
A HYBRID VIDEO STREAMING SCHEME
ON HIERARCHICAL P2P NETWORKS

Shinsuke Suetsugu, Naoki Wakamiya and Masayuki Murata
Graduate School of Information Science and Technology, Osaka University

1–5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
email:{suetugu,wakamiya,murata}@ist.osaka-u.ac.jp

Koichi Konishi and Kunihiro Taniguchi
Internet Systems Research Labs., NEC Corporation

1753 Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8666, Japan
email: k-konishi@cq.jp.nec.com, k-taniguchi@da.jp.nec.com

ABSTRACT

Video streaming based on peer-to-peer networking
technology has received much attention from researchers
and developers. In this paper, we propose a new scheme
for scalable and robust video streaming on P2P networks.
Our scheme constructs hierarchical distribution trees from
peers and considers the physical structure of underlying
hierarchically organized networks, such as an enterprise
network. A centric server manages the construction of a
higher-level tree among branches, but lower-level trees are
built through local communication among peers. Peers re-
cover from faults by themselves, using partial information
they have. Through simulation and practical experiments,
we verified that our scheme can provide thousands or ten
thousands of users with continuous video streaming ser-
vices on an unreliable P2P network.

KEY WORDS
peer-to-peer, streaming, multicast

1 Introduction

Video streaming is a promising application that has been
widely diffused. However, for providing a considerable
number of users with streaming service of satisfactory
quality, a content provider must provide such infrastructure
as broader bandwidth, high-performance streaming servers
and storage, and mirror or proxy servers located close to the
users. IP multicast is an attractive technology that reduces
the bandwidth requirement, but it is not readily available in
the current Internet market due to tardy deployment.

Recently, users and service providers are bestowing
much attention on peer-to-peer networking technology and
its applications. The concept of P2P itself is not new, but
because of rapidly growing access-link bandwidth with low
or flat-rate service, and inexpensive, but high-performance
computers, it now has great potential for changing com-
munication paradigms of computer networks. Hosts called
peers who participate in P2P networks communicate with
each other to exchange information, cooperatively per-

form tasks, and build a fully-distributed information system
without mediation from servers.

In a P2P network, each peer behaves as a server, a
client, and a router. Thus, it is natural to employ P2P net-
working technology to realize so-called application-level
multicasting where peers relay received data to other peers
and organize multicast trees. There has been much re-
search on such application or user-level multicasting such
as [1, 2, 3, 4]. They constructed multicast trees on an over-
lay network of end systems or peers in P2P networks. To
avoid the waste of bandwidth, they considered characteris-
tics of underlying physical networks consisting of physical
links, routers, and hosts. Complete or partial information of
physical networks is given in advance or obtained through
active or passive measurements.

In this paper, we also consider another scheme for
constructing distribution trees in an enterprise network for
a video streaming service. In our mechanism, we con-
struct a hierarchical distribution tree in accordance with
the structure of an underlying physical network. More
specifically, we assume an enterprise network or a net-
work of a large organization that usually has a hierarchi-
cal structure of branch networks and division networks.
An enterprise network consists of branch networks con-
nected to each other through dedicated channels provided
by VPN services. A branch network further consists of
division networks in which the propagation delay among
any arbitrary two peers is small and sufficient bandwidth
is available. By assuming such structured networks, our
scheme can quickly build distribution trees without time-
consuming measurement and complicated routing control.
A server has the minimum knowledge about branches and
divisions given by a service administrator in advance. Tree
construction is performed in a distributed and scalable way
where no servers or peers need to have complete knowl-
edge of a distribution tree. When a peer leaves a tree or a
router and a link fails, a child peer of a failed peer or peers
behind a failed network facility recover the tree in a dis-
tributed way based on information they obtained in joining
the tree. We propose a scheduling algorithm for continuous
video play-out, a tree construction mechanism for physi-

cally suitable distribution trees, and a fault recovery mech-
anism that maintains video streaming service on unreliable
P2P networks.

