
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

TailDrop/AREDルータ下でのHighSpeed TCPの性能改善手法

張 宗升† 長谷川 剛† 村田 正幸†

† 大阪大学大学院情報科学研究科
E-mail: †{zhang,hasegawa,murata}@ist.osaka-u.ac.jp

あらまし 現在実現しつつある 1～10Gbps級のリンクを持つ超高速ネットワークにおいて、TCPを用いてデータ転

送を行うと、高速リンク帯域を使い切れないことが指摘されている。この問題に対して、HighSpeed TCPが提案さ

れているが、その詳細な性能評価は行われていない。特に、既存の TCP Renoとの公平性に関しては考慮されてい

ない。本稿では、HighSpeed TCPの持つ問題点を指摘し、その不公平性を改善する gHSTCP方式を提案を行う。ま

た、超高速ネットワークにおける REDの問題点を指摘し、それを解消する方式として、AREDを改善した gARED

方式の提案を行う。その結果、gHSTCPと gAREDを組み合わせることによって、リンク帯域を有効に利用し、かつ

TCP Renoとの公平性を大幅に改善できることをシミュレーション結果を用いて明らかにする。

キーワード TCP Reno, HighSpeed TCP, 公平性, TailDrop, RED

Performance Analysis and Improvement of HighSpeed TCP with

TailDrop/ARED Routers

Zongsheng ZHANG†, Go HASEGAWA† and Masayuki MURATA†

† Graduate School of Information Science and Technology, Osaka University
E-mail: †{zhang,hasegawa,murata}@ist.osaka-u.ac.jp

Abstract Continuous and explosive growth of the Internet has shown that current TCP mechanisms can obstruct

efficient use of high-speed, long-delay networks. To address this problem we propose an enhanced transport-layer

protocol called gHSTCP, based on the HighSpeed TCP protocol proposed by Sally Floyd. It uses two modes in the

congestion avoidance phase based on the changing trend of RTT. Simulation results show gHSTCP can significantly

improve performance in mixed environments, in terms of throughput and fairness against the traditional TCP Reno

flows. However, the performance improvement is limited due to the nature of TailDrop router, and the ARED

routers can not alleviate the problem completely. Therefore, we present a modified version of Adaptive RED, called

gARED, directed at the problem of simultaneous packet drops by multiple flows in high speed networks. This new

Active Queue Management (AQM) mechanism can eliminate weaknesses found in Adaptive RED by monitoring the

trend in variation of the average queue length of the router buffer. Our approach, combining gARED and gHSTCP,

is more effective and fair to competing traffic than Adaptive RED with HighSpeed TCP.

Key words TCP Reno, HighSpeed TCP, Fairness, TailDrop, RED

1 Introduction

Hosts (server machines) providing services that encom-

pass data grids and storage area networks (SANs) have

gigabit-level network interfaces such as gigabit ethernet.

These hosts connect directly to high-speed networks for

terabyte/petabyte-sized data exchange to move program

data, perform backups, synchronize databases and so on.

Although they require large amounts of network bandwidth

and disk storage, such services will grow in the future Inter-

net as their costs are rapidly decreasing. However, the most

popular version of TCP used on the current Internet, TCP

Reno [1], cannot achieve sufficient throughput for this kind of

high-speed data transmission because of the essential nature

of the TCP congestion control mechanism.

According to [2], in order for a TCP Reno connection, with

a packet size of 1,500 bytes and RTT (Round Trip Time) of

100 ms, to fill a 10 Gbps link, a congestion window of 83,333

packets is required. This means a packet loss rate of less

than 2× 10−10, well below what is possible with present op-

tical fiber and router technology. Furthermore, when packets

are lost in the network, 40,000 RTTs (about 4,000 sec) are

needed to recover throughput. As a result, standard TCP

cannot possibly obtain such a large throughput, primarily

— 1 —



because TCP Reno drastically decreases its congestion win-

dow size when packet loss is taking place, and, even when

experiencing no packet loss, increases it only very slightly.

