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Abstract. In this paper, we propose a novel congestion control mechanism of
TCP, by using an inline network measurement technique. By using information
of available bandwidth of a network path between sender and receiver hosts, we
construct quite a different congestion control mechanism from the traditional
TCP Reno and its variants, based on logistic and Lotka-Volterra models from
biophysics. The proposed mechanism is intensively investigated through anal-
ysis and simulation evaluations, and we show the effectiveness of the proposed
mechanism in terms of scalability with the network bandwidth, convergence time,
fairness among connections, and stability.

1 Introduction

Transmission Control Protocol (TCP) is the de facto standard transport layer protocol
of the Internet. It was first designed in the 1970s, and the first Request for Comments
(RFC) on TCP was released in 1981 [1]. Since the Internet has undergone such develop-
mental changes as link bandwidth and number of nodes, TCP has also been frequently
modified and enhanced according to such changes in the network.

One of the most important functions of TCP is its congestion control mechanism [2].
Its main purpose is to avoid and resolve network congestion, and to distribute network
bandwidth equally among competing connections. TCP employs a window-based con-
gestion control mechanism that adjusts data transmission speed by changing the win-
dow size. TCP’s window updating mechanism is based on an Additive Increase Multi-
plicative Decrease (AIMD) policy: a TCP sender continues increasing window size ad-
ditively until it detects a packet loss(es) and decreases it multiplicatively when a packet
loss occurs. In [3], the authors argue that an AIMD policy is suitable for efficient and
fair bandwidth usage in a distributed environment.

However, there are many problems in the congestion control mechanism of the cur-
rent version of TCP (TCP Reno), which have emerged with increases of heterogene-
ity and the complexity of the Internet ([4-6] for some instances). The main reason is
the fixed AIMD parameter values in increasing/decreasing window size, whereas they
should be changed according to the network environment. For example, many previous
papers [7-9] described that the throughput of TCP connections decreases when it tra-
verses wireless links, since TCP cannot distinguish a congestion-oriented packet loss
and a wireless-oriented (link loss and/or handoff) packet loss. In this case, the AIMD
parameters, especially the decreasing parameters, must be changed dynamically accord-
ing to the origins of the packet loss.

C. Kim (Ed.): ICOIN 2005, LNCS 3391, pp. 109–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.4     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Bitanzahl pro Pixel: Wie Original Bit     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Untergruppen bilden unter: 100 %     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:      RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Nein     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Nein     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein     EPS-Info von DSC beibehalten: Nein     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.4     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



110 Tomohito Iguchi, Go Hasegawa, and Masayuki Murata

Another problem is the low throughput of TCP connections in high-speed and long-
delay networks. In [10], the authors argued that a TCP Reno connection cannot fully
utilize the link bandwidth of such networks, since the increasing parameter (1 packet
per a Round Trip Time (RTT)) is too small and the decreasing parameter, which halves
the window size when a packet loss occurs, is too large for networks with a large
bandwidth-delay product.

Although there are many solutions against the above problems [8-13], almost all
inherit the basic mechanism of the congestion control mechanism of TCP: the AIMD
mechanism triggered by the detection of packet losses in the network. Most previous pa-
pers focused on changing the AIMD parameters according to the network environment.
Since those methods may employ ad hoc modifications for a certain network situation,
their performance is not clear when applied to other network environments.

TCP’s performance is incomplete because the TCP sender does not have an effective
mechanism to recognize the available bandwidth of the network path between sender
and receiver hosts. In a sense, a traditional TCP Reno can be considered a tool that
measures available bandwidth because of its ability to adjust the congestion window
size to achieve a transmission rate appropriate to the available bandwidth. However, it
is ineffective since it only increases window size until a packet loss occurs. In other
words, it induces packet losses to obtain information about the available bandwidth(-
delay product) of the network. All modified versions of TCP using AIMD policy contain
this essential problem.

If a TCP sender recognizes an available bandwidth quickly and adequately, we can
create a further better mechanism for congestion control in TCP. Many measurement
tools have been proposed in the literature [14-16] to measure the available bandwidth
of network paths. However, we cannot directly employ those existing methods into TCP
mechanisms since they utilize a lot of test probe packets; they also require a long time
to obtain one measurement result. Fortunately, we have a method called Inline mea-
surement TCP (ImTCP) that does not include these problems [17, 18]. It does not inject
extra traffic into the network, and it estimates the available bandwidth from data/ACK
packets transmitted by an active TCP connection in an inline fashion. Furthermore,
the ImTCP sender can obtain the information of available bandwidth every 1–4 RTT
that follows well the traffic fluctuation of the underlying IP network. Therefore, we
can make a novel congestion control mechanism of TCP by using an inline network
measurement mechanism.