The rest of the paper is organized as follows. We
describe our proposal in section 2. We first evaluate our
scheme through simulation experiment in section 3. Then
we show results of practical experiments in section 4. Sec-
tion 5 summarizes the paper and describes some future
works.

2 A hybrid video streaming scheme

In this section we describe our algorithm and mechanisms
for video streaming services on enterprise P2P networks.
Our system consists of a video streaming server (ORG)
from which video streams are distributed, a scheduling
server (SS) which schedules video distribution using pyra-
mid broadcasting protocol (PB) [5], a global tree server
(GTS) which manages video distribution trees, and peers.
We note that one equipment can play more than one part
among these; ORG, SS, and GTS. Peers constitute a distri-
bution tree on a segment-by-segment and slot-by-slot basis.
The root of a distribution tree is ORG. Internal nodes and
leaves of a distribution tree are peers. Edges are logical
links; specifically, TCP sessions in our system are estab-
lished between pairs of peers.

2.1 Overview of a hybrid streaming scheme

A peer who wants to watch a video stream first sends
a request message called aschedule request to SS. Our
scheme employs the pyramid broadcasting protocol (PB)
for bandwidth-efficient video distribution [5]. When the
duration of the first segment isW [sec], a video stream is
divided into segments such that the duration of thei-th seg-
ment becomesαi−1W . Each segment is repeatedly broad-
cast on a dedicated channel atα times the rate of encoding
rateb. An example ofα = 2 is shown in Fig. 1. Each seg-
ment duration is called a slot. Among schemes for near-on-
demand video distribution, we adopt PB for its simplicity,
but our mechanism can be applied to systems with other
schemes such as Skyscraper [6]. For every segment, SS de-
termines a time slot during which a peer receives it. Details
of our scheduling algorithm will be given in subsection 2.2.

To participate in a distribution tree and receive the
first segment at the specified slot, a peer sends a request
message called aparticipation request to GTS. For the fol-
lowing segments, type and destination of requests differ
among peers depending on their roles in the tree of the pre-
ceding segment. Distribution trees are hierarchically con-
structed from peers in segment-by-segment and slot-by-slot
fashions, considering the physical structure of the underly-
ing networks. The root of a tree is ORG and internal nodes
and leaves are peers that are assigned to the same slot of
the same segment. The mechanism for tree construction
will be given in Subsection 2.3.

t

...

...

...

request 1

request 2

Segment 1
2b

Segment 2

Segment 3

Segment 4

Segment 5

Slot
 1

Slot
 2

Slot
 3

Slot
 4

Slot
 5

Slot
 6

Slot
 7

Slot
 8

Slot 1 Slot 2 Slot 3 Slot 4

Slot 2Slot 1 Slot 3

Slot 1 Slot 2

Slot 1

2b

2b

2b

2b

Segment 1b

playout
send

b

Segment 2 Segment 3

Segment 1 Segment 2

send

Segment 3

broad-
casting

W/2

Figure 1. Examples of slot assignment

Once a tree is constructed, it should be maintained for
the duration of the slot so that all participating peers can
successfully receive the segment. However, since leaves
and internal nodes are peers which are inherently unreli-
able, they often give up their roles in a distribution tree
during video distribution. The video distribution is dis-
turbed, when a peer accidentally leaves a distribution tree
due to system failure or user interruptions, a link breaks, or
a router halts. We call thisfault. When such faults occur,
a fault recovery mechanism described in Subsection 2.4 is
conducted to recover the video distribution.

2.2 Scheduling algorithm

For the first segment, a slot which starts the earliest is as-
signed to a peer in PB. However, since a video distribution
tree for the slot is constructed through peer-to-peer com-
munications, it takes some time before a tree is prepared for
video distribution. Thus, if SS assigns a slot that starts im-
mediately after the reception of a schedule request, a peer
won’t be prepared in time, and so it fails to receive the first
segment. We definereception time for each slot of the first
segment during which SS accepts schedule requests for the
slot. The duration of each reception time isW/α seconds
long and beginsC seconds ahead of the slot.C, called
reserved time, is determined long enough for a peer whose
schedule request is accepted at the end of the reception time
to participate successfully in a corresponding distribution
tree before the beginning of the slot.