HighSpeed TCP (HSTCP) [2] was recently proposed by

Sally Floyd as one way to overcome the problems dis-

cussed above and provide considerably greater throughput

than TCP Reno in such environments. It modifies the in-

crease/decrease algorithms of the congestion window size

in the congestion avoidance phase of the TCP mechanism

[3]. That is, HSTCP increases its congestion window more

quickly, and decreases it more slowly, than does TCP Reno

to keep the congestion window size large enough to fill a

high-speed link.

Although intuitively HSTCP appears to provide greater

throughput than TCP Reno, HSTCP performance character-

istics have not been fully investigated, such as the fairness

issue when HSTCP and TCP Reno connections share the

same link. Fairness issues are very important to TCP and

have been actively investigated in past literature [4–9]. Al-

most all of these studies have focused on the fairness among

connections for a certain TCP version used in different en-

vironments and consider such factors as RTT, packet drop-

ping probability, the number of active connections and the

size of transmitted documents. Fairness among traditional

and new TCP mechanisms, such as HSTCP, is a quite im-

portant issue when we consider the migration paths of new

TCP variants. It is very likely that HSTCP connections be-

tween server hosts, and the many traditional TCP Reno con-

nections for Web access and e-mail transmissions, will share

high-speed backbone links. It is therefore important to inves-

tigate the fairness characteristics between HSTCP and TCP

Reno. When HSTCP and TCP Reno compete for a band-

width on a bottleneck link, we do not attempt to provide the

same throughput that they are capable of achieving. But in

this case, high throughput by HSTCP should not occur at

great sacrifice by TCP Reno.

To our knowledge, there has been limited research on this

issue [10–12]. In [10, 11], only simulations or results from ex-

perimental implementations are assessed. In [12], the author

addresses “a serious RTT unfairness problem.” In this pa-

per we evaluate throughput and fairness properties when

HSTCP and TCP Reno connections share a network band-

width. From the results we observe that HSTCP can achieve

high throughput, but it is accompanied by a large degrada-

tion in TCP Reno throughput. To resolve this problem, we

propose a modification to HSTCP called “gentle HighSpeed

TCP” (gHSTCP) that implements two modes, HSTCP mode

and Reno mode, in the congestion avoidance phase to im-

prove fairness yet allow both gHSTCP and traditional TCP

to achieve satisfactory performance. In particular, when

TailDrop is chosen as the queue management mechanism,

gHSTCP can achieve both higher throughput and better fair-

ness than the original HSTCP.

However, the performance improvement is limited due to

the nature of TailDrop router, which causes bursty packet

losses and the large queueing delay. Congestion control to

alleviate these problems can be accomplished by end-to-end

congestion avoidance together with an active queue man-

agement (AQM) mechanism. Traditional TailDrop queue

management could not effectively prevent the occurrence of

serious congestion. Furthermore, global synchronization [13]

could occur during the period of congestion, i.e., a large num-

ber of TCP connections could experience packet drops and

reduce their transfer rates at the same time, resulting in

underutilization of the network bandwidth and large oscilla-

tions in queueing delay. Particularly in high-speed long-delay

networks, where routers may have large buffers, TailDrop can

cause long queueing delays. To address these problems, Ran-

dom Early Detection (RED) [14] has been recommended for

wide deployment in the Internet as an active queue man-

agement mechanism [15]. However, control parameter set-

tings in RED have proven highly sensitive to the network

scenario, and misconfiguring RED can degrade performance

significantly [16–20]. Adaptive RED (ARED) was therefore

proposed as a solution to these subsequent problems [21].

ARED can adaptively change the maximum drop probabil-

ity in accordance with network congestion levels. However,

in high-speed and less multiplexed networks, our results in-

dicate some remaining problems with ARED, such as syn-

chronized packet drops and instability in queue length, lead-

ing us to develop a more robust ARED mechanism. This

improved Adaptive RED, which we call gARED, monitors

average queue length and trends in the variation in order to

dynamically adapt the maximum packet drop probability.

The remainder of this paper is organized as follows. In Sec-

tion 2 we give a brief overview of HSTCP. In Section 3, we in-

vestigate, through simulations, the throughput and fairness

properties of HSTCP when sharing bandwidth with TCP

Reno on a bottleneck link. We then propose a modification

to HSTCP. In Section 4, we analyze and evaluate ARED,

show its weaknesses, propose an improved version of ARED

and then conduct simulation experiments to evaluate mecha-

nisms to implement the proposal. Finally, Section 5 presents

our conclusions for this study.

