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Abstract

In wireless sensor networks, localization systems use
data from sensors which receive signals from moving tar-
gets, measure RSSI, and translate RSSI into the distance
between sensor and target. We consider a localization sys-
tem that gives an error measurement model of distance and
introduce a relationship between the number of data and ac-
curacy. Extending the lifetime of a system is needed to save
the energy of sensors and collect the necessary data. In this
paper, we propose an efficient data collecting technique to
get the accuracy required for the applications while saving
energy. We verify that our proposal can efficiently collect
necessary data to get accuracy in cases of random sensor
placement.

1. Introduction

Recent advances in wireless communications and elec-
tronics have enabled the development of microsensors that
can manage wireless communication and that also have cal-
culation power. By deploying a large number of sensors,
wireless sensor networks can monitor large areas and be ap-
plied in a variety of fields, such as monitoring environment,
the air, the water, and the soil). Also, sensor networks can
offer sensing data to context-aware applications which can
adapt to user situations in ubiquitous computing. If properly
conducted, sensor nodes can work autonomously to mea-
sure temperature, humidity, luminosity and so on. Sensor
nodes send sensing data to the sink node which has been
deployed for data collection [1].

In the future, sensors will be cheaper and deployed ev-
erywhere; services which depend on user location and lo-
calization of sensors will become more important. GPS [8]
is a popular location estimation system, but since it needs
signals from GPS satellites, it cannot work indoors [6]. Us-
ing sensor networks instead of GPS makes indoor localiza-
tion possible [6]. In the future, we expect that applications

will increase that satisfy location information requirements,
such as navigation systems and target tracking systems in
office buildings or locations in supermarkets, etc. Sen-
sor location is important too, because sensing data without
knowing the sensor location is meaningless in environmen-
tal sensing applications such as water quality monitoring,
seismic intensity, and indoor air quality, and so on [11, 13].

Methods using ultrasound or lasers realize high accu-
racy; however, each device adds to the size, cost, and en-
ergy requirements. For those reasons, such methods are
not suitable for sensor networks. An inexpensive RF-
based approach with low configuration requirements was
researched. But the Receive Signal Strength Indicator
(RSSI) has larger error because it is subject to the delete-
rious effects of fading channels [11]. RSSI needs more data
to achieve high accuracy than other methods. However, col-
lecting a large amount of data causes an increase in traffic
and sensors’ energy consumption and decreases the lifetime
of sensor networks. Furthermore, increasing the time to col-
lect data has a bad influence on real-time operation to get
location information.

In this paper we propose a localization system that esti-
mates the position of moving targets by using RSSI in sen-
sor networks. Accuracy depends on the number of data,
measurement error, and a localization algorithm. We show
the relationship between error of position estimation and the
number of data about position estimation using RSSI and
MMSE (explained in Section 3). Our results will show that
estimation error is not proportionate to the number of data.
Accordingly we attempt to collect only the necessary data
to get the required accuracy. To reduce the data collected
by the sink and extend the lifetime of sensor networks,
we propose a data collection technique in which sensors
recognizes the number of surrounding sensors. They au-
tonomously decide whether to send sensing data and work
in random deployment of sensors. It does not need central-
ized control, complicated calculations, or the sending of a
lot of packets. In simulations we evaluate the effectiveness



of our proposed technique.
The remainder of this paper is organized as follows. In

Section 2, we explain related work. In Section 3, we explain
our model of localization systems. In Section 4, we show
the relationship between the number of sensors and accu-
racy and describe the problem. In Section 5, we describe
our proposed data collecting technique and its evaluation.
We conclude this paper and mention future work in Section
6.