For succeeding segments, according to PB, slots are
assigned to a peer so that it receives segments one-by-one
from the beginning of the stream to the end. For exam-
ple, a peer, whose schedule request denoted withrequest
1 in Fig. 1, is assigned those slots indicated with dot-
ted rectangles. However, for high-quality and continuous
video streaming on unreliable P2P networks, SS assigns
two overlapping slots of the first and second segments to a
peer when the beginning of those slots are the same. For
example, a peer withrequest 2 is assigned slots 5, 4, 3, 3,
and 3 for segments 1, 2, 3, 4, and 5, respectively, in an orig-
inal PB. On the other hand, in our mechanism, slots 5, 3, 3,
3, and 3 are assigned to the peer. A peer with original PB
cannot provide fault lasting for a long time on the first and

ORG

LTS

LTS LTS LTS LTS

LTS

LTS

STS

STS STS

STS

NP

branch subnet

NP NP

branch

subnet

Figure 2. Hierarchical Distribution Tree

second segments, whereas a peer using our algorithm can
deposit much data at the early stage of the video distribu-
tion, sacrificing bandwidth.

To join a distribution tree and receive segmenti on
slot si which starts at timeti, a peer must send a participa-
tion request during a period fromt i −W/α−C to ti −C.
As a response to a schedule request, SS makes a list of slot
identifierssi on which a peer must receive segmenti and
their corresponding timeti −W/α−C from which a peer
must issue a corresponding participation request.

2.3 Tree construction mechanism

A video distribution tree is hierarchically constructed to
consider the physical structure of the enterprise and orga-
nized networks as shown in Fig. 2. An enterprise network
consists of medium networks each of which corresponds to
a branch office of a corporation, a faculty of a university,
or a stronghold of an organization. A branch network is
made of further smaller sub-networks of divisions, depart-
ments, and groups. In constructing a logical distribution
tree for a slot of a segment, for each branch a representa-
tive peer called a Local Tree Server (LTS) is chosen among
peers which belong to the branch and are assigned to the
slot. An inter-branch distribution tree is constructed among
LTSs rooted at ORG. A branch network consists of one LTS
and subnets. For each subnet, a representative peer called
a Subnet Tree Server (STS) is chosen among peers that
are assigned to the slot in the corresponding sub-network,
except for an LTS. One STS among all of the STSs in a
branch is connected to the LTS as a direct child. We call a
peer connected to a parent by a different type a direct child
of the parent. An inter-subnet tree is organized by STSs
whose roots are a direct child of the LTS. A subnet further
consists of one STS and normal peers (NPs). Peers which
are neither LTS nor STS are called NPs. The root of an
inter-NP tree is an NP, which is a direct child of the STS
of the subnet. Independent of types as LTS, STS and NP,
peers and ORG have a limitation on the number of children
called thefanout, in accordance with processing capabil-
ity, the performance of the network interface, and available
bandwidth.

In our scheme, a peer first sends a schedule request
to SS and receives a schedule. It immediately sends a par-
ticipation request to GTS to join a distribution tree and re-

ceives the first segment. A peer joins a distribution tree by a
recursive mechanism such as in TBCP [7] and HMTP [8].
After receiving a request, GTS determines the peer type
among LTS, STS, and NP and introduces a temporary par-
ent. For this purpose, GTS maintains anaddress table for
each slot of each segment. An address table consists of the
information of branches and subnets. One simple and easy
way to identify a branch and subnet to which a requesting
peer belongs is to use an IP address. In such cases, for
each branch, a name, a network address of the branch, an
IP address of the LTS, and information about subnets in
the branch are maintained. For each subnet, a network ad-
dress of the subnet and an IP address of the STS are main-
tained. Branch names, network addresses of branches, and
network addresses of subnets are given by a system admin-
istrator beforehand. We can easily obtain those information
from a network management system, e.g., LDAP server. IP
addresses of LTSs and STSs are initially set to 0.0.0.0. GTS
knows LTS and STS, but does not have any further detailed
information such as the topology of trees.