2 Background

To overcome problems with TCP mentioned in Section 1,

HSTCP was proposed [2]. The HSTCP algorithm uses

the principle of Additive Increase Multiplicative Decrease

(AIMD) as does standard TCP, but is more aggressive in

its increases and more conservative in its decreases. HSTCP

addresses this by altering the AIMD algorithm for the con-

gestion window adjustment, making it a function of the con-

gestion window size rather than a constant as in standard

TCP.

In response to a single acknowledgment, HSTCP increases

the number of segments in its congestion window w as:

w←w +
a(w)

w

In response to a congestion event, HSTCP decreases the

number of segments in its congestion window as:

w←(1 − b(w))×w

Here, a(w) and b(w) are given by:

a(w) =
2w2·b(w)·p(w)

2 − b(w)
(1)

b(w) = (bhigh − 0.5)
log(w) − log(Wlow)

log(Whigh) − log(Wlow)
+ 0.5 (2)

p(w) =
0.078

w1.2
(3)

where bhigh, Whigh and Wlow are parameters of HSTCP.

— 2 —



Equations (1),(2) show that increasing parameter a(w) be-

comes larger as congestion widow size increases, while de-

creasing parameter b(w) becomes smaller. In this manner,

HSTCP can sustain a large congestion window fully utilizing

high-speed long-delay network.

HSTCP response function1 (3) illustrates that HSTCP re-

laxes the constraint between drop probability and the conges-

tion window. For example, when p = 10−7 is in steady-state,

HSTCP can send at the rate of 100,000 pkts/RTT while the

sending rate of TCP Reno is around only 4,000 pkts/RTT.

Consequently, HSTCP can achieve a large congestion win-

dow even with a high loss rate.

HSTCP is simple and uses the AIMD algorithm similarly

to TCP Reno. It does not require additional feedback from

routers and TCP receivers and is therefore easy to deploy

gradually in current networks. In this paper we propose

gHSTCP. Based on HSTCP, gHSTCP can achieve better

fairness with competing traditional TCP flows while extend-

ing the HSTCP strongpoint of achieving high throughput.

3 gHSTCP: Gentle HighSpeed TCP

In this section we present simulation results to show prob-

lems with HSTCP and propose a simple and effective modifi-

cation, the result of which we call gHSTCP. We take advan-

tage of the original HSTCP in terms of its AIMD algorithm

for aggressive increase and conservative decrease of the con-

gestion window. To gain better fairness with TCP Reno,

we modify the strategy for increasing the congestion win-

dow. We then illustrate how gHSTCP outperforms HSTCP

through simulation experiments.

3. 1 Simulation with HSTCP

We first present the results of simulation experiments to

clarify HSTCP problems with throughput and fairness. ns-2

network simulator [22] is used for the simulations. The net-

work topology is shown in Fig 1, where S1/S2 represents

sender groups consisting of sender hosts, and D1/D2 repre-

sents sink groups consisting of destination hosts. R1 and R2

are routers with a buffer size of 10,000 packets. The packet

size is 1,500 bytes. The bandwidth of the bottleneck link is

set to 2.5 Gbps, and the propagation delay of the bottleneck

link is set to 25, 50 or 100 ms. There are 10 connections be-

tween senders and sinks. S1 contains five connections with an

access link bandwidth of 100 Mbps. S2 contains five connec-

tions with an access link bandwidth of 1 Gbps. For HSTCP

connections, we show the simulation results with and with-

out the Selective ACKnowledgement (SACK) option. We

denote HSTCP+SACK and HSTCP in the results, respec-

tively. TailDrop is used as the queue management mecha-

nism in this section. We use a greedy FTP source for data

transmission. The aggregate throughput is used as an eval-

uating metric. Three simulation sets are conducted:
• Case 1: TCP Reno is used for S1 and S2.
• Case 2: TCP Reno is used for S1 and HSTCP is used

for S2.
• Case 3: TCP Reno is used for S1 and HSTCP+SACK

is used for S2.