In this paper, we propose a new congestion control mechanism of TCP that utilizes
available bandwidth information obtained from inline measurement techniques. The
proposed mechanism does not use ad hoc algorithms such as TCP Vegas [19], instead
employs algorithms which have a mathematical background, by which we are able to
mathematically discuss and guarantee its behavior even though it poses a simplifica-
tion of the target system. More importantly, it becomes possible to give a reasonable
background on our selection of control parameters within TCP, instead of conducting
intensive computer simulation and/or choosing parameters in an ad-hoc fashion. We
borrowed the algorithm from biophysics; a logistic equation and a Lotka-Volterra com-
petition model [20] that describe changes in the population of species are applied to
the window updating mechanism of our TCP. This application can be done by consid-
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ering the number of a single species as a window size of a TCP connection, a carrying
capacity as a bottleneck link bandwidth, and interspecific competition among species
as a bandwidth share among competing TCP connections. We present in detail how to
apply the logistic equation and the Lotka-Volterra competition model to the congestion
control algorithm of TCP as well as analytic investigations of the proposed algorithm.
Then, we can utilize the existing discussions and results on various characteristics of the
model, including stability, fairness, and robustness. Giving those characteristics to TCP
is our main purpose of the current study. We also present some preliminary simulation
results to evaluate the proposed mechanism and show that, compared with traditional
TCP Reno and other TCP variants it utilizes network bandwidth effectively, quickly,
and fairly.

The rest of this paper is organized as follows. In Section 2, we import two mathemat-
ical models from biophysics: the logistic equation and the Lotka-Volterra competition
model. The transition of those models to the data transmission rate control algorithm
in computer networks is presented. Then we propose a new congestion control mech-
anism with inline network measurement and discuss its characteristics in Section 3. In
Section 4, we show some simulation results to evaluate the performance of the proposed
mechanism. We finally conclude this paper and offer future work in Section 5.

2 Mathematical Models Applied to a Congestion Control
Mechanism

In this section, we briefly summarize the mathematical models from biophysics utilized
by our proposed mechanism to control the congestion window size of a TCP connection.

2.1 Logistic Equation

The logistic equation is a formula that approximates the evolution of the population of a
species over time. Generally, the increasing rate of a species population becomes larger
as the species population becomes larger. However, since there are various restrictions
about living environments, the environmental capacity, which is the maximum of the
population of the species, exists. The logistic equation approximates such changes in
the species population:

dN
dt

= ε
(

1− N
K

)
N

where t is time, N is the number of species, K is the carrying capacity of the envi-
ronment, and ε is the intrinsic growth rate of the species. Fig. 1 shows changes of the
species population (N) as a function of time where K = 100 and ε changes to 0.6, 1.8,
2.4, and 3.0. Looking at lines with ε = 0.6 and 1.8, we can observe the following char-
acteristics of the logistic equation; when N is much smaller than K, the increasing speed
of N becomes larger as N increases. On the other hand, when N becomes close to K,
the increasing rate decreases and N converges to K. As ε increases from 0.6 to 1.8, the
convergence time becomes small at an expense of some overshoot. When ε is 2.4 or
3.0, however, N does not converge to K and remains unstable. This is a well-known



112 Tomohito Iguchi, Go Hasegawa, and Masayuki Murata

characteristic of the logistic equation, where ε should be less than 2.0 to successfully
converge N to K.

We consider that the increasing trend of N in the logistic equation can be applied
to the control of the data transmission speed of TCP. That is, by considering N as the
transmission rate of a TCP sender and K as the physical bandwidth of the bottleneck
link, rapid and stable link utilization can be realized. However, the logistic equation
describes the population of one species, whereas there are two or more TCP connec-
tions in the practical network. In the next subsection, we introduce an extended model
that describes the changes of the population of two species with interaction between
themselves.

