) [1], a Reno-based TCP that
deploys inline measurement. The ImTCP sender not only
observes the ACK packet arrival intervals in the same
manner as TCP Westwood [4], but also actively adjusts
the transmission interval of data packets, in the same
way that active measurement tools use probe packets.
When the corresponding ACK packets return, the sender
utilizes the arrival intervals to calculate the measurement
values.

The available bandwidth measurement algorithm for
ImTCP is described in detail in [5]. For each measure-
ment, the ImTCP sender searches for the available band-
width only within a given search range. The search range
is a range of bandwidth that is expected to include the
current available bandwidth and is calculated statistically
from the previous measurement results. By introducing
the search range, sending packets at an extremely high

rate can be avoided. This also allows the number of
packets for the measurement to be kept small, so that
measurement is still possible when the TCP window
size is relatively small. The search range is divided into
multiple sub-ranges of identical width of bandwidth. For
each of the sub-ranges of the bandwidth, the sender
transmits a group of TCP data packets (a packet stream),
the transmission rate of which varies to cover the sub-
range. The sender then determines whether an increasing
trend exists in the transmission delay of packets in
each stream when the echoed (ACK) packets arrive at
the sender host. The increasing trend indicates that the
transmission rate of the stream is larger than the current
available bandwidth of the network path. This fact allows
the sender to infer the location of the available bandwidth
in the search range. The simulation results show that
the ImTCP sender can perform periodic measurements
at short intervals, on the order of several RTTs and
the measurements results reflect well the changes in the
available bandwidth of the network.

In the present paper, we introduce an inline measure-
ment algorithm for capacity for ImTCP. The proposed al-
gorithm utilizes the arrival intervals of the ACK packets
of packet pairs (PPs) that are sent back-to-back. In the
existing PP-based capacity measurement algorithm [6-
8], the PPs that are cut into by other packets from cross
traffic at the bottleneck link causes incorrect capacity
estimation and are therefore eliminated from the data
used in the calculation. Unlike previous algorithms, the
proposed algorithm in ImTCP can use these PPs for
capacity measurement, which enables ImTCP to collect
more information from PPs so that faster and more
accurate measurement can be expected.

The main concept of the proposed capacity measure-
ment algorithm of ImTCP is that the available bandwidth
information, which can be yielded periodically due to the
deployed available bandwidth measurement mechanism,
is exploited. The available bandwidth information is used
for estimation of the quantity of the cross traffic that is
cut in PPs at the bottleneck link so that the interval of
the PPs becomes usable for the capacity measurements.
The proposed algorithm also uses statistic analysis to
calculate the confidence interval of the delivered results.

Through simulation validations, we show that ImTCP
can deliver measurement results quickly, independent
of the characteristics of the network. In addition, we
find that the capacity measurement algorithm works
well in extremely high-load networks, in which current
measurement algorithms do not work well.

The remainder of this paper is organized as follows. In
Section II we discuss PP-based measurement techniques
used for inline meaurement. In Section III, we introduce
the proposed measurement algorithm for network capac-
ity. In Section IV, we evaluate its performance through

Case A)

Case B)

Case C)

Gap

Sender Bottleneck link Receiver

cross traffic

Fig. 1. 3 cases of how the spacing between a pair of packets changes
as they travel along a path.

simulation experiments. Finally, in Section V, we present
concluding remarks and discuss future projects.

II. PACKET-PAIR-BASED CAPACITY
MEASUREMENT ALGORITHMS

Currently there are various approaches for measuring
the capacity of an end-to-end network path. Some of
these approaches use packets of various size to probe
the network and infer the network capacity from the
difference in the transmission delays of packets of vari-
ous sizes [9]. Other approaches use the probe packets in
different TTLs to measure all link bandwidth, rather than
just the capacity of the bottleneck link [10-12]. These
approaches can not be used for inline measurement
because changes in TCP data packet size for the purpose
of measurement may cause severe deterioration in the
data transmission throughput of TCP. We found that only
packet-pair-based measurement can be used for inline
measurement because no changes in packet size or TTL
are required, whereas packets that are sent back-to-back
can be created with the current ImTCP structure without
requiring any changes.

A. Packet pair technique

The intuitive rationale of capacity measurement using
packet pairs is that if two packets are sent close enough
together in time to cause the packets to queue back-to-
back at the bottleneck link, then the packets will arrive
at the destination with the same spacing as when they
left the bottleneck link [9].