Fig 2 shows throughput of the three cases. In Case 1,

TCP Reno flows having high-bandwidth access links compete

with similar flows having lower bandwidth access links. In

1: The TCP response function maps the steady-state packet drop rate

to the TCP average sending rate in packets per RTT.

R
2

(10,000pkts)

R
1

(10,000pkts)

S
1

S
2

D
1

D
2

a

c

c

e

s

s
 
l
i
n

k

(
1

0

0

M

b

p

s

)

bottleneck link

a

c

c

e

s

s

 
l
i
n

k

(
1

0

0

M

b

p

s

)

sender sink

(2.5Gbps)

a

c

c

e

s
s

 
l
i
n

k

(
1

G

b

p

s

)

a

c

c

e

s
s

 
l
i
n

k

(
1

G

b

p

s
)

Fig 1: Topology

 0

 500

 1000

 1500

 2000

 2500

25 50 100

T
hr

ou
gh

pu
t(

M
bp

s)

Delay (ms) (TailDrop)

Case1-S1(Reno)
Case1-S2(Reno)
Case2-S1(Reno)
Case2-S2(HSTCP)
Case3-S1(Reno)
Case3-S2(HSTCP+SACK)

Fig 2: Throughput Comparison (Reno/HSTCP, TailDrop)

the figure, “Case1-S1 (Reno)” represents aggregate through-

put of the low-bandwidth access link flows (S1 group), and

“Case1-S2 (Reno)” represents the aggregate throughput of

the high-bandwidth access link flows (S2 group), for Case 1.

We can see that the S1 group fully utilizes its access link

bandwidth, and the S2 group, although it achieves higher

throughput, does not utilize the entire available bandwidth.

This confirms that TCP Reno cannot fully utilize the high

link bandwidth, as mentioned in Section 1. In Case 2,

HSTCP is used in the S2 group instead of TCP Reno. The

S2 group obtains a slight benefit from HSTCP, but perfor-

mance of the S1 group is severely damaged and a degradation

in total throughput occurs. This is because the congestion

window is inflated in the S2 group, resulting in more fre-

quent buffer overflows and increasing packet loss in all of the

flows. As we know, TCP Reno lacks a mechanism for re-

covering from a multiple packet loss event without incurring

a timeout. Lost packets cause retransmission timeouts (this

is a fundamental mechanism of TCP Reno [23]), and time-

outs place the connection in the slow-start phase, resulting

in serious throughput degradation. Note that HSTCP uses

the same algorithm as TCP Reno for packet retransmission.

This is the reason why HSTCP connections in Case 2 can-

not obtain high throughput compared with the TCP Reno

connections in Case 1.

The TCP SACK mechanism [24], combined with a selective

retransmission policy, can help overcome limitations in recov-

ering from many packet losses. In Case 3, the TCP SACK

option is applied with HSTCP for group S2. Fig 2 shows

that the S2 group achieves very high throughput while that

of TCP Reno is severely degraded. Although there are still

multiple packet drops, the S2 group, using the SACK option,

infers the dropped packets and retransmits only the missed

ones. This function is not available to the S1 group, and

that group therefore receives less link bandwidth compared

to Case 2.

It is clear in Case 1 that as propagation delay increases

the S2 group does not affect the S1 group. This is because

both groups employ the same mechanism and group S2 can-

not fully utilize the leftover bandwidth of group S1. But in

— 3 —



Case 2 and Case 3, the larger the propagation, the smaller

the throughput that can be achieved by group S1 due to the

use of different algorithms by the two groups.

3. 2 gHSTCP Description

Original HSTCP increases the congestion window size

based solely on the current congestion window size. This

may lead to bursty packet losses, because the window size

continues to be rapidly increased even when packets begin

queueing at the router buffer. In addition, differences in

speed gains among the different connection types result in

unfairness. To alleviate this problem, we consider changing

the behavior of HSTCP for speed increases to account for

full or partial utilization of bottleneck links. We regulate

the congestion avoidance phase in two modes, HSTCP mode

and Reno mode, and switch between modes based on the

trend of changing RTT.