2.2 Lotka-Volterra Competition Model

The Lotka-Volterra competition model is a famous model for the population growth
of two species including interspecific competition between them. In the model, a lo-
gistic equation is modified to include the effects of interspecific competition as well
as intraspecific competition. The Lotka-Volterra model of interspecific competition is
comprised of the following equations for the population of species 1 and 2, respec-
tively:

dN1

dt
= ε1

(
1− N1 + γ12 ·N2

K1

)
N1 (1)

dN2

dt
= ε2

(
1− N2 + γ21 ·N1

K2

)
N2 (2)

where Ni, Ki, and εi are the population, the environmental capacity, and the intrinsic
growth rate of the species i, respectively. γi j is the ratio of the competition coefficient
of species i on species j.

In this model, the population of species 1 and 2 does not always converge to some
value larger than 0, and in some cases one of them sometimes dies out. It depends on the
value of γ12 and γ21. It is a well-known characteristic that when the following conditions
are satisfied, the two species survive in the environment:

γ12 <
K1

K2
, γ21 <

K2

K1
(3)

Assuming that the two species have the same characteristics, they have the same values
of K, ε , and γ , Equations (1) and (2) can be written as follows:

dN1

dt
= ε

(
1− N1 + γ ·N2

K

)
N1 (4)

dN2

dt
= ε

(
1− N2 + γ ·N1

K

)
N2 (5)

Note that the conditions in Equation (3) become γ < 1. Fig. 2 shows the change in the
population of the two species by using Equations (4) and (5), where species 2 join the
environment in 10 time units after species 1. We can observe from this figure that the
population of the two species converges quickly at the same value, which is considered
an ideal behavior for the control of the transmission rate in computer networks.
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Fig. 1. Logistic equation (K = 100)
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Fig. 2. Changes in species population with
Lotka-Volterra competition model (ε = 1.95,
γ = 0.9, K = 100)

2.3 Application to Transmission Rate Control Algorithm

In a practical network there are usually more than two TCP connections sharing a net-
work bandwidth. We can easily extend Equations (4) and (5) for n species as follows:

dNi

dt
= ε

(
1− Ni + γ ·∑n

j=1,i�= j Nj

K

)
Ni (6)

When we consider Equation (6) as the control algorithm for the data transmission rate
for TCP connection i (Ni), it is necessary for connection i to know the data transmission
rates of all other connections that share the same bottleneck link. This assumption is
quite unrealistic in the current Internet. However, when we obtain the available band-
width for connection i with the inline measurement mechanism [17], we can approxi-
mate the sum of the data transmission rates of all of other connections as follows:

n

∑
j=1,i�= j

Nj = K −Ai

Thus, Equation (6) becomes as follows;

dNi

dt
= ε

(
1− Ni + γ · (K −Ai)

K

)
Ni (7)

where Ni, and Ai are the data transmission rate and the available bandwidth for con-
nection i. K is the physical bandwidth of the bottleneck link, where we assume that all
connections share the same bottleneck link. Our proposed mechanism assumes that we
can obtain Ai and K by using the inline network measurement. The current version of
ImTCP [17, 18] can measure Ai with high accuracy in various conditions of the net-
work. Therefore, we consider that the proposed mechanism can set Ai by ImTCP. On
the other hand, because a physical bandwidth measurement algorithm is now under con-
sideration, we directly set K to the correct value. However, the change of the physical
bandwidth of the network path is smaller than that of the available bandwidth, so we
can expect that the measurement error is also smaller. Hence, we consider that the ef-
fect of the measurement error of the physical bandwidth (K) on the performance of the
proposed mechanism is negligible when we use the measurement results of the physi-
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cal bandwidth. In our proposed mechanism, we use the above equation as a rate control
algorithm of a TCP sender host. In the next section, we present the control algorithm of
the window size of the TCP sender host, using the above equation.