The intuitive rationale of capacity measurement using
packet pairs is that if two packets are sent close enough
together in time to cause the packets to queue back-to-
back at the bottleneck link, then the packets will arrive
at the destination with the same spacing as when they
left the bottleneck link [9]. The spacing will remain
unchanged because no link downstream of the bottleneck
link has a lower bandwidth than the bottleneck link, as
shown in Case A of Figure 1, which is a variation of a
figure taken from [13]. In this case, the capacity of the
bottleneck link (C) can be calculated by the Equation:

� �
�

���
(1)

where � is the size of the packet pairs, and ��� is the
time spacing of the two packets when arriving at the
receiver.

However, when a packet pair travels along the path,
two more situations can occur. As shown by Case B
in Figure 1, the two packets may be cut into by other
packets from cross traffic at the bottleneck link. The
result is that, the spacing between the two packets
becomes larger than expected. In this case, Equation 1
leads to an under-estimation of the capacity. In another
case, indicated by Case C in Figure 1, the packet pairs
may pass back-to-back through the bottleneck link, but
in a link downstream of the bottleneck link, the pairs
again get in queue, and the spacing between the two
packets is shortened. In this case, Equation 1 leads to
over-estimation.

Current PP-based measurement techniques use only
the PPs described in Case A to calculate capacity. These
techniques have various mechanisms for determining the
Case-A PPs from all of the received PPs. Some tools
assume a high frequency of appearance of Case-A PPs
and so search for these PPs from a frequency histogram
(Pathrate [6]) or a weighting function (Nettimer [7]).
CapProbe [8] repeatedly sends packet pairs until it
discovers a Case-A PP, based on the transmission delay
of the packets.

When the network path is almost empty, Case-A PPs
may appear with the highest frequency. However, when
other traffic appears on the network, the bottleneck link
is often congested, and so the probability of a Case-
B PP appearing is much higher than that of a Case-
A or Case-C PP. In this case, CapProbe will spend an
extremely long time for capacity searching, and Pathrate
and Nettimer will deliver incorrect estimations.

We therefore propose a new technique by which to
calculate capacity that can use either Case-A PPs or
Case-B PPs. This is possible because of the available
bandwidth information that is available in ImTCP.

B. Capacity calculation

Let us consider the timing of the arrival at the bot-
tleneck link of a packet pair (Figure 2). We assume
that the first packet arrives at �� and the second packet
arrives at ��. During the interval from �� to ��, packets
from other traffic may arrive at the bottleneck link.
The second packet (P2) must wait in the queue for the
processing of the packets from other traffic. Therefore,
the time spacing (Gap) of the packet pair after leaving
the bottleneck link is the total of the queuing time and
the processing time of the second packet. That is:

��� �
� � �

�
(2)

where � is the size of the packet and � is the amount of
the cross traffic that arrives at the bottleneck link during

t2
t1

P1P2

time

bottleneck
link

direction of packet
transmissioncross

traffic

cross
traffic

arriving
timing

average amount = L

Fig. 2. Arrival time at the bottleneck link of packet pairs and cross
traffic

the interval ���� ���. Supposing that the bottleneck link of
a network path is the link having the smallest available
bandwidth, we can then calculate the total transmission
rate of the cross traffic at the bottleneck link as: � �	,
where 	 is the current available bandwidth. Let Æ be
the time spacing of the packet pair upon arrival at the
bottleneck link (Æ � ��� ��). Then, the average value of
� is:

� � Æ�� �	� (3)

from Equation (2) and (3), we can write:

� �
� � Æ�� � 	�

���
� (4)

or
� �

� � Æ �	

���� Æ
� (5)

Equation (5) enables the calculation of capacity from the
PPs for both Case A and Case B. In the next section, we
propose the new capacity calculation algorithm based on
Equation (5).