Defining the departure time and RTT value of a trans-

mitted packet as di and ti, respectively, then a correlation

between di and ti is tested statistically. If a positive correla-

tion is recognized, that is, an increasing trend in the observed

RTT values is present, then bottleneck congestion is occur-

ring for a sender. If more and more packets are buffered

in the router queue, then the bottleneck is fully used. The

sender should therefore slow down its increasing speed of the

sending rate to keep the fairness against TCP Reno connec-

tions. The process during this period is referred to as Reno

mode, in which the sender increases its congestion window

linearly as with standard TCP. This will maintain fairness

among TCP Reno and gHSTCP connections. On the other

hand, if there is a nonpositive correlation between di and ti,

it means the network is in an underutilized state and the

sender should increase the congestion window rapidly to uti-

lize the unused bandwidth. The process during this period is

called HSTCP mode. The sender increases the window size

in the same way as HSTCP, and adaptively changes mode

as needed. Once a retransmission timeout occurs, or if du-

plicated acknowledgments are received, the sender decreases

the congestion window in the same way as original HSTCP.

For example, when a timeout occurs, the congestion window

size is reset to one packet and the phase is changed to slow-

start. If three duplicated acknowledgments are received, the

window size is set to (1 − b(w))×w. The algorithm is sum-

marized as follows.

When a new acknowledgment is received, gHSTCP in-

creases its congestion window in segments as:

w←w +
a(w)

w

where a(w) is given by:

a(w) =

8

<

:

2w2·b(w)·p(w)

2 − b(w)
HSTCP mode

1 Reno mode

3. 3 gHSTCP Evaluation with Simulations

In this subsection we compare the performance of HSTCP

and gHSTCP based on simulations using ns-2 . Using Tail-

Drop as the queue management mechanism, the following

simulations are performed:
• Case 4: TCP Reno is used for S1 and gHSTCP is used

for S2.
• Case 5: TCP Reno is used for S1 and gHSTCP+SACK

is used for S2.

 0

 500

 1000

 1500

 2000

 2500

25 50 100

T
hr

ou
gh

pu
t(

M
bp

s)

Delay (ms) (TailDrop)

Case2-S1(Reno)
Case2-S2(HSTCP)
Case4-S1(Reno)
Case4-S2(gHSTCP)
Case3-S1(Reno)
Case3-S2(HSTCP+SACK)
Case5-S1(Reno)
Case5-S2(HSTCP+SACK)

Fig 3: Performance Comparison (TailDrop)

From Fig 3, where TCP Reno is used with gHSTCP (Case 4),

we can see that throughput is significantly improved for both

TCP Reno and gHSTCP and fairness is also improved com-

pared with the HSTCP case. Fig 3 also shows that, although

total throughput for the high-speed flows of Cases 3 and 5

is the same when the SACK option is used, throughput is

greatly improved for the TCP Reno connections in Case 5.

We can also see that fairness is better among the differ-

ent flow types with the help of gHSTCP. This is because

gHSTCP can adaptively change its increase mode accord-

ing to the network congestion level and avoid the “starving”

condition that occurs in traditional TCP.

4 gARED: Gentle Adaptive RED

The results in Section 3 are primarily the effects of the

TailDrop mechanisms at the bottleneck routers. To address

the problems with TailDrop as pointed in Section 1, RED

is recommended to use. However, control parameter set-

tings in RED have proven highly sensitive to the network

scenario, and misconfiguring RED can degrade performance

significantly [16–20]. We need a mechanism that can adjust

the parameters automatically, especially maxp, in response

to the network environment. Adaptive RED (ARED) [21],

an improved version of RED, is such a mechanism, and its

application is expected to improve system performance. We

first conduct simulation experiments with ARED and de-

duce its shortcomings from the results. We then propose a

modification to alleviate these deficiencies, through a process

of automatic parameter setting, but that still preserves the

effectiveness of the ARED mechanism.