If an LTS is not yet assigned to a branch to which a
requesting peer belongs, GTS appoints the peer to be the
LTS. GTS updates an address table and informs the peer
of its peer type, i.e., LTS, and the IP address of ORG as a
temporary parent. If an LTS already exists, but there is no
STS in the peer’s subnet, the peer becomes an STS. In this
case, GTS updates an address table and informs the peer
of its peer type, i.e., STS, and IP address of the LTS as a
temporary parent. Otherwise, GTS appoints the peer as NP
and introduces an STS as a temporary parent.

On receiving a response from GTS, a peer tries to con-
nect to an informed temporary parent by sending aconnec-
tion request. On receiving a request, a temporary parent de-
cides whether to accept the peer as its child in accordance
with peer types and the number of children. All peers par-
ticipating in a distribution tree maintain a list of children.
Consider the case where peer A receives a request from
peer B. Peer A compares its type with peer B’s type. If they
are the same, they belong to a tree of the same level. Peer
A accepts peer B as its child if the number of its children
is smaller than the fanout. If their types are the same but
the number of children already satisfies the fanout, peer A
introduces one of its children as a new temporary parent to
peer B. A new temporary parent is chosen among children
in a round-robin fashion. As a result, a distribution tree is
constructed in breath-first order, and the segment transmis-
sion delay from ORG to peers can minimalized. If their
types are different, it means that peer A is either an LTS
or an STS and the requesting peer is either an STS or an
NP, respectively. If peer A does not have a direct child in
its lower-level tree, it accepts peer B as a direct child. If
there already exists a direct child, peer A introduces the di-
rect child to peer B as a new temporary parent. If peer B
is LTS, ORG is a temporary parent, and a decision is made
based on the number of children and the fanout. Eventu-
ally, a requesting peer can successfully be connected to a
participating peer in a distribution tree through being intro-

duced to temporary parents. When it participates in a tree,
it has a list of ancestors or temporary parents to which it
tried to connect.

To join a distribution tree and receive the succeeding
segmenti (i ≥ 2) on slotsi, a peer sends a request, indicat-
ing a video identifier, a segment identifier, a slot identifier,
and its own identifier, i.e., IP address, duringt i−W/α−C
andti − C. The destination and type of a request depends
on the type of a peer in a distribution tree of the preceding
segmenti − 1. The order of joining distribution trees fol-
lows the order of the segment identifier. Thus, even if an
assigned schedule indicates that a peer has to receive both
of the first and second segments at the same time, it first
finishes joining a tree for the first segment before sending
a request for the second segment.

A peer that was NP in the tree of the preceding seg-
menti − 1 considers STS in the tree of segmenti − 1 as
a temporary parent. When a former STS also plays the
role of STS in the current segment, an inter-NP tree is
constructed through communications within a subnet. It
sends connection request to the STS at the random instant
from ti − W/α − C to ti − C, except for the case when
ti −W/α−C has passed where a peer sends a connection
request immediately. If a former STS is demoted to NP in
a tree of segmenti, it introduces a new STS to a requesting
peer. If a former STS is promoted to an LTS in a current
tree, it tells a requesting peer to send a participation request
to GTS recognizing a new STS. If a peer was either of LTS
or STS in a tree for segmenti − 1, it sends a participation
request to GTS atti − W/α − C or immediately if the in-
stant has passed; it joins a tree as fast as possible to answer
requests from NPs.