III. INLINE MEASUREMENT ALGORITHM FOR

CAPACITY

A. Implementation of packet pairs in ImTCP

As introduced in a previous study [1], a measurement
program is inserted into the sender program of TCP Reno
to create an ImTCP sender. The measurement program is
located at the bottom of the TCP layer. When a new data
packet is generated at the TCP layer and is ready to be
transmitted, the packet is stored in an intermediate FIFO
buffer. The measurement program waits until the number
of packets in the intermediate buffer becomes sufficient
and then decides the time at which to send the packets
in the buffer in order to create measurement streams.
When no measurement stream is needed, the program
immediately passes all of the data packets to the IP layer.
In the previous version of ImTCP [1], we decided that the
program forms and sends one measurement stream for
the available bandwidth in each RTT in order to maintain
fairness with respect to traditional TCP Reno.

ImTCP sender receiver

Measurement

stream

Packet pair

Normal data packets

Normal data packets

Time

Fig. 3. Creation of packet pairs in ImTCP

In ImTCP, �–	 measurement streams are required for a
result of available bandwidth. As mentioned above, each
PP is formed and transmitted after each measurement
stream. Therefore, �–	 results of PP can be obtained
during the interval of two consecutive measurement
result of available bandwidth.

To the current system, we add the creation and trans-
mission of a PP just after the transmission of each
measurement stream, as depicted in Figure 3. Note that
during the transmission of a measurement stream, some
packets may arrive at an intermediate FIFO buffer, so
that there are usually a number of packets available in
the buffer just after the transmission of a stream [1].
Therefore, there is almost no waiting time required in
the creation of a packet pair. Therefore, there is almost
no effect on the performance of ImTCP by introducing
the capacity measurement algorithm.

In ImTCP, �–	 measurement streams are required in
order to determine the available bandwidth. As men-
tioned above, each PP is formed and transmitted after
each measurement stream. Therefore, 2 to 4 results for
PPs can be obtained during the interval of two consecu-
tive measurement results for available bandwidth.

B. Proposed measurement algorithm

Next, we explain the procedure for determining the
capacity from the measurement results of PPs using
Figure 4. The procedure involves the following steps:

� Grouping of packet pairs (PPs): PPs that sent
when the measured available bandwidth remains
unchanged are placed in the same group. The
average arival interval of PPs in a group, denoted by
���, is then calculated. To obtain a good average
value, the number of PPs in each group should
be enough large i.e. larger than or equal to �,
as determined herein. Therefore, after grouping, a
group having only one or two PPs will be merged
with a nearby group.

calculation

Final
result

1:1 N:1

All:1

grouping

observation

observation

statistical

analysis

statistical

analysis

PP

PP

PP

PP

PP

PP

PP

PP

Sample

Sample

Sample

Sample

Group

Group

Group

PPs in the same available

bandwith : 1

Fig. 4. Proposed algorithm

� Calculation: Based on the ��� value of a group, a
sample of capacity is calculated using the follow-
ing function.
If

	

�
Æ
� �

� �
�

���
(6)

otherwise,

� �
� � Æ �	

���� Æ
(7)

where 	 is the available bandwith of the group, and
� is packet size.
When the available bandwidth is approximately
equivalent to the rate of the PPs upon arriving at the
bottleneck link that is defined as �
Æ, the packets
may pass through the link without being cut into by
other packets (Case A). In this case, Equation (5)
is used. On the other hand, since when the arrival
rate of the PPs is much higher than the available
bandwidth, the probability is high that the PP is a
Case-B PP, Equation (1) is used.

� Statistical analysis:
– We form obsevations, each of which is

the average value of samples. should
be large enough so that each observation has
high accuracy. But when is too large, the
time required to finish an observation is long.
This means that the proposed algorithm can not
deliver the measurement results quickly. In the
present paper, based on empirical experiments,
we recommend � �.

– The average value of the observations are cal-
culated as the “final result”. The 90% confi-
dence interval is also calculated to show the
degree of fluctuation of the capacity.

IV. SIMULATION EXPERIMENTS

In this Section, we examine the measurement results
of the proposed capacity measurement algorithm through
ns-2 simulations [14]. We also compare the proposed
algorithm with two existing algorithms, CapProbe [8]
and Pathrate[6].

We used the simulation topology shown in Figure 5.
The transmission rate of Cross traffic 1 is fixed to 5
Mbps and that of Cross traffic 3 is fixed to 15 Mbps.
The packet size distribution of cross traffic is set to the
statistical results for the Internet traffic reported in [15].
The simulation time is 80 (s).