4. 1 ARED Mechanism

RED monitors impending congestion by maintaining an

exponential weighted moving average of the queue length

(q̄). However, RED parameter settings have proven highly

sensitive to network conditions, and performance can suffer

significantly for a misconfigured RED [16, 17]. The motiva-

tion for ARED is to diminish or eliminate the shortcomings

of RED, i.e., remove the effect of the RED parameters on

average queue length and performance. Following is the key

point of the differences between RED and ARED, the details

of which can be reviewed in [21].
• maxp: In RED, this value does not change at runtime.

In ARED, maxp is dynamically adapted to keep the average

queue size within the target queue boundaries according to

network conditions. When the average queue size is larger

than the target queue size, maxp is increased. When the

average queue size is less than the target queue size, maxp

is decreased. One recommended range for maxp is (0.01,

— 4 —



 0

 500

 1000

 1500

 2000

 2500

25 50 100

T
hr

ou
gh

pu
t(

M
bp

s)

Delay (ms) (ARED)

Case6-S1(Reno)
Case6-S2(HSTCP)
Case7-S1(Reno)
Case7-S2(HSTCP+SACK)

Fig 4: Performance Comparison (ARED)

0.5). The objective of ARED is to achieve an expected target

queue [minth +0.4∗(maxth−minth), minth +0.6∗(maxth−
minth)] by adapting maxp.

4. 2 Simulation with ARED

To evaluate the effectiveness of ARED in a high-speed

long-delay network we perform two simulations, under the

same conditions as in the previous section but with ARED

deployed at the routers. Setting minth to 2,500 packets, and

setting the other ARED parameters as described in [21], the

following simulations are performed:
• Case 6: TCP Reno is used for S1 and HSTCP is used

for S2 with ARED deployed.
• Case 7: TCP Reno is used for S1 and HSTCP+SACK

is used for S2 with ARED deployed.

The results are shown in Fig 4. When TCP Reno is used for

HSTCP, the system performance is significantly improved

in terms of throughput and fairness compared with that of

TailDrop (Fig 3). If SACK option is used with HSTCP, the

fairness is better than that with TailDrop used. The bottle-

neck link remains underutilized, however. This is due to an

improper setting for the ARED packet drop probability. We

will now describe the shortcomings of ARED in detail.

The graph in Fig 5 shows a sketch map of the average queue

size as it varies with time when using ARED. The purpose

of the changing maxp is to maintain an average queue size

within the target queue range. In the figure, the x-axis is

time, and the y-axis is the average queue length. When the

average queue size increases to greater than the target queue

size, as shown in the orange areas, ARED will increase maxp

which in turn causes many of the flows to reduce their send-

ing rates. This results in a decrease of the average queue size.

When the average queue size decreases to less than the tar-

get queue, as shown in the yellow areas in the figure, maxp

is decreased. With a smaller maxp, fewer connections suffer

packet losses and the average queue size therefore increases.

In this manner, ARED achieves its expected performance.

A problem with ARED is that it does not consider the

trend in average queue variation. Given t = t1, maxp = p1,

the average queue size (q̄) is q1. As q̄ increases, maxp reaches

a local maximum value p2 at t = t2, q̄ = qm. This p2 is large

enough to ensure an average queue reduction. At t = t3,

q̄ decreases and maxp is still increasing. At t = t4, maxp

reaches its maximum pm, pm > p2. The larger maxp will

converge the average queue size to the target queue size at a

faster pace, but at the expense of a less stable state.

We can view this process as a feedback control system [19]

with the TCP senders as the controlled element, the drop

module as the controlling element and the drop probability

as the feedback signal. The feedback signal, delayed by about

t

q

maxth

minth

B-Size

Target Queue Range

(t1,q1,p1)

(t2,qm,p2)

(t3,q3,p3)
(t4,q4,pm)

Fig 5: Sketch of Average
Queue (ARED)

t

q

maxth

minth

Target Queue Range

B-Size

(t1,q1,p1)

(t2,qm,pm)

(t3,q3,p3)
(t4,q4,p4)

Fig 6: Sketch of Average
Queue (gARED)

one RTT, causes senders to decrease their send rates to less

than the ideal rate. Especially, the larger the drop probabil-

ity, the more the TCP senders rates will be less than ideal.

Moreover, as the propagation delay and queue size increase,

this phenomenon will become more serious.

