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SUMMARY With the growth of computing power and the
proliferation of the Internet, video streaming services become
widely deployed. In this paper, we propose, design, implement,
and evaluate a proxy caching system for MPEG-4 video stream-
ing services. With our system, the high-quality, low-delay, and
scalable video distribution can be accomplished. In our system,
a video stream is divided into blocks for efficient use of the cache
buffer and the bandwidth. A proxy retrieves a block from a
server, deposits it in its local cache buffer, and provides a re-
questing client with the block in time. It maintains the cache with
limited capacity by replacing unnecessary cached blocks with a
newly retrieved block. The proxy cache server also prefetches
video blocks that are expected to be required in the near future
in order to avoid cache-misses. In addition, the proxy server ad-
justs the quality of cached or retrieved video block appropriately,
because clients are heterogeneous, in terms of the available band-
width, end-system performance, and user preferences on the per-
ceived video quality. Through evaluations conducted from sev-
eral performance aspects, we proved that our proxy caching sys-
tem can provide users with a continuous and high-quality video
streaming service in a heterogeneous environment.
key words: video streaming service, proxy caching, quality ad-
justment, MPEG-4

1. Introduction

With the increase in computing power and the prolif-
eration of the Internet, video streaming services have
become widely deployed. Through these services, the
client receives a video stream from a video server over
the Internet and plays it as it gradually arrives. How-
ever, on the current Internet, only the best effort ser-
vice, where there is no guarantee on bandwidth, delay,
or packet loss probability, is still the major transport
mechanism. Consequently, video streaming services
cannot provide clients with continuous or reliable video
streams. As a result, the perceived quality of video
streams played at the client cannot satisfy expectations,
and freezes, flickers, and long pauses are experienced.
Furthermore, most of today’s Internet streaming ser-
vices lack scalability against increased clients since they
have been constructed on a client-server architecture. A
video server must be able to handle a large number of
clients simultaneously. It injects a considerable amount
of video traffic along the path to distant clients, and the
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network becomes seriously congested.
The proxy mechanism widely used in WWW sys-

tems offers low-delay and scalable delivery of data by
means of a “proxy server”. The proxy server caches
multimedia data that have passed through it in its lo-
cal buffer, called the “cache buffer”, and it then pro-
vides the cached data to users on demand. By apply-
ing this proxy mechanism to video streaming systems,
high-quality and low-delay video distribution can be
accomplished without imposing extra load on the sys-
tem [1-5]. In addition, the quality of cached video data
can be adapted appropriately in the proxy when clients
are heterogeneous, in terms of the available bandwidth,
end-system performance, and user preferences on the
perceived video quality [6-8]. These papers describe
proxy caching mechanisms for video streaming services.
However, they do not consider the client-to-client het-
erogeneity, lack the scalability and adaptability to rate
and quality variations, or assume specially designed
server/client applications which are not available now.

In our previous research work [9], we proposed
proxy caching mechanisms to accomplish high-quality
and continuous video streaming service in a heteroge-
nious environments. In our proposed mechanisms, a
video stream is divided into blocks so that the cache
buffer and the bandwidth can be used efficiently. A
proxy retrieves a block from the server, deposits it in
its local cache buffer, and provides the requesting client
with the block in time. It maintains the cache with a
limited capacity by replacing unnecessary cached blocks
with a newly retrieved block. The proxy cache server
prefetches video blocks that are expected to be required
in the near future to avoid cache misses. The proxy
server also adjusts the quality of a cached or retrieved
video block to the appropriate level through video fil-
ters to handle client-to-client heterogeneity. However,
in our proposal, we put some assumptions on client and
server systems. For example, a client sent requests on a
block-by-block basis and a server was capable of adjust-
ing the quality of a video stream. These assumptions do
not hold in today’s Internet video streaming services.