2.4 Fault recovery mechanism

When a peer cannot communicate with a temporary parent
in joining a distribution tree, a peer participating in a tree
leaves during tree construction or segment distribution, or
a network facility such as a link and a router fails, the video
distribution is disturbed. When such faults occur, a distri-
bution tree is re-constructed by the fault recovery mecha-
nism described in this subsection. We assume that those
faults occur without any notification. They are detected by
requesting peers, child peers, and parent peers. We call a
peer which becomes unavailable a failed peer. A parent
peer only removes a failed peer from its children list. Peers
who are trying to connect to a failed peer and the children of
a failed peer conduct the fault recovery. As a result of fault
recovery, a peer which detected a fault would be promoted
from NP to STS or from STS to LTS. It is also detected as
a fault by its children.

If the types of a peer which detects faults and that of
a failed peer are the same, the peer sends a connection re-
quest to its grandparent found in an ancestor list. The failed
peer is removed from the list. Then, the same process as in
the tree construction is performed, and the peer can join
the tree again. In cases where the grandparent has already

left the tree, the peer removes the grandparent from the list.
Then it tries to send a connection request to a peer newly
located at the bottom of the list, which used to be a great-
grandparent before the fault. This visiting ancestors pro-
cedure is repeated until it can successfully be accepted as
a child or until it is introduced to a new temporary parent.
If an ancestor list becomes empty during fault recovery, a
peer sends a participation request to GTS. It also sends no-
tification to inform GTS of the failure of the LTS or the
STS, which is located at the top of the list, so that GTS can
update an address table. On the contrary, different types
means that a failed peer is LTS or STS. A peer sends a par-
ticipation request and a failure notification of the server to
GTS.

When a peer successfully re-joins a distribution tree,
it resumes receiving the segment from a new parent. Ev-
ery peer deposits segment data for a while after it finishes
watching the segment so that afterward it can provide a new
child with the requested portion of the segment.

3 Simulation experiments

We evaluated our scheme from a viewpoint ofload of GTS,
load of peers, initial waiting time, fault recovery time, and
freeze time. The load of GTS is the number of participa-
tion requests and notifications of failure of LTS and STS
received by GTS per second. The load of the peers is the
maximum among the number of connection requests that
every peer, independent of its type, receives per second.
The time from when a peer sends a schedule request to SS
to when it begins to receive the first segment is called the
initial waiting time. Fault recovery time corresponds to the
time from when a peer detects a fault to when it is con-
nected to a new parent peer. The total periods of starvation
of buffer is called freeze time.

3.1 Simulation Conditions

In the simulation experiments in this section, we assumed
that there were five branches in an enterprise network and
that each branch had five divisions. Each peer belonged
to a randomly chosen subnet. The propagation delay be-
tween an arbitrary peer and any of GTS, ORG, and SS was
set at 200 msecs. Propagation delay between two arbitrary
peers was set at 10 msecs independent of their locations in
a branch. The fanout was three for all peers and ORG, but
every peer could additionally have one direct peer. Only
one video stream was available, which was coded at the
constant rate of 1 Mbps and it was 186 seconds long. We
employed PB withα = 2. A video stream was divided into
five segments whose first segment was six seconds long.
Consequently, the length of the reception time was three
seconds. We set the reserved timeC at one second.

The number of new schedule requests per second
calledarrival rate was set at 30. Since the reception time
lasts three seconds, the number of peers in a distribution

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

lo
ad

 o
f G

T
S

time (sec)

Figure 3. Transition of load of GTS

tree of the first segment amounts to 90 on average. Conse-
quently, the number of peers participating in a tree of the
second, third, fourth, and fifth segment becomes 180, 360,
720, and 1,440, respectively. It means that at an arbitrary
instant, the number of peers participating in video distri-
bution is 2,790 on average. We further assumed that every
peer left the service without any notification at the proba-
bility of 0.004 at every second, even if it was on the way
to participating in a tree, ready for the reception of a seg-
ment, receiving a segment, and trying recovering from a
fault. Among 2,790 peers, about 11 peers left the service
every second on average. Initial waiting time and freeze
time of peers which left the service were not taken into ac-
count when we examined those measures.