2. Related work

Indoor localization systems have already been proposed.
First, the RADAR system needs RSSI measurements of var-
ious points in a research area to make a signal strength
map [2]. Users can estimate user location by searching for
the nearest RSSI points on a map. Location estimation ac-
curacy depends on a map and how many points RSSI has
measured. Calamari system [16] has also adopted a distance
measurement technique by RSSI. Range errors upwards of
10% have been reported in [16], usually after a fairly in-
volved calibration step that estimates the path loss param-
eters and adjusts for variations in transceiver characteris-
tics. Ref. [13] uses ultrasound devices to estimate sensor
location. It shows how density networks can resolve sensor
position. This system can resolve the position of sensors
if they do not move. But the range of ultrasound is very
short, only about 3m. Ref [14] is also aimed at the system
which adopted the distance measurement system by ultra-
sound whose effective range is 5m. These system work only
in dense sensor networks. Ref. [11] shows a radio chan-
nel fading model and proposes an RF-based Quantized RSS
(QRSS) measurement. QRSS is less expensive than RSSI,
but we could not verify its performance because it does not
show how to calculate the measurement data. Ref. [10] eval-
uates the performance of localization systems using RSSI
and Time of Arrival (TOA) in such actual environments as
parking lots and offices with partitions, desks, and comput-
ers. Both methods can work in actual environments. Ref.
[4] presents a time-based positioning scheme (TPS) in out-
door sensor networks. TPS relies on Time-Difference of
Arrival (TDoA) of RF signals measured locally at a sen-
sor to detect range differences from the sensor to three base
stations. Beacon placement has also been researched [3].
A beacon is a node which knows its position. Localiza-
tion accuracy differs according to placement plan, grid and
randomness. Results show that a grid is a good placement
plan, but suggest that it depends on a localization algorithm.
Ref [12] presents a method by which a sensor node can de-
termine its location by listening to wireless transmissions
from three or more fixed beacon nodes. This system is
based on an Angle of Arrival (AoA) estimation technique,
and needs special antenna configrations.

Furthermore, some researches which perform localiza-
tion take into consideration not only the data of distance but
topological information up exist. Multidimensional scaling
(MDS) is one of such the techniques [15, 7]. MDS uses
connectivity information to derive the locations of the nodes
in the network, and can take advantage of additional data,
such as estimated distances between neighbors oe beacons.
Ref. [5] provides a theoretical foundation for network lo-
calization in terms of graph rigidity theory. Ref. [9] took in
this idea and have proposed a robust distributed algorithm
under noisy range measurements. Our subject for research
is a system by which many sensors are installed fixed and
the position is known. We consider a system which carries
out sensing of the position of the target which can move un-
der such environment. Therefore, a system which takes into
consideration the geographical position and the connection
relations between nodes shall not be made into the object of
this paper. However, when a small number of sensor needs
to perform position detection, it is thought that the approach
using such topological information may become important.

3. Localization system model

We consider a system in which sensors estimate the po-
sition of targets in an observation area. The target has a
wireless device and sends a packet for position estimation.
For multiple targets, a packet includes a target ID. After re-
ceiving a packet, sensors measure RSS and transform RSS
into distance. Sensors send sensing data to the sink which
calculates the target position from sensing data. We also
consider the following details about localization systems:

• Sensor placement
We assume that all sensors have already been deployed
and that they do not move. Sensors are assumed to
know their position for position estimation. There are
two ways to learn sensor position. First, a manager
registers a sensor position to the sink’s database. If
sensors need to know their position, the sink sends sen-
sor position to resolve position when only a few sen-
sors (or a sensor) are placed on a grid. But it cannot re-
solve the problem when a lot of sensors are placed ran-
domly. Second, a manager places a few beacon nodes
which know their position, and sensor nodes estimate
their position to use information from a beacon node
[13]. Beacons can handle a lot of sensors placed ran-
domly.

• Data collection
Sensors receive packets from targets, measure the
power of the packet, and transform RSS into distance
to use theoretical and empirical models. The packet in-
cludes a target ID and a packet number. After reading
the packet, a sensor gets a target ID, a packet number,
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Figure 1. Localization Algorithm: ML Multilat-
eration

and a distance between sensor and target. And then the
sensor sends the following data: its ID, the target ID,
packet number, and distance between sensor and target
to the sink.

• Calculation at the sink
We use a Maximum Likelihood (ML) estimation [13]
that estimates the position of a target by minimizing
the differences between the measured and estimated
distance (Figure 1).

ML estimation of a target’s position can be obtained by
Minimum Mean Square Error (MMSE) [13]. MMSE
can resolve the position from data including error for
calculating a target’s position. We explain calculation
for a two-dimensional case. MMSE needs more than
three sensors to resolve a target’s position. First, the
sink searches for the same data in terms of a target ID
and a packet number from collecting data from sen-
sors. The difference between measured and estimated
distances is defined as Eq. (1) below.

fi(x0, y0) = di −
√

(xi − x0)2 + (yi − y0)2 (1)

x0 and y0 is the unknown position of the target node,
xi and yi for i = 1, 2, 3...N is the sensor position,
and N is the total number of data which the sink has
collected. di is a distance between sensor i and a tar-
get. The target’s position x0 and y0 can obtained by
MMSE. Eq. (2) is obtained by setting fi = 0, squaring
and rearranging.