Another problem with ARED, the same as with RED, is

that the lower bound of parameter maxp is determined to

some extent by the network manager to ensure ARED per-

formance.

4. 3 An Improvement of ARED

To solve these problems inherent to ARED we propose a

modified version we refer to as gARED. The modifications

shown in Fig 6. When the average queue becomes larger than

the target queue and there is an increasing trend (orange ar-

eas), maxp is increased. When the average queue becomes

smaller than the target queue, then only if the average queue

length is larger than minth and there is a decreasing trend

(yellow areas), maxp is decreased. When the average queue

size is less than minth, no packets are being dropped, there-

fore, even for a decreasing trend maxp is not decreased.

Comparing gARED with the original ARED, if the aver-

age queue size is larger than the target queue size while t is

in the interval (t2, t4), ARED increases maxp but gARED

does not. The small maxp gives the network more stability.

On the other hand, if the average queue size is less than the

target queue, maxp is larger for gARED than for ARED.

Another difference between gARED and ARED is that

there is no limit on the lower bound of maxp in gARED.

It is determined automatically based on minth.

4. 4 Evaluation of gHSTCP with gARED

Finally, Fig 7 shows throughput and fairness when there

are five gHSTCP flows competing with 5 TCP Reno flows,

and gARED is used at the routers. Two simulation experi-

ments are conducted:
• Case 8: TCP Reno is used for S1 and gHSTCP is used

for S2 with gARED deployed.
• Case 9: TCP Reno is used for S1 and gHSTCP+SACK

is used for S2 with gARED deployed.

We can see that when TCP Reno is used with HSTCP

— 5 —



 0

 500

 1000

 1500

 2000

 2500

25 50 100

T
hr

ou
gh

pu
t(

M
bp

s)

Delay (ms) (ARED/gARED)

Case6-S1(Reno)
Case6-S2(HSTCP)
Case8-S1(Reno)
Case8-S2(gHSTCP)
Case7-S1(Reno)
Case7-S2(HSTCP+SACK)
Case9-S1(Reno)
Case9-S2(gHSTCP+SACK)

Fig 7: Performance Comparison
(HSTCP+ARED/gHSTCP+gARED)

and gHSTCP (Case 6 and 8) with a propagation delay of

25 ms or 50 ms, the virtues of gHSTCP and gARED in

combination are exhibited in terms of throughput and fair-

ness. Even without the SACK option, gHSTCP achieves the

same performance as when the SACK option is used. At a

propagation delay of 100 ms, gHSTCP throughput and to-

tal throughput are greater than for HSTCP, while TCP Reno

throughput is sightly less than for HSTCP. These are accept-

able results compared to that when ARED is deployed. In

this case, however, there is a tradeoff between total through-

put and fairness. Fig 7 also shows the case for HSTCP and

gHSTCP using the SACK option (Case 7 and 9). Individual

group throughputs for connections with gARED deployed

outperform those when HSTCP and ARED are deployed.

Fairness is also improved between gHSTCP and TCP Reno

flows. Even if the propagation delay of the bottleneck link

link becomes large, our proposal can minimize the loss in

throughput.

5 Conclusion

We have proposed a new approach for improving HSTCP

performance in terms of fairness and throughput. Our

proposal, gHSTCP, achieves this goal by introducing two

modes in the congestion avoidance phase: Reno mode and

HSTCP mode. When there is an increasing trend in RTT,

gHSTCP uses Reno mode; otherwise, it uses HSTCP mode.

In addition, to address problems with ARED in high-speed

long-delay networks, we also proposed a modified version

of ARED, called gARED, that adjusts maxp according to

the average queue length and the trend in variation. This

technique avoids the problem of determining an appropriate

lower bound for maxp. We showed through simulations that

our proposed algorithms outperform the original algorithms.

Future work will include further extensive investigation of

gHSTCP, e.g., how to recover effectively from simultaneous

packet losses, refinement of the technique for making esti-

mations based on trends and analysis of the impact that

gHSTCP flows may have on Web traffic.

References

[1] M. Allman V. Paxson and W. Stevens, “TCP congestion

control,” RFC 2581, April 1999.