We started each simulation experiment from a system
with only ORG, GTS, and SS. We considered the instant
when 144 seconds had passed since the first schedule re-
quest was sent as zero to eliminate the influence of initial
conditions on evaluations. Every experiment lasted 1,440
seconds. In the following, values that averaged over ten
simulation experiments are used.

3.2 Simulation results

Figure 3 illustrates the transition of the load of GTS. Since
peers which were either STS or LTS in the preceding tree
send participation requests to GTS atti − W/2 − C for
segmenti on the assigned slot, we observe periodic spikes
in the figure. The interval between the most highest spikes
is 48 seconds, which corresponds to the instants when the
beginnings of slots of all five segments are synchronized.

The highest value of the load of peer was 49, which
corresponds to that of STS. On the other hand, an NP which
participates a distribution tree as a leaf node does not re-
ceive any connection request. The average load was 4.8.

Since the inter-arrival time of two successive sched-
ule requests follows uniform distribution, the resultant ini-
tial waiting time disperses almost uniformly. The average
waiting time was 2.94 seconds. The maximum time of 5.35
seconds consists of a one-way propagation delay of 200
msecs from a peer to SS for schedule request, four seconds
of W/2 + C, and the segment transfer delay of about 200

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 0.2 0.4 0.6 0.8 1

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

freeze time (sec)

Figure 4. Distribution of freeze time

msec from ORG to the peer, where the peer is assumed
to be LTS or STS. In addition, about one second is spent
recovering from faults which accidentally occurred during
the tree construction. The minimum time was 1.44 seconds.

Figure 4 depicts the distribution of fault recovery
time. Among1, 440 × 30 = 43, 200 peers joined the ser-
vice, about 20,000 peers completed watching a whole video
stream. The figure shows that about 100 peers, only 0.5%
of 20,000 peers, experienced freezes due to the starvation
of buffer. The maximum freeze time that one peer suffered
was 0.98 seconds, short enough for users to tolerate.

We also conducted simulation experiments with a va-
riety of parameter settings, although details are omitted due
to space limitations. For example, with an arrival rate of
70, where 6,510 peers were participating in the service at
an arbitrary instant, the load of GTS and peers increased
in proportion to the rate. However, the average of fault re-
covery time decreased with the increase in the arrival rate
because most faults occurred in inter-NP trees. It took only
20 msecs if a peer is accepted by its grandparent. When the
probability of failures increased to 0.005, with which only
39% of 43,200 peers watched a whole stream, the maxi-
mum fault recovery time increased to 2.2 seconds. As a
result, the maximum freeze time also increased, but was
still smaller than one second.

4 Practical experiments

To verify the practicality of our scheme, we implemented
our proposed algorithm and mechanism on an experimental
environment and conducted several experiments. Due to
space limitations, only some results will be shown.

We simulated a network with thousand NPs in a sub-
net by 19 hosts as depicted in Fig. 5. According to our tree
construction mechanism, the depth of the tree becomes ten
when the maximum fanout is two. For the last thousandth
peer to join the tree, it takes1,000

417.12 + 8
417.12 = 2.42 seconds

on average except for the propagation delay, since requests
were handled by STS one-by-one and the peer tried eight
temporary parents. The value 417.12 is the average num-
ber of request that our peer can handle per second. On the
other hand, the time required for a segment to traverse an

le
ve

l 1
0

le
ve

l 1
0

2
1

3

4
6

8
10

12
14

16
18

5
7

9
11

13
15

17
19

le
ve

l 6
le

ve
l 6

le
ve

l 5
le

ve
l 5

le
ve

l 4
le

ve
l 4

10241024

Figure 5. Distribution tree for practical experiments

NP tree and reach the tenth level ranged from 223 to 711
msecs in our experiments in a local area network. Those
results mean that reserved timeC should be set larger than
2.2 seconds so that the last peer has time to join a tree.

We also evaluated the initial waiting time. We ran-
domly generated a thousand schedule requests and ob-
served the time from when a play request was issued to the
beginning of the video play-out. Depending on the instant
that the service was requested by a user, the initial waiting
time varies. However, a user could begin to watch a video
in at most four seconds.