A. Effect of parameters

� Value of �
We set the bottleneck link capacity to 90 Mbps
and the transmission rate of Cross traffic 2 to 5
Mbps and examined the measurement results when
� � ��
 (Figure 6) and � = 0.8 (Figure 7).
These figures show the changes of the capacity
measurement results as the number of PPs sent for
the measurement increases. In this case, the load
on the bottleneck link is low, so the Equation (1)
should normally be used. The setting � � ��
 does
not allow the Equation (1) to be used so frequently
and therefore leads to a bad result. We see that in
this case � � ��� is a better setting.
We next show the case when capacity is 80 Mbps
and the rate of cross traffic 2 is 20 Mbps in Figure
8 (� � ���) and 9 (� � ���). In this case, the rate
of the cross traffic is high so Equation (2) need to
be used frequently. Therefore, a small value such as
0.6 gives incorrect results of the capacity, � � ���
is again a good setting in this case.
Thus, � � ��� is a suitable setting for the two cases
above. We also found that � � ��� is a good setting
in many other cases. Therefore, we use � � ��� in
the following simulations.
We next show the case when the capacity is 80
Mbps and the rate of Cross traffic 2 is set to 20
Mbps in Figure 8 � � ���) and 9 (� � ���). In
this case, the rate of the cross traffic is high, so
Equation (2) should normally be used. Therefore, a
small value, such as 0.6, gives incorrect results for
the capacity, and, again, � � ��� is a good setting
in this case. Thus, � � ��� is a suitable setting
for the two cases above, and we found that it is a
good setting in many other cases. Therefore, in the
following simulations, we used � � ���.

ImTCP

cross
traffic 1

cross
traffic 2

cross
traffic 3

100 Mbps
bottleneck
link

Sender Receiver

100 Mbps 100 Mpbs 100 Mbps

Fig. 5. Simulation topology

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400
M

bp
s

Number of PPs

results

Fig. 6. Measurement results for the proposed algorithm. � = 0.9.
Correct Capacity value =90 Mbps

� Value of N
Figure 10, 11 and 12 show the measurement results
when N is set to 1, 50 and 5, respectively. The
large confidence interval in Figure 10 indicates that
a small value of (� �) is not suitable. On
the other hand, Figure 11 indicates that a value
of (� ��) that is too large is unsuitable as
well, because in this case the time required for the
results to become stable is long. Figure 12 shows
the results with the proposed setting (� �), which
can provide fast and good results.

B. Comparision with CapProbe

We implement CapProbe algorithm into TCP to com-
pare the performance as fairly as possible. The different
point from the original algorithm of CapProbe proposed
in [8] is that the packet size is unchanged over the “runs”
in the algorithm. That is because in TCP connections,
changing the data packet size may cause bad effect on the
performance of TCP. In the following simulation results,
we show that the restriction on the packet size could be
the reason for the bad performance of CapProbe in the
following simulations. This means that CapProbe is not
suitable for inline measurement for capacity.

We implemented the CapProbe algorithm in TCP in
order to compare the performance with the greatest
possible impartiality. The difference from the original

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

results

Fig. 7. Measurement results for the proposed algorithm. � = 0.8.
Correct Capacity value =90Mbps

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

results

Fig. 8. Measurement results for the proposed algorithm. � = 0.6.
Correct Capacity value =80 Mbps (Measurement result is not correct)

0
20
40
60
80

100
120
140
160
180

0 200 400 600 800 1000 1200 1400

M
bp

s

Number of PPs

results

Fig. 9. Measurement results for the proposed algorithm. � = 0.8.
Correct Capacity value =80 Mbps)

0
20
40
60
80

100
120
140
160
180

1 500 1000 1500 2000

M
bp

s

Number of PPs

results

Fig. 10. Measurement results for the proposed algorithm. � = 1

0
20
40
60
80

100
120
140
160
180

1 500 1000 1500 2000

M
bp

s

Number of PPs

results

Fig. 11. Measurement results for the proposed algorithm. � = 50

0
20
40
60
80

100
120
140
160
180

1 500 1000 1500 2000

M
bp

s

Number of PPs

results

Fig. 12. Measurement results for the proposed algorithm. � = 5

0

5

10

15

20

50 100 150 200

M
bp

s

Number of PPs

CapProbe’s results

Fig. 13. CapProbe measurement results in small capacity, low
network load scenario

CapProbe algorithm proposed in [8] is that the packet
size remains unchanged over the ”runs” in the algorithm,
because in TCP connections, changing the data packet
size may have a bad effect on the TCP performance.
In the following simulation results, we show that the
restriction on the packet size may be the reason for
the poor performance of CapProbe in the following
simulations. This means that CapProbe is not suitable
for inline measurement of capacity.