−x2
i−y2

i +d2
i = (x2

0+y2
0)+x0(−2xi)+y0(−2yi) (2)

After getting Eq. (2), we can eliminate the (x2
0 + y2

0)
terms by subtracting kth equation from the rest.

−x2
i−y2

i +d2
i−(−x2

k−y2
k+d2

k) = 2x0(xk−xi)+2y0(yk−yi)
(3)

Eq. (3) transforms Eq. (4), which can be solved using
matrix solution given by Eq. (5). Position (x0,y0) be
obtained by calculating Eq.(5).

y = Xb (4)

b = (XT X)−1XT y (5)

where

X =




2(xk − x1) 2(yk − y1)
...

...
2(xk − xk−1) 2(yk − xy−1)


 (6)

y =




−x2
1 − y2

1 + d2
1 − (−x2

k − y2
k + d2

k)
...

−x2
k−1 − y2

k−1 + d2
k−1 − (−x2

k − y2
k + d2

k)




(7)

b =
[

x0

y0

]
(8)

4. Evaluation of localization system perfor-
mance

4.1. Error Model

RSSI measurement, which is influenced by the effects
of channel fading, varies by multipath and individual dif-
ferences of antenna and power of senders. We introduce
three error models to simulate a localization system and de-
termine the relationship between data and accuracy. These
models assume uniform distribution of the measurement er-
ror. If target’s position estimates in permissible error in
case of uniform distribution, we expect the system to work
in case of other distribution and real environment, because
uniform distribution has a larger variation than other distri-
butions such as normal distribution.

(1) Measurement error is in proportion to the distance be-
tween the sensor and the target. A mean of the absolute
value is 10% of distance , for example, if distance be-
tween a sensor and a target is 10m, measurement error
is given as a random value between -2m and 2m. This
model follows the experiment in [13].

(2) Measurement error is independent of distance and the
mean of the absolute value is 1m. This is based on the
assumption that sensors near the target do not always
measure the precise effects of such obstacles.

(3) This follows the upper boundaries of both the above
two models. If a system can manage such a large er-
ror model, it’s no exaggeration to say that it is free of
measurement error.
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4.2. Simulation results

In our simulation, we generate target at random in simu-
lation area which is a square 100m on each side. Sensors re-
ceive the packet from the target within 20m and send data to
the sink. Figures 2(a) and 2(b) show the mean localization
error for various numbers of sensors. In error model (2), the
mean estimated error is smaller than models (1) and (3). In
error model (1), measurement error of sensor near the target
is the smallest of the three, but the mean estimated error is
about the same as error model (3). In models (1) and (3),
the data of sensors far from the target have large error and
are a bad influence on localization. The localization error is
disproportionate to the number of sensors, but the number
of collected data is in proportion to the number of sensors.

It is a problem that sensor networks consume large
amounts of energy when collecting much data, but the im-
provement of localization accuracy is small. Two reasons
can be considered. First, MMSE does not need so much
data. Second, sensors far from the target have large errors,
and in a large number of sensors, the sink collects more data
from far sensors than in a small number of sensors. To save
energy and get highly accurate data, we propose a mecha-
nism in the next section, where sensors decide whether to
send sensing data.

5. Data collecting technique

5.1. Relationship between accuracy and the number
of data

First, we verify the relation between the number of data
and position estimation accuracy by limiting the amount of
data used in calculation. In simulation, sensors do not send
data without a certain distance from the target. Figure 3
shows the relation between the restriction distance from a
target and position estimation error in case of 1000 sensors
deployed in the simulation area. Models (2) and (3) show
large error when distance is short, because larger measure-
ment error than model (1) and collected data are too small to
estimate precisely. In case measurement error is large, much
data need to accurate estimation. In the case of models (1)
and (3), there exists an optimal value of the restriction dis-
tance which makes estimated error the minimum. On the
other hand, in the case of model (2), it turns out that an er-
ror becomes small in proportion to the amount of data, so
that measurement error is independent of distance, unlike
the other models, but we can define an optimal distance by
demands of an application, i.e. longtime or accurate oper-
ation. Results show that localization system can cut down
the number of data collected.

When sensors are distributed uniformly, it is thought that
the method of controlling the number of sensors by distance
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Figure 2. Mean localization error vs. number
of sensors

is effective. However, such a method cannot be applied in
biased placement of sensors. We next propose a data col-
lecting technique, which can be used in biased placement.