In the case of a single fault in an NP tree, the time
from when a peer detects a fault in its parent to when it
resumes receiving the stream from its grandparent ranged
from 4 to 7 msecs. The average was 5.8, an acceptably
small enough number. We considered the worst case sce-
nario on an NP tree of 1,023 peers in which all the peers
above nine-th level and STS die all at once. Detecting the
fault of a parent, each peer on the tenth level first sends
a connection request to its grandparent. After a while,
it recognizes a fault of the grandparent, since it cannot
communicate with the grandparent. Then it visits a great-
grandparent. Those processes are repeated until a peer de-
tects a fault in the STS. Eventually, all 512 peers on the
tenth level send participation requests to GTS at almost the
same time. The first peer is appointed the new STS and is
introduced to the LTS. The rest of the peers are introduced
to this new STS. Finally, peers construct a new distribution
tree. The time required for the last peer to re-join the tree is
1,622 msecs except for propagation delays. It follows that
a user does not notice the disaster as long as a peer deposits
video data of more than about two seconds in its buffer.

5 Conclusion

In this paper, we proposed a hybrid scheme for video
streaming on enterprise P2P networks where distribution
trees are constructed considering the physical structure of
underling networks. Our scheme can provide thousands
or ten thousands of users with video streaming services
in about five seconds and only 0.5% of users experience
freezes less than one second.

In many other papers, they distribute video streams on
flat P2P networks. For that reason, it is required to measure
and estimate characteristics of network structures for con-
structing distribution trees considering underlying physical
networks. However, it causes large overhead. Even if they
can measure it with relatively light loads, they cannot es-
timate the structures instead, and their distribution trees
are hardly regarded as to be adopted to physical networks.
Our proposal can be adopted only to structured networks,
which enables us to construct robust distribution trees eas-
ily and quickly. In addition, our proposal can use other bet-
ter proposal for constructing inter-NP trees if each subnet
has many NPs.

However, we also found an instantaneous increase in
the load on the GTS. We need an improved mechanism
to distribute the load efficiently while retaining the ad-
vantages of the distributed tree construction. In addition,
some preliminary experiments show that redundant flow
exists on inter-branch links. We propose a new algorithm
to build bandwidth-efficient, low-cost inter-branch distri-
bution trees.

References

[1] A. Nicolosi and S. Annapureddy, “P2PCAST: A Peer-
to-Peer Multicast Scheme for Streaming Data,” inPro-
ceedings of First IRIS Student Workshop, Aug. 2003.

[2] V. N. Padmanabhan, H. J. Wang, and P. A. Chou,
“Resilient Peer-to-Peer Streaming,” inProceedings of
IEEE ICNP 2003, Nov. 2003.

[3] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhar-
gava, “PROMISE: Peer-to-Peer Media Streaming Us-
ing CollectCast,” inProceedings of ACM Multimedia
2003, pp. 45–54, Nov. 2003.

[4] A. El-Sayed, V. Roca, and I. Rhone-Alpes, “A Sur-
vey of Proposals for an Alternative Group Communi-
cation Service,”IEEE Network Magazine special Issue
on Multicasting, Jan. 2003.

[5] S. Viswanathan and T. Imilelinski, “Pyramid Broad-
casting for Video on Demand Service,” inProceedings
of SPIE MCNC, vol. 2417, pp. 66–67, Feb. 1995.

[6] K. A. Hua and S. Sheu, “Skyscraper Broadcasting: A
new Broadcasting Scheme for Metropolitan Video-on-
Demand System,” inProceedings of SIGCOMM ’97,
pp. 89–100, June 1997.

[7] L. Mathy, R. Canonico, and D. Hutchison, “An Over-
lay Tree Building Control Protocol,”Lecture Notes in
Computer Science, vol. 2233, pp. 78–87, 2001.

[8] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A
Framework for Delivering Multicast to End Users,” in
Proceedings of INFOCOM 2002, June 2002.