3 Proposed Congestion Control Mechanism of TCP

3.1 Proposed Mechanism

A TCP sender controls its data transmission rate by changing its window size when it
receives an ACK packet. Here we convert Equation (7) to obtain an increasing algorithm
of the window size in TCP. The window size of connection i, wi, is calculated from Ni,
the transmission rate, by the following simple equation:

wi = Ni ·base rtti

where base rtti is the minimum value of the RTTs of connection i. Then Equation (7)
can be rewritten as follows:

dwi

dt
= ε

(
1− wi + γ ·base rtti · (K −Ai)

K ·base rtti

)
wi

We next change the equation in RTT.

dwi

drtt
= ε

(
1− wi + γ ·base rtti · (K −Ai)

K ·base rtti

)
wi (8)

Finally, we derive the amount of the increase in window size when an ACK packet
is received at the TCP sender by considering that wi ACK packets are received in one
RTT:

∆wi = ε
(

1− wi + γ ·base rtti · (K −Ai)
K ·base rtti

)

This is the fundamental equation in increasing window size in our proposed mech-
anism. Since this equation requires the measurements of the available bandwidth and
physical bandwidth of a network path, we use the same algorithm as TCP Reno for
window updating algorithm until the measurement results are obtained through inline
network measurements. In cases of packet loss(es), window size is decreased in iden-
tical way to TCP Reno. When a timeout occurs, sender TCP discards all measurement
results, window size is reset to 1, and the slow-start phase begins as a TCP Reno sender
does.

3.2 Characteristics of the Proposed Mechanism

Here we briefly summarize the characteristics of the proposed mechanism:
– Scalability with network bandwidth

When we consider one TCP connection in the network, the window size w(t) is
represented as the following formula from the Equation (8):

w(t) =
w0 ·K ·base rtti

w0 +(K ·base rtti −w0) · e−εt



A New Congestion Control Mechanism of TCP with Inline Network Measurement 115

where w0 is an initial value of window size. Here we assume
w0 = (1−b) ·K ·base rtti and wt = c ·K ·base rtti, and calculate the time T it takes
to increase the window size from w0 to wt . Then,

T =
1
ε
· log

(
c

1− c
· b

1−b

)

Note that T is independent on K, the physical bandwidth of the bottleneck link,
meaning that our proposed mechanism can increase its window size in the same
time regardless of the network bandwidth.

– Convergence time
As shown in Figures 1 and 2, the transmission rate size quickly converges to a
certain value. Note that ε ≤ 2 is required for stable convergence.

– Stability
In the original Lotka-Volterra competition model, γ < 1 is required for the sur-
vival of the two species in the environment when the environmental capacity of
the two species are the same. This characteristic can also be satisfied in our pro-
posed mechanism. However, in a practical network, all connections do not always
have the same physical link capacity, especially when the access link bandwidth is
relatively small. We comment on this issue in Section 4.

– Lossless behavior
When n TCP connections exist in the network, the sum of the converged window
sizes of all connections becomes:

n

∑
i=1

wi =
n

1 +(n−1) · γ ·K ·base rtti

This means that the sum of the window size increases when n increases. However,
it is limited by K·base rtti

γ , obtained by calculating limn→∞ ∑n
i=1 wi from the above

equation. That is, when the buffer size of the bottleneck router is enough large, no
packet loss occurs. Note that the traditional TCP Reno cannot avoid periodic packet
losses due to its window control algorithm.

– Fairness among connections
From Equation (7), it is obvious that the converged window sizes of all TCP con-
nections become identical when they have the same value as the physical bandwidth
K. However, a problem may emerge when K is different among connections, which
is discussed in Section 4.

4 Simulation Results

In this section, we present some simulation results to evaluate the performance of the
congestion control mechanism proposed in Section 3. We used ns-2 [21] for the sim-
ulation experiments. The traditional TCP Reno, HighSpeed TCP (HSTCP) [10] and
Scalable TCP [12] were chosen for performance comparison. In our proposed mecha-
nism, the available bandwidth information was obtained through an inline measurement
mechanism. Note that we directly give the physical bandwidth information to the TCP
sender since there is currently no effective mechanism to measure the physical band-
width in an inline fashion. We set ε = 1.95 and γ = 0.9 for the proposed mechanism.
For HSTCP, we use the parameters described in [10].
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Fig. 3. Network topology in simulation experiments

The network model used in the simulation is depicted in Fig. 3. It consists of
sender/receiver hosts, two routers, and links between the hosts and routers. Ntcp TCP
connections are established between TCP sender i and TCP receiver i. For creating
the background traffic, we inject UDP packets at the rate of rudp into the network.
That is, Ntcp TCP connections and an UDP flow share the bottleneck link between the
two routers. The bandwidths of the bottleneck link and the access link for the UDP
sender/receiver are all set to BW , and the propagation delays are τ and τu, respectively.
The bandwidth and the propagation delay of the access link for TCP sender i are bwi and
τi, respectively. We deployed a Taildrop discipline at the router buffer, and the buffer
size is set to twice the bandwidth-delay product of the bottleneck link between the two
routers.