The major objective of this paper is to verify the
practicaling and adaptabling of our systems to exist-
ing video streaming services. For this purpose, based
on our previous proposal, we newly propose and de-
sign a proxy caching system, which requires no special
server/client applications, for MPEG-4 video stream-
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Fig. 1 Modules constituting system

ing services to attain high-quality, continuous, and scal-
able video distribution. We employed off-the-shelf and
common applications for the server program and the
client program to implement our system. Our proxy
caching system can be applied to environments in that
RTSP/TCP was used to control video streaming and
RTP/UDP to deliver them. We introduced a TFRC
(TCP Friendly Rate Control) [10] mechanism to the
system for video streaming to share the bandwidth
fairly with conventional TCP sessions. We used a frame
dropping filter to adapt the rate of video streams to the
bandwidth available to service. Through evaluations
from several performance points of view, we proved
that our proxy caching system could dynamically ad-
just the quality of video streams to suit network condi-
tions while providing users with a continuous and high-
quality service. Furthermore, it was shown our proxy
caching system can reduce the traffic between a video
server and a proxy in the limited cache buffer.

The rest of this paper is organized as follows. Sec-
tion 2 describes our proxy caching system and explains
how it is implemented. Section 3 discusses several ex-
periments to verify the practicality of our system. Sec-
tion 4 concludes the paper and describes some future
works.

2. Proxy Caching System with Video Quality
Adjustment

Figure 1 illustrates the modules that constitute our
video streaming system. We employed the Darwin
Streaming Server [11] as the server application, and
RealOne Player [12] and QuickTime Player [13] as the
client applications. The video streaming was controlled
through RTSP/TCP sessions. There were two sets of
sessions for the client. The first was established be-
tween the originating video server and proxy to retrieve
uncached blocks. The other was between the proxy and
client. Each of video and audio was transferred over a
dedicated RTP/UDP session. The quality of service
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Fig. 2 Basic behavior of our system

was monitored over RTCP/UDP sessions. The video
stream was coded using the MPEG-4 video coding al-
gorithm, and it was compliant with ISMA 1.0 [14].

2.1 Basic Behavior

Figure 2 illustrates the basic behavior of our system.
In the proxy cache server, a video stream is divided
into blocks so that the cache buffer and the bandwidth
can be efficiently used. Each block corresponds to a se-
quence of VOPs (Video Object Planes) of MPEG-4. A
block consists of a video block and an audio block, and
they are separately stored. The number of VOPs in a
block is determined by taking into account the over-
heads introduced by maintaining the cache and trans-
ferring data block-by-block. The strategy used to de-
termine the block size is beyond the scope of this paper.
We used 300 in our empiric implementation. Since an
MPEG-4 video stream is coded at 30 frames per second,
a block corresponds to ten seconds of video. Segmenta-
tion based on VOP was reasonable since packetization
based on this is recommended in RFC3016 [15]. Fur-
thermore, we could use the range field of the RTSP
PLAY message to specify a block, e.g., Range 20-30,
because we could easily specify the time that the block
corresponded to.

First, a client begins by establishing connections
for audio/video streams with the proxy server using a
series of RTSP OPTIONS, DESCRIBE, and SETUP
messages. An OPTIONS message is used to request
communication options. A DESCRIBE message is used
for media initialization and a SETUP message is used
for transport parameter initialization. These RTSP
messages are received by the Cache Manager through
an RTSP Server module (in Fig. 1). The proxy server
relays RTSP OPTIONS, DESCRIBE, and SETUP mes-
sages to the video server. Thus, connections between
the video server and the proxy server are also estab-
lished at this stage. Then, the client requests delivery
of the video stream by sending an RTSP PLAY mes-
sage. When a connection between the video server and
the proxy server is not used for the predetermined time-
out duration, the video server terminates the connec-
tion according to RTSP specification. In our system,
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the proxy server maintains the connection for future
use by regularly sending an RTSP OPTIONS message
after 90 seconds idle period.

A proxy maintains information about cached
blocks in the Cache Table. Each entry in the table
contains a block identifier, the size of the cached block,
and the flag. The size is set at zero when the block is
not cached. The flag is used to indicate that the block
is being transmitted. On receiving a request for a video
stream from a client through the RTSP Server, the
Cache Manager begins providing the client with blocks.
The request is divided into blocks, and Cache Manager
examines the table every interval of the block. If the re-
quested block is cached, i.e., cache hit, the Cache Man-
ager reads it out and sends it to the RTP Sender. The
RTP Sender packetizes the block and send the packet
to the client on time. The quality of video blocks is ad-
justed to fit the bandwidth on the path to the client by
the Filter. The bandwidth is estimated by the TFRC
(TCP Friendly Rate Control) module using feedback
information collected by exchanging RTCP messages.