1) Small capacity, low network load scenario: The
capacity is set to 10 Mbps, and the rate of Cross traffic
2 is set to 4 Mbps. Figure 13 shows that the CapProbe
only delivers a measurement result after sending 92
PPs. In contrast, the proposed algorithm delivers good
measurement results from 60 PPs, as shown in Figure
14. Moreover, the results obtained by CapProbe have a
very small confidence interval (approaching 0), because
when CapProbe successfully finds the PP in Case A, the
capacity can be calculated exactly. Another advantage of
CapProbe is that, compared with the proposed algorithm,
CapProbe is simple because it requires no complicated
calculations.

2) Large capacity, high network load scenario: The
capacity is set to 80 Mbps, and the rate of Cross traffic
2 is set to 60 Mbps. In a network with such a heavy
load, the proposed algorithm can perform well (Figure
15), whereas CapProbe can not deliver accurate results
(Figure 16), because, in this case, most of the PPs are
cut into by other traffic and there are no Case-A PPs.

C. Comparision with Pathrate

In order to accommodate Pathrate algorithm into TCP,
we used the interval of PPs delivered in ImTCP to form
the histogram to be used in Pathrate. Pathrate also re-
quires the measurement results of a packet train, referred
to as the Average Dispersion Rate (ADR) in the Pathrate

0

5

10

15

20

50 100 150 200

M
bp

s

Number of PPs

results

Fig. 14. Proposed algorithm measurement results in small capacity,
low network load scenario

0
20
40
60
80

100
120
140
160
180

1000 2000 3000

M
bp

s

Number of PPs

results

Fig. 15. Proposed algorithm measurement results in large capacity,
high network load scenario

0
20
40
60
80

100
120
140
160
180

1000 2000 3000

M
bp

s

Number of PPs

CapProbe’s results

Fig. 16. CapProbe measurement results in large capacity, high
network load scenario

TABLE I

MEASUREMENT RESULTS FOR PROPOSED ALGORITHM AND

PATHRATE

Cross traffic 2 results 90% conf. inter. Pathrate
75 81.91 33.89 77.00
60 84.20 43.1 77.00
40 86.80 46.83 80.00
10 80.43 50.01 80.00
0 81.35 12.11 100.00

algorithm [6]. However, integrating the packet train into
TCP is difficult because this has an adverse effect on the
performance of TCP. Therefore, we perform the packet
train measurement separate from TCP connection, in the
same environment as that in the TCP connection. The
result of ADR is then used to find the measurement result
for Pathrate.

1) Normal Internet traffic senario: We used the same
environment as that for the above-described simulations,
except that the transmission rate of Cross traffic 2 was
variable. Table I shows the measurement results for
Pathrate together with those for the proposed algorithm.
Both of these algorithms can deliver rather good mea-
surement results, independent of the rate of cross traffic.
We explain in detail the respective behaviors of these two
algorithms in Figure 17. In the figure, the ”Raw data”
line indicates the measurement results calculated using
Equation (1) that are used in Pathrate, and the ”Proposed
method” graph shows the ”observation” results obtained
using proposed algorithm. In this case, the red line has
a high peak near the correct value of 80 Mbps because
there are several packets in Case A. Therefore, Pathrate
can deliver good results. The observation results obtained
by the proposed algorithm show a concentration at 80
Mbps and so also delivers good results. When the cross
traffic is 0 Mbps, the value of ADR is 82Mbps. Among
the peaks of the ”Raw data” line that place in the area
of larger than 82 Mbps, the highest one is near 100
Mbps, which corresponds to the capacity of the link on
the downstream side of the bottleneck link, as shown
in Figure 18. Therefore, Pathrate delivers an incorrect
result, as shown in Table I.