5.2. Proposed technique

Since the propagation characteristic changes greatly with
environment, it is necessary to determine the number of data
which is needed in order to acquire a certain accuracy in the
environment where it actually works. Users can decide the
number of data to collect by prior knowledge and inform all
sensors by flooding from the sink. Targets can inform sen-
sors of the number of data by sending packets, too. If accu-
racy is less than required by applications, users can easily
increase the data to be collected, because this mechanism
can always change the number of data to be collected.

In our proposal, whether sensors send data depends on
the density around the sensor and the distance between the
sensor and the target. Sensors send data if the distance be-
tween the sensor and the target is shorter than a certain dis-
tance which is calculated by each sensor. Sensors measure
density by receiving packets sent for information of exis-
tence at each period of time and measuring communication

4
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Figure 3. Mean localization error vs. distance
which sensor send data within

range. Density around sensor i is approximately determined
by Eq. (9). R is communication range, Mi is the number of
sensors within R form sensor i.

Density =
Mi

πR2
(9)

We define the number of data required by the system by Z.
Sensor i sends data if the measured distance is shorter than
distance Di to collect Z. The number of sensors within Di

is proportional to density and Di is defined in Eq. (10).

Mi

πR2
=

Z

πD2
i

(10)

Arranging Eq. (10), Eq. (11) is obtained.

Di = R

√
Z

Mi
(11)

Di depends on density around sensor i. The sink can collect
the same amount of data independent of sensor deployment
density, because if the density around sensor i is high, Di is
small and if the density around sensor i is low, Di is high.

5.3. Performance evaluation

We validate our proposed data collecting technique in
this subsection. Our simulation model is the same as in the
previous section. We show the results in error model (3),
setting R as 20m and in random placement. Figure 4(a)
shows that the proposed technique collects data almost as
we intend, but, in case of 100 sensors, sensors around the
target number about ten, and for that reason the sink cannot
collect more than ten data. The number of data collected
was a little more than required, because sensors at the edge
of the simulation area underestimate density and unneces-
sarily send data. The mean estimation error, as shown in
Figure 4(b), drops for a large number of sensors, 1000 and
10,000 sensors. Note that the mean estimation error is lower
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Figure 4. Performance of data collecting Tech-
nique

than 1m when Z is 9 for 1000 sensors and when Z is 4 for
10,000 sensors. The proposed technique saves sensor en-
ergy and achieves higher localization accuracy than collect-
ing data from all sensors within 20m.

Next we verify the data collecting technique in biased
topology. In simulation, we generate 1000 sensors, use er-
ror model (3) and compare the technique to data collection
with a system which only restricts distance. Simulation area
is a square 100m on each side. Biased deployment is 700
sensors deployed in left bottom of the area and the rest are
in other parts of the area (see Figure 5). Generating target
randomly in the area, proposed technique using ten as the
number of data required and collecting from sensors within
8m radius (method in Subsection 4.1) show about the same
accuracy. We simulate by generating target in each point
(25,25), (25,75), (75,25) and (75,75) in Table 1. Accuracy
of two methods is about same at each point, but there is a
large difference in amount of data in point (25,25) which
is on left bottom in the area and has high density. Pro-
posed technique collects a constant number of data in each
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Table 1. Comparison between two method
Proposal system whose Collecting data from sensors

number of data is 10 within 8m radius

Error Data Error Data

(25,25) 0.982 9.48 0.834 85.64
(25,75) 1.082 10.63 0.901 13.09
(75,25) 0.665 13.05 0.618 16.21
(75,75) 0.818 11.52 0.969 15.11

point and is excellent in terms of saving energy. The results
of simulations in this section show proposed technique can
collect the required number of data and keep localization
accuracy constant in uniform and non-uniform placement
of sensors.

6. Conclusion and future work

In this paper, we have presented a localization system
that uses RSSI to obtain the distance between sensors and
targets for wireless sensor networks. We have discussed the
relationship between data, accuracy, and sensor placement.
Collecting a small amount of data saves the sensor’s battery
and extends the lifetime of the sensor network. In simu-
lation results, a large amount of data does not necessarily
accomplish high accuracy. We propose and evaluate an Au-
tonomous Localization Method that collects the necessary
number of data. It saves sensor’s energy and achieves high
localization accuracy. In the present simulation experiment,
we do not implement the transmission of data packet. We
are going to build next a simulation model including the
MAC layer protocol in consideration of transmission of a
data packet. We will evaluate the delay required in order
to collect data using it. Furthermore, our system assumed
dense networks and can estimate small error, but its perfor-
mance was not good in sparse networks. We will consider
a mechanism that can obtain a certain degree of accuracy
with fewer sensors and save more energy.
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