When a block is not cached in the local cache
buffer, the Cache Manager retrieves the missing block
by sending an RTSP PLAY message to the video server.
To use bandwidth efficiently, and prepare for potential
cache misses, it also requests the video server to send
succeeding blocks that are not cached, by using the
range field of the RTSP PLAY message. Blocks 3 and
4 in Fig. 2 have been retrieved from the video server by
sending one RTSP PLAY message. Although we have
to use an SMPTE, NPT, or UTC timestamp to specify
the range, there are block identifiers beside the PLAY
message in Fig. 2 to allow for easier understanding.

On receiving a block from the video server through
the RTP Receiver, the Cache Manager sets its flag to
on to indicate that the block is being transmitted, and
it relays the block to the RTP Sender VOP by VOP.
When reception is completed, the flag is cancelled and
the Cache Manager deposits the block in its local cache
buffer. However if the retrieved block is damaged by
packet loss, the Cache Manager doesn’t deposit it. If
there is not enough room to store the newly retrieved
block, the Cache Manager replaces one or more less
important blocks in the cache buffer with the new block.

A client receives blocks from a proxy and first de-
posits them in a so-called play-out buffer. Then, af-
ter some period of time, it gradually reads blocks out
from the buffer and plays them. By deferring the play-
out as illustrated in Fig. 2, the client can prepare for
unexpected delay in delivery of blocks due to network
congestion or cache misses.

When a proxy server receives an RTSP TEAR-
DOWN message from a client, the proxy server relays
the message to the video server, and closes the sessions.

2.2 Block Retrieval Mechanism

When a requested block is not cached in the local cache
buffer, the Cache Manager should retrieve the block. In
our proposal [9], a proxy appropriately determines the
way to provide a client with a requested block, taking
into account the quality Qpc(i, j) of block j that can
be sent to client i in time, the quality Qsp(i, j) of block
j that can be retrieved from the server in time, and
the quality Qcache(j) of cached block j. We proposed
three methods to determine the quality Qreq(i, j) of
block j to reqest to the server. For example, Qreq(i, j)
is detemined such that the retrieved block j can sat-
isfy expected demands on the block in the near future
as Qreq(i, j) = min(maxk∈S,0≤l≤j Qpc(k, l), Qsp(i, j))
where S is a set of clients which are going to require
block j in the future.

However, since we adopt an off-the-shelf applica-
tion for the video streaming server, it cannot adjust
the quality of video block. Therefore, in our system,
the Cache Manager always retrieves the missing block
with the highest quality, i.e., the quality with which
the video stream was coded, from the video server. Of
course, when we have a video server capable of the qual-
ity adjustment, our proposed scheme can attain the
more efficient and effective control.

2.3 Rate Control with TFRC

TFRC is a congestion control mechanism that enables
a non-TCP session to behave in a TCP-friendly man-
ner [10]. The TFRC sender estimates the throughput
of a TCP session sharing the same path using following
equation.

X =
s

R
√

2bp
3 + tRTO(3

√
3bp
8 )p(1 + 32p2)

, (1)

where X is the transmit rate in bytes/second. s is
the packet size in bytes. R is the round trip time in
seconds. p is the loss event rate, between 0 and 1.0, of
the number of loss events as a fraction of the number of
packets transmitted. tRTO is the TCP retransmission
timeout value in seconds. b is the number of packets
acknowledged by a single TCP acknowledgement.

In the system we implemented, those information
are obtained by exchanging RTCP messages between
the RTCP Sender of the proxy cache server and the
client application. A client reports the cumulative num-
ber of packets lost and the highest sequence number
received to a proxy. From those information, the proxy
obtains the packet loss probability. RTT is calculated
from the time that the proxy receives LSR and DLSR
fields of a RTCP Receiver Report message and the time
that the proxy receives the message. By applying the
exponentially weighted moving average functions, the
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smoothed values are derived for both. The estimated
throughput obtained by Eq. (1) is regarded as the avail-
able bandwidth, which is taken into account in deter-
mining the quality of a block to retrieve and send.

Although the TFRC requires a client to send feed-
back messages at least once per RTT, the client applica-
tion employed in the experiments issues RTCP Receiver
Report messages every three to six seconds. According
to RTCP specifications, the sender can trigger feedback
by sending an RTSP Sender Report to the receiver, but
it ignores this. Thus, to make a client frequently re-
port reception conditions, we have to modify the client
application. In the current system, we employed off-
the-shelf and common applications for the video server
and clients so that we could verify the practicality and
applicability of proxy cache system we propose. Prob-
lems inherent in public applications remains for future
research.