[2] S. Floyd, “HighSpeed TCP for large congestion windows,”

RFC 3649, December 2003.

[3] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Proto-

cols. Addison-Wesley, 1994.

[4] C. Barakat, E. Altman and W. Dabbous, “On TCP perfor-

mance in a heterogenous network: A survey,” IEEE Com-

munications Magazine, vol. 38, no. 1, pp. 40–46, January

2000.

[5] G. Hasegawa and M. Murata, “Survey on fairness issues in

TCP congestion control mechanisms,” IEICE Transactions

on Communications, vol. E84-B, no. 6, pp. 1461–1472, June

2001.

[6] R. Morris, “TCP behavior with many flows,” in Proceed-

ings of IEEE International Conference on Network Proto-

cols (ICNP), October 1997, pp. 205–211.

[7] Y. Z. L. Qiu and S. Keshav, “Understanding the perfor-

mance of many TCP flows,” Computer Networks, vol. 37,

no. 3–4, pp. 277–306, November 2001.

[8] L. Guo and I. Matta, “The war between mice and ele-

phants,” in Proceedings of the 9th IEEE International Con-

ference on Network Protocols, November 2001.

[9] K. Avrachenkov, U. Ayesta, P. Brown and E. Nyberg, “Dif-

ferentiation between short and long TCP flows: Predictabil-

ity of the response time,” in Proceedings of INFOCOM

2004, March 2004.

[10] E. de Souza and D. Agarwal, “A HighSpeed TCP study:

Characteristics and deployment issues,” LBNL, Tech. Rep.

LBNL-53215, 2003.

[11] “TCP stacks testbed.” [Online]. Available: http://www-

iepm.slac.stanford.edu/bw/tcp-eval/

[12] L. Xu, K. Harfoush and I. Rhe, “Binary increase congestion

control (BIC) for fast long-distance networks,” in Proceed-

ings of INFOCOM 2004, March 2004.

[13] S Floyd and V. Jacobson, “Traffic phase effects in packet-

switched gateways,” Journal of Internetworking: Practice

and Experience, vol. 3, no. 3, pp. 115–156, September 1992.

[14] S. Floyd and V. Jacobson, “Random early detection gate-

ways for congestion avoidance,” IEEE/ACM Transactions

on Networking, vol. 1, no. 4, pp. 397–413, August 1993.

[15] B. Braden and et al, “Recommendations on queue manage-

ment and congestion avoidance in the Internet,” RFC 2309,

April 1998.

[16] W. Feng, D. D. Kandlur, D. Saha and K. G. Shin, “A self-

configuring RED gateway,” in Proceedings of INFOCOM

1999, March 1999, pp. 1320–1328.

[17] M. May, J. Bolot, C. Diot and B. Lyles, “Reasons not to de-

ploy RED,” in Proceedings of 7th. International Workshop

on Quality of Service (IWQoS’99), London, June 1999, pp.

260–262.

[18] V. Misra, W. B. Gong and D. F. Towsley, “A fluid-based

analysis of a network of AQM routers supporting TCP flows

with an application to RED,” in Proceedings of SIGCOMM

2000, September 2000, pp. 151–160.

[19] V. Firoiu and M. Borden, “A study of active queue manage-

ment for congestion control,” in Proceedings of INFOCOM

2000, March 2000, pp. 1435–1444.

[20] M. Christiansen, K. Jaffay, D. Ott and F. D. Smith, “Tuning

RED for web traffic,” in Proceedings of SIGCOMM 2000,

August 2000, pp. 139–150.

[21] S. Floyd and R. Gummadi and S. Shenker, “Adaptive

RED: An algorithm for increasing the robustness of RED.”

[Online]. Available: http://www.icir.org/floyd/papers/

[22] “The network simulator - ns-2.” [Online]. Available:

http://www.isi.edu/nsnam/ns/

[23] K. Fall and S. Floyd, “Simulation-based comparisons of

Tahoe, Reno and SACK TCP,” Computer Communication

Review, vol. 26, no. 3, pp. 5–21, July 1996.

[24] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP

selective acknowledgment options,” RFC 2018, October

1996.

— 6 —