We first confirm the fundamental behavior of the proposed mechanism with one
TCP connection (Ntcp = 1). Fig. 4 shows the change in the window size of TCP Reno,
HSTCP, Scalable TCP and the proposed mechanism, where we set bw1 = 100 Mbps,
τ1 = 5 msec, BW = 100 Mbps, τ = 40 msec, τu = 5 msec and rudp = 50 Mbps. This re-
sult shows that TCP Reno, HSTCP and Scalable TCP connections experience periodic
packet losses due to buffer overflow, since they continue increasing the window size
until packet loss occurs. On the other hand, the window size of the proposed mecha-
nism converges to an ideal value quickly and no packet loss occurs. Furthermore, the
increasing speed is much larger than that of HSTCP and Scalable TCP, meaning that
the proposed mechanism effectively utilizes the link bandwidth.

We next investigate the scalability with link bandwidth of the proposed mechanism
by checking the convergence time, which is defined as the time it takes for the TCP con-
nection to utilize 99% of the link bandwidth. We set Ntcp = 1, τ1 = 5 msec, τ = 40 msec
and τu = 5 msec. Fig. 5 shows the change of the convergence time when we change BW
from 10 Mbps to 1 Gbps, where rudp is set to (0.2 ·BW) Mbps and bw1 is set equal to
BW . In the figure, the average values and the 95% confidence intervals for 10 simula-
tions experiments are shown. From this figure, we can see that the TCP Reno connection
requires quite a large time to fully utilize the link bandwidth since the increasing speed
of the window size is fixed at a small value regardless of the link bandwidth. HSTCP
dramatically reduces the convergence time, but the larger the link bandwidth becomes,
the larger convergence time requires to fill the bottleneck link bandwidth. This means
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that HSTCP is fundamentally unable to resolve the scalability problem of TCP Reno.
In the case of Scalable TCP, the convergence time remains constant regardless of the
link bandwidth, which was confirmed in [12]. However, it is quite larger than that of the
proposed mechanism. The proposed mechanism, however, keeps the smallest and the
almost constant convergence time regardless of the link bandwidth, which shows good
scalability with the network bandwidth as described in Subsection 3.2. The confidence
interval of the proposed mechanism is large because the measurement results have some
errors.

Adaptability to changes in the available bandwidth is also an important character-
istic of the transport layer protocol. To confirm, we set Ntcp = 1, bw1 = 100 Mbps, τ1

= 5 msec, BW = 100 Mbps, τ = 40 msec, and τu = 5 msec, and change rudp so that the
available bandwidth of the bottleneck link is 80 Mbps from 0 to 50 sec, 65 Mbps from
50 to 100 sec, 50 Mbps from 100 to 150 sec, and 80 Mbps from 150 to 200 sec. Fig. 6
presents the change of the throughput of a TCP connection in TCP Reno, HSTCP, Scal-
able TCP and the proposed mechanism. The results obviously show the effectiveness of
the proposed mechanism, which gives good adaptability to the changes of the available
bandwidth. Furthermore, no packet loss occurs even when the available bandwidth sud-
denly decreases. On the other hand, TCP Reno, HSTCP and Scalable TCP connections
experience many packet losses during simulation time, and the link utilization is much
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Fig. 7. Effect of changes in number of connections

lower than 100%. This is the largest advantage of the proposed mechanism which uses
an inline measurement technique.

We also investigate the adaptability and fairness of the proposed mechanism by in-
vestigating the effect of changes in the number of TCP connections. We set Ntcp = 5,
bwi = 100 Mbps, τi = 5 msec (1 ≤ i ≤ 5), BW = 100 Mbps and τ = 40 msec. We do
not inject UDP traffic into the network. TCP connections 1–5 join the network at 0,
100, 200, 300, and 400 sec and stop sending data packets at 500, 550, 600, 650, and
700 sec, respectively. Fig. 7 shows change of window size for the five TCP connections
as a function of simulation time in TCP Reno (Fig. 7(a)) and the proposed mechanism
(Fig. 7(b)). This figure shows that TCP Reno cannot maintain the fairness among con-
nections at all, mainly because it takes long time for all connections to have the fair
window sizes. Furthermore, TCP Reno connections suffer from cyclic packet losses.
On the other hand, the proposed mechanism converges the window size very quickly
and no packet loss occurs when a new connection joins the network. Furthermore, when
the TCP connection leaves the network, the proposed mechanism quickly fill the unused
bandwidth.