2.4 Video Quality Adjustment

The quality of the block sent to a client is adjusted
so that resulting video rate fits the available band-
width estimated by the TFRC. We employed a frame
dropping filter [16] as a quality adjustment mecha-
nism. The frame dropping filter adjusts the video
quality to the desired level by discarding frames. The
smoothness of video play-out deteriorates but it is sim-
pler and faster than other filters such as low-pass and
re-quantization [17]. Adopting layered or multiple-
description coding is also helpful to treat the client-
to-client heterogeneity. However, no commercially or
freely available client application can decode and dis-
play a media stream with multiple layers or multiple
descriptions.

We should take into account the interdependency
of video frames in discarding frames. For example,
discarding an I-VOP affects P-VOPs and B-VOPs
that directly or indirectly refer to the I-VOP in cod-
ing/decoding processes. Thus, unlike other filters [18],
we cannot do packet-by-packet or VOP-by-VOP adap-
tation. The frame dropping filter is applied to a series
of VOPs of one second. The Filter first buffers, e.g.,
15 VOPs in our system where the video frame rate is
15 fps. Then, the order for discarding is determined. To
produce a well-balanced discard, we prepared a binary
tree of VOPs. The VOP at the center of the group, i.e.,
the eighth VOP in the example, became the root of the
tree and was given the lowest priority. Children of the
eighth VOP were the fourth and twelfth VOPs and re-
spectively became the second and third candidates for
frame dropping. Figure 3 illustrates the resulting order
for discarding assigned to VOPs. The order itself does
not take into account VOP types. Then, considering
inter-VOP relationships, we first discard B-VOPs from
ones that have the lowest priority until the amount of
video data fits the bandwidth. If it is insufficient to dis-
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card all B-VOPs to attain the desired rate, we move to
P-VOPs. Although we could further discard I-VOPs,
they have been kept in the current implementation for
the sake of smooth video play-out without long pauses.

Figure 4 shows bit rate variation of filtered video
streams generated aiming at 200, 500, 800 kbps from
the original VBR video stream whose average rate is
1000 kbps.

2.5 Block Prefetching

To reduce the possibility of cache misses and avoid the
delay in obtaining missing blocks from a server, a proxy
prefetches blocks that clients are going to require in the
future. In a case of a cache hit, the Cache Manager ex-
amines the Cache Table in succeeding P blocks. Here,
P is the size of a sliding window called a prefetching
window, which determines the range of examination for
prefetching. As long as blocks are cached, the Cache
Manager sequentially reads them out and sends them
to the RTP Sender. If there exists any block which is
not cached in succeeding P blocks, the Cache Manager
prefetches the missing block by sending an RTSP PLAY
message to the video server. The Cache Manager also
prefetches succeeding blocks that are not cached like a
case of a cache miss.

2.6 Cache Replacement

When a proxy cache server retrieves a block and finds
the cache is full, it discards one or more less important
blocks to make room for the new block. In our system,
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there is only one quality in the blocks retrieved from
the server, since a server application cannot adjust the
quality of video stream. In addition, since a client does
not declare the desired level of quality, the proxy cache
server cannot predict the tolerable or minimum level of
quality worth keeping in the cache buffer. Thus, once
the victim is chosen, it is immediately removed from
the cache although our proposal first tries the quality
adjustment to decrease the size of the victim [9].

First, the Cache Manager selects the video stream
with the lowest priority from cached streams using the
LRU (Least Recently Used) algorithm. It then assigns
priority to blocks in the selected stream using the fol-
lowing algorithm. Blocks being sent to a client have
the highest priority. The block at the beginning of the
stream is also assigned the highest priority to provide
potential clients with a low-latency service [19]. Of the
others, those closer to the end of a longer succession of
cached blocks are given lower priorities. Finally, blocks
candidate for replacement are chosen one by one until
sufficient capacity becomes available.

Figure 5 illustrates an example of victim selection.
In this example, the block located at the end of the
stream is in the longest succession. Therefore, the block
is given the lowest priority and becomes the “1”st vic-
tim. Among successions of the same length, the one
closer to the end of the stream has lower priority.