2) Cross traffic with small packet size scenario:
We next show the case when the cross traffic contains
mainly packets of small size. We randomly varied the
packet sizes of the cross traffic within the range of
400 to 600 KB. In this case, since most PPs are cut
into by cross traffic packets, Pathrate should not work
very well. The performance of the proposed program in
this environment is also examined, and the measurement
results are listed in Table II. When the network load is
heavy, Pathrate fails to deliver good measurement results
because in this case there are almost no Case-A PPs. In
contrast, the proposed algorithm can deliver good results,

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

#r
es

ul
ts

Bandwidth (Mbps)

Raw data
Proposed method

Fig. 17. Measurement results for PPs and observations value by the
proposed algorithm. Cross traffic 2’s transmission rate = 60 Mbps

1

10

100

1000

0 20 40 60 80 100 120 140 160 180

#r
es

ul
ts

Bandwidth (Mbps)

Raw data
Proposed method

Fig. 18. Measurement results for PPs and observations value by the
proposed algorithm. Cross traffic 2’s transmission rate = 0 Mbps

regardless of the network load.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new capacity mea-
surement technique that is suitable for use in TCP con-
nections. In contrast to existing techniques, the proposed
mechanism uses available bandwidth information that
is available in ImTCP, which enables the utilization of
packet pairs that can not be used in existing techniques to
calculate the capacity. The simulation results show that,
the proposed technique can deliver measurement results
quickly, even for a heavily loaded network, in which
other techniques do not work well. We are currently
implementing ImTCP using the proposed technique on a
FreeBSD system. For the final-version of this paper, we
will include the implementation experiment results.

REFERENCES

[1] Cao Man, Go Hasegawa and Masayuki Murata, “Available
bandwidth measurement via TCP connection,” in Proceeding of

TABLE II

MEASUREMENT RESULTS OF PATHRATE AND THE PROPOSED

ALGORITHM (SMALL PACKETSIZE CROSS TRAFFIC)

Cross traffic 2 results 90% conf. int. Pathrate
75 78.98 15.27 49.00
60 79.63 18.81 50.00
40 77.38 20.97 80.00
10 79.56 41.35 80.00
0 86.27 28.91 100.00

the 2nd Workshop on End-to-End Monitoring Techniques and
Services E2EMON, Oct. 2004.

[2] M. Jain and C. Dovrolis, “End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with TCP
throughput,” in Proceedings of ACM SIGCOMM 2002, Aug.
2002.

[3] J.Strauss, D.Katabi and F.Kaashoek, “A measurement study
of available bandwidth estimation tools,” in Proceedings of
Internet Measurement Conference 2003.

[4] M.Gerla, B.Ng, M.Sanadidi, M.Valla, R.Wang, “TCP West-
wood with adaptive bandwidth estimation to improve effi-
ciency/friendliness tradeoffs,” To appear in Computer Commu-
nication Journal.

[5] Cao Man, Go Hasegawa and Masayuki Murata, “A new avail-
able bandwidth measurement technique for service overlay
networks,” in Proceeding of 6th IFIP/IEEE International Con-
ference on Management of Multimedia Networks and Services
Conference, MMNS2003, pp. 436–448, Sept. 2003.

[6] C. Dovrolis and D. Moore, “What do packet dispersion tech-
niques measure?,” in Proceedings of IEEE INFOCOM 2001,
pp. 22–26, Apr. 2001.

[7] K. Lai and M. Baker, “Nettimer: A tool for measuring bottle-
neck link bandwidth,” in Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, Mar. 2001.

[8] R. Kapoor, L. Chen, L. Lao, M. Gerla and M. Sanadidi,
“CapProbe: a simple and accurate capacity estimation tech-
nique,” in Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munications, 2004.

[9] K. Lai and M. Baker, “Measurering link bandwidths using a
deterministic model of packet delay,” in Proceedings of ACM
Sigcomm, Aug. 2000.

[10] Bruce A. Mah. Pchar, “http://www.ca.sandia.gv/
˜bmah/Software/pchar,”

[11] V. Jacobson, “Pathchar-A tool to infer characteristics of Internet
paths,” http://www.caida.org/tools/utilities/
others/pathchar/, 1997.

[12] A. B. Downey, “Using pathchar to estimate internet link char-
acteristics,” in Proceedings of ACM SIGCOMM, 999.

[13] K. Lai and M. Baker, “Nettimer: A tool for measuring bottle-
neck link bandwidth,” in Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, Mar. 2001.

[14] NS Home Page, “http://www.isi.edu/nsnam/ns/,”
[15] “NLANR web site,” available at http://moat.nlanr.

net/Datacube/.