Finally we investigate the effect of the heterogeneity of the access network such as
the difference of the access link bandwidth. We set Ntcp = 2, bw1 = 10 Mbps, bw2 =
20 Mbps, τ1 = τ2 = 5 msec, τ = 40 msec, and we change BW from 5 Mbps to 30 Mbps.
We do not inject UDP traffic into the network. Fig. 8 shows the change in the throughput
of the two TCP connections in TCP Reno and the proposed mechanism, as a function
of BW . We observe from the figure that TCP Reno equally shares the bottleneck link
bandwidth regardless of the value of BW . On the other hand, the proposed mechanism
shows an interesting characteristic. When BW < bw1, the two TCP connections equally
share bottleneck link bandwidth. When bw1 < BW < bw2, however, the bottleneck link
bandwidth is distributed proportionally to the ratio of bw1 and bw2. This property can
be explained from the equation utilized by the proposed mechanism. By using Equation
(7), the converged transmission rate for connection i, denoted by N̂i, which have differ-
ent physical link bandwidth (Ki), can be calculated as follows (a detailed calculation is
omitted due to space limitations):
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Fig. 8. Effect of different access link bandwidths

N̂i =
Ki

∑n
i=1 Ki

·BW (9)

It is under the condition of γ < 1. That is, the bottleneck link bandwidth is shared pro-
portionally to the physical bandwidth of each TCP connection. Since a physical band-
width of the network path is defined as a bandwidth of the tightest link between TCP
hosts (a sender and a receiver), the simulation results in Fig. 8 that matches Equation
(9).

We consider that this characteristic is ideal for a congestion control strategy on the
Internet; in the history of the Internet, the ratio of the bandwidth of access network to
that of backbone network has been changing over time [22]. Therefore, compared with
access networks, the resources amount of backbone network are sometimes scarce and
sometimes plentiful. We believe that when backbone resources are small, they should
be shared equally between users regardless of their access link bandwidth. When they
are sufficient, on the other hand, they should be shared according to the access link
bandwidth. The characteristic of the proposed mechanism found in Fig. 8 and Equation
(9) realizes such a resource sharing strategy.

5 Conclusion and Future Work

In this paper, we proposed a new congestion control mechanism of TCP which uti-
lized an inline network measurement technique. The proposed mechanism is based on
the logistic equation and the Lotka-Volterra competition model that represents popula-
tion changes of species. We applied the two models to the transmission rate control in
the computer network and constructed a new algorithm to change the window size of
the TCP connections. Through analysis and simulation evaluations, we confirmed the
effectiveness of the proposed mechanism for scalability, convergence speed, fairness,
stability, and so on.

We consider that by obtaining the important information for congestion control,
for example, the available and physical bandwidth of the network path, we can create
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a much better mechanism for the congestion control of TCP. As research on inline
network measurement techniques advances, other kinds of congestion control for the
Internet will be realized that enhance the performance of TCP. The mechanism proposed
in this paper is the first step in that challenge.

For future work, we will investigate various characteristics of our proposed conges-
tion control mechanism. One of them is fairness property of the proposed mechanism
against the TCP Reno connections. From our preliminary results, we have found that
the TCP Reno uses larger bandwidth than the proposed mechanism when they share the
bottleneck link bandwidth. The main reason is that the proposed mechanism is more
conservative than TCP Reno, which has been found in the previous literature in the
fairness between TCP Reno and TCP Vegas [23, 24]. Now we consider improving the
proposed mechanism to solve this problem, based on the ideas that we regulate the pa-
rameters of the proposed mechanism or we switch the behavior of the proposed mech-
anism according to the existence of TCP Reno connections in the network. Another
research plan is to compare the performance of the proposed mechanism with the other
kinds of congestion control algorithm such as FAST TCP [13], which has similar char-
acteristics in terms of lossless behavior with window size stability. Additionally, we will
investigate fairness among connections with different RTTs, the effect of measurement
errors of available/physical bandwidth, and so on.
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