3. Experimental Evaluation

In this section, we conduct experiments to evaluate our
system. In the experiments, we use a 10-minute-long
video stream coded by an MPEG-4 VBR coding algo-
rithm at the coding rate of 1 Mbps. Video data of
320×240 pixels and 30 fps and audio data of 96 Kbps
are multiplexed into the MPEG-4 stream. Therefore
the size of the video stream is about 84 Mbytes. A
block corresponds to 300 VOPs, i.e., 10 seconds. Thus,
the stream consists of 60 blocks. A video server always
has the whole video blocks. A client watches a video
from the beginning to the end without interactions such
as rewinding, pausing and fast-forwarding.

3.1 Evaluation of Rate Control with Video Quality
Adjustment

Figure 6 illustrates the configuration for our experi-
mental system to evaluate the availability of rate con-
trol with video quality adjustment. A proxy is di-
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Fig. 6 Configuration of experimental system

rectly connected to a video server. Two video clients
are connected to the proxy through two routers. The
video sessions compete for the bandwidth of the link
between two routers with three FTP sessions and a
UDP flow generated by a packet generator. The proxy
has no blocks and a cache buffer capacity is limited to
50 Mbytes. The prefetching window size P is set to
5. The video client 1 issues an OPTIONS message at
time zero, and the video client 2 issues it at 150 sec-
onds. Two clients watch the same video stream. FTP
sessions start transferring files at 300 seconds and stop
at 450 seconds. The packet generator always gener-
ates UDP packets at the rate of 8 Mbps. For purposes
of comparison, we also conducted experimental evalu-
ations of the traditional method where the proxy does
not adjust video quality.

Figures 7, 8, and 9 illustrate variations in recep-
tion rates observed at each client with tcpdump. As
Fig. 8 shows, the reception rate changes in accordance
with network conditions. During congestion, the aver-
age throughput of TCP sessions is 277 kbps with our
system. On the contrary, since the traditional system
keeps sending video traffic at the coding rate as shown
in Fig. 7, TCP session are disturbed and, the attained
throughput is only 37 kbps. As a result, the friendli-
ness is 1.44 in our system and 23.1 in traditional sys-
tem, where the friendliness is given by dividing the av-
erage throughput of video sessions by that of TCP. To
conclude, by introducing the TFRC algorithm and a
video-quality adjustment mechanism, our video stream-
ing system behaves in a friendly manner with the TCP.

However, as observed in Fig. 8, there are large rate
variations in video sessions. The average throughput
of the video sessions during the competitive period is
higher than that of TCP sessions. The major reason for
this is that the control interval of adaptation is three to
six seconds, which is considerably longer than that of
the TCP, which reacts to network conditions in order
of RTT. TCP sessions are sensitive to congestion and
they suppress the number of packets to inject into the
network when they occasionally observe packet losses.
Video sessions, on the other hand, do not notice sud-
den and instantaneous packet losses due to the long
control interval. By increasing the frequency that a
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client reports feedback information, such discrepancies
are expected to be eliminated. Another reason is that
the experimental system is relatively small. As a re-
sult, only a slight change during a session directly and
greatly affects the other sessions. Then, synchronized
behaviors are observed in Fig. 8 and 9. We plan to con-
duct experiments within a larger network environment
where a large number of sessions co-exist.

Figures 10 and 11 show RTT and packet loss prob-
ability calculated from information in RTCP Receiver
Report messages. In the traditional system, the proxy
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persists in sending video data at the coding rate dur-
ing congestion, and many packets are delayed or lost at
routers. The packet delay may cause freezes at play-
out due to underflow of play-out buffer. Furthermore,
the client application abandons playing out a VOP seri-
ously damaged by packet loss. The number of packets
that constitute a VOP is proportional to the size of
VOP. Thus, the probability that a single packet loss
affects the whole VOP is higher for I-VOP than for P-
VOP, and further for P-VOP than for B-VOP. In addi-
tion, the influence of packet loss on I-VOP and P-VOP
propagates to the succeeding VOPs that directly or in-
directly refer to the damaged VOP. As a result, having
suffered from packet losses, the user observes frequent
freezes and long pauses during congestion. During ex-
periment, 9712 VOPs are played out with our system,
but only 9133 VOPs are played out with the traditional
system at client 1. Therefore the perceived video qual-
ity is higher and smoother with our system than with
the traditional system owing to the intentional frame
discarding, although the amount of received video data
in the traditional system is larger than that in our sys-
tem.
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3.2 Evaluation of Caching Mechanisms

Figure 12 illustrates the configuration for our experi-
mental system to evaluate proxy caching mechanisms.
A proxy is connected to a video server through a router.
Three clients are directly connected to the proxy. In or-
der to control the delay, NISTNet, a network emulator,
is used at the router. The one-way delay between the
video server and the proxy is set to 125 msec. Clients 1
through 3 issue an OPTIONS messages at time 0, 350,
700, respectively. Three clients watch the same video
stream. The proxy has no block at first. Using this
configuration, we evaluate the availability of caching
mechanisms. For this purpose, we do not introduce
rate control with quality adjustment at the proxy. For
purposes of comparison, we also conducted experimen-
tal evaluations of cases where the proxy has no cache
buffer, that is, when clients always receive video blocks
from the server.

Figure 13 shows the total amount of traffic between
the video server and the proxy during experiments, and
Fig. 14 shows the amount of cached data. Prefetching
window size P is set to zero, i.e., no prefetching. In
Fig. 13, 0 Mbyte of the cache buffer capacity means
the proxy has no cache buffer. As the buffer capacity
increases, the total amount of traffic between the server
and the proxy decreases. When the buffer capacity ex-
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ceeds 84 Mbytes, i.e., the size of the whole video stream,
the total amount of traffic does not change any more.
In addition, the amount of cached blocks is kept within
the limitation on buffer capacity as Fig. 14 shows. Con-
sequently, it is shown that the proxy can provide clients
with blocks from its local cache buffer by replacing less
important blocks with newly retrieved blocks.

We define the reception delay drec(j) as follows,

drec(j)=
1

BN

BN∑
i=1

(Trecv(i, j)−Tfirst(j)− Tstamp(i)), (2)

where, B corresponds to the number of VOPs in a
block and N stands total number of blocks in a stream.
Trecv(i, j) is a time that the client j receives the VOP i.
Tfirst(j) is a time that the client j receives the first
VOP. Finally, Tstamp(i) is a timestamp of VOP i, i.e.,
Tstamp = i/F , where F corresponds to the frame rate.
Thus, the reception delay is the sum of differences be-
tween the expected arrival time of a VOP and the ac-
tual arrival time at a client. The long reception delay
drec may cause freezes due to underflow of the play-out
buffer. Figure 15 shows the average of reception delay
during video session at each client while prefetching
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window P is set to 0 or 5. Since there is no cached
block in the proxy at first, reception delay of client 1
is the same whether the proxy conducts prefetching or
not. However, for client 2 and 3, the reception delay
without prefetching is larger than that with prefetch-
ing, since there is the delay in obtaining missing blocks
from a server. Specifically, when the buffer capacity is
50 Mbytes, the reception delay on client 3 with a non-
prefetching proxy is 280 msec. When client 3, the last
client among three, joined the service, some parts of a
video stream had been swept out from a cache buffer
due to the limited capacity. As a result, the number of
blocks missing in a cache buffer is larger than the other
two clients. When a proxy does not have a capabil-
ity of prefetching, it has to retrieve all missing blocks
from a video server when they are requested by a client.
It introduces delay. Consequently, the reception delay
increases.

In this experiment, since we consider a small
and underloaded network, the reception delay is small
enough without the capability of prefetching. We ex-
pect that the delay exceeds the initial buffering of three-
seconds video data. By introducing the prefetching
mechanism and a larger value of P , user becomes free
from annoying freezes.

4. Conclusion and Future Work

In this paper, we proposed, designed, implemented,
and evaluated a proxy caching system for MPEG-4
video streaming services. We employed off-the-shelf
and common applications for the server program and
the client program to verify the practicality of our pro-
posed system. Through experiments, it was shown that
our proxy caching system could dynamically adjust the
quality of video streams to prevailing network condi-
tions while providing users with a continuous and high-
quality video streaming service. Furthermore, for the
limited cache buffer, our proxy caching system could
reduce the traffic between a video server and a proxy.

In future research works, we plan to conduct ad-
ditional experiments, e.g., within a larger network en-
vironment, with other filtering mechanisms, and with
other server and client applications. We would also
need to take into account user interactions such as
pauses, fast forwarding, and rewinding.